1
|
Sato N, Shidara H, Kamo S, Ogawa H. Roles of neural communication between the brain and thoracic ganglia in the selection and regulation of the cricket escape behavior. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104381. [PMID: 35305989 DOI: 10.1016/j.jinsphys.2022.104381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
To survive a predator's attack, prey animals must exhibit escape responses that are appropriately regulated in terms of their moving speed, distance, and direction. Insect locomotion is considered to be controlled by an interaction between the brain, which is involved in behavioral decision-making, and the thoracic ganglia (TG), which are primary motor centers. However, it remains unknown which descending and ascending signals between these neural centers are involved in the regulation of the escape behavior. We addressed the distinct roles of the brain and TG in the wind-elicited escape behavior of crickets by assessing the effects of partial ablation of the intersegmental communications on escape responses. We unilaterally cut the ventral nerve cord (VNC) at different locations, between the brain and TG, or between the TG and terminal abdominal ganglion (TAG), a primary sensory center of the cercal system. The partial ablation of ascending signals to the brain greatly reduced the jumping response rather than running, indicating that sensory information processing in the brain is essential for the choice of escape responses. The ablation of descending signals from the brain to the TG impaired locomotor performance and directional control of the escape responses, suggesting that locomotion in the escape behavior largely depends on the descending signals from the brain. Finally, the extracellular recording from the cervical VNC indicated a difference in the descending activities preceding the escape responses between running and jumping. Our results demonstrated that the brain sends the descending signals encoding the behavioral choice and locomotor regulation to the TG, while the TG seem to have other specific roles, such as in the preparation of escape movement.
Collapse
Affiliation(s)
- Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shunsuke Kamo
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
2
|
Mulder-Rosi J, Miller JP. ENCODING OF SMALL-SCALE AIR MOTION DYNAMICS IN THE CRICKET ACHETA DOMESTICUS. J Neurophysiol 2022; 127:1185-1197. [PMID: 35353628 PMCID: PMC9018005 DOI: 10.1152/jn.00042.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cercal sensory system of the cricket mediates the detection, localization and identification of air current signals generated by predators, mates and competitors. This mechanosensory system has been used extensively for experimental and theoretical studies of sensory coding at the cellular and system levels. It is currently thought that sensory interneurons in the terminal abdominal ganglion extract information about the direction, velocity, and acceleration of the air currents in the animal's immediate environment, and project a coarse-coded representation of those parameters to higher centers. All feature detection is thought to be carried out in higher ganglia by more complex, specialized circuits. We present results that force a substantial revision of current hypotheses. Using multiple extracellular recordings and a special sensory stimulation device, we demonstrate that four well-studied interneurons in this system respond with high sensitivity and selectivity to complex dynamic multi-directional features of air currents which have a spatial scale smaller than the physical dimensions of the cerci. The INs showed much greater sensitivity for these features than for unidirectional bulk-flow stimuli used in previous studies. Thus, in addition to participating in the ensemble encoding of bulk air flow stimulus characteristics, these interneurons are capable of operating as feature detectors for naturalistic stimuli. In this sense, these interneurons are encoding and transmitting information about different aspects of their stimulus environment: they are multiplexing information. Major aspects of the stimulus-response specificity of these interneurons can be understood from the dendritic anatomy and connectivity with the sensory afferent map.
Collapse
Affiliation(s)
- Jonas Mulder-Rosi
- Deptartment of Microbiology and Immunology, Montana State University, Bozeman Montana, United States
| | - John P Miller
- Deptartment of Microbiology and Immunology, Montana State University, Bozeman Montana, United States
| |
Collapse
|
3
|
Tanamoto R, Shindo Y, Miki N, Matsumoto Y, Hotta K, Oka K. Electrical stimulation of cultured neurons using a simply patterned indium-tin-oxide (ITO) glass electrode. J Neurosci Methods 2015; 253:272-8. [PMID: 26185873 DOI: 10.1016/j.jneumeth.2015.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Indium-tin-oxide (ITO) glass electrodes possess the properties of optical transparency and high electrical conductivity, which enables the electrical stimulation of cultured cells to be performed whilst also measuring the responses with fluorescent imaging techniques. However, the quantitative relationship between the intensity of the stimulating current and the cell response is unclear when using conventional methods that employ a separated configuration of counter and stimulation electrodes. NEW METHOD A quantitative electrical current stimulation device without the use of a counter electrode was fabricated. RESULTS Nerve growth factor (NGF)-induced differentiated PC12 cells were cultured on an ITO single glass electrode, and the Ca(2+) response to electrical stimuli was measured using fluorescent Ca(2+) imaging. ITO electrode devices with a width less than 0.1mm were found to evoke a Ca(2+) response in the PC12 cells. Subsequent variation in the length of the device in the range of 2-10mm was found to have little influence on the efficiency of the electric stimulus. We found that the stimulation of the cells was dependent on the electrical current, when greater than 60 μA, rather than on the Joule heat, regardless of the width and length of the conductive area. COMPARISON WITH EXISTING METHOD(S) Because of the cells directly in contact with the electrode, our device enables to stimulate the cells specifically, comparing with previous devices with the counter electrode. CONCLUSIONS The ITO device without the use of a counter electrode is a useful tool for evaluating the quantitative neural excitability of cultured neurons.
Collapse
Affiliation(s)
- Ryo Tanamoto
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yutaka Shindo
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Norihisa Miki
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yoshinori Matsumoto
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kohji Hotta
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kotaro Oka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| |
Collapse
|
4
|
Ogawa H, Kajita Y. Ca2+ imaging of cricket protocerebrum responses to air current stimulation. Neurosci Lett 2015; 584:282-6. [PMID: 25450140 DOI: 10.1016/j.neulet.2014.10.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/22/2014] [Accepted: 10/25/2014] [Indexed: 11/30/2022]
Abstract
Crickets (Gryllus bimaculatus) use the cercal sensory system at the rear of the abdomen to detect air currents and direct predator avoidance behavior. Sensory information regarding the direction and dynamic properties of air currents is processed within the terminal abdominal ganglion, and conveyed by ascending giant interneurons (GIs) to higher centers including the brain. However, the brain region responsible for decoding cercal sensory information has not yet been identified, nor the response properties within the brain characterized. In this study, we performed in vivo Ca(2+) imaging to investigate wind-evoked neural activities within the cricket protocerebrum. Ca(2+) responses to air current stimuli were observed at peripheral regions of the ventrolateral neuropile (VLNP) where projection of GIs' axon terminals has been observed in larvae. The wind-evoked Ca(2+) response had temporal dynamics and directional sensitivity that varied with different recorded regions displaying transient or sustained Ca(2+) increases. Individual cells showed Ca(2+) elevation in response to air currents from a specific angle, while stimuli from a different angle evoked decreased signals. Removing the antennae reduced the air-current-evoked responses in VLNP, suggesting contribution of sensory inputs from antennae in addition to the cercal inputs. The VLNP is presumably an integrative center for mechanosensory processing from antennae and cerci where directional information is primarily decoded by protocerebral neurons.
Collapse
Affiliation(s)
- Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; PREST, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan.
| | - Yoriko Kajita
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
5
|
Matsumoto CS, Shidara H, Matsuda K, Nakamura T, Mito T, Matsumoto Y, Oka K, Ogawa H. Targeted gene delivery in the cricket brain, using in vivo electroporation. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1235-1241. [PMID: 24161373 DOI: 10.1016/j.jinsphys.2013.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 06/02/2023]
Abstract
The cricket (Gryllus bimaculatus) is a hemimetabolous insect that is emerging as a model organism for the study of neural and molecular mechanisms of behavioral traits. However, research strategies have been limited by a lack of genetic manipulation techniques that target the nervous system of the cricket. The development of a new method for efficient gene delivery into cricket brains, using in vivo electroporation, is described here. Plasmid DNA, which contained an enhanced green fluorescent protein (eGFP) gene, under the control of a G. bimaculatus actin (Gb'-act) promoter, was injected into adult cricket brains. Injection was followed by electroporation at a sufficient voltage. Expression of eGFP was observed within the brain tissue. Localized gene expression, targeted to specific regions of the brain, was also achieved using a combination of local DNA injection and fine arrangement of the electroporation electrodes. Further studies using this technique will lead to a better understanding of the neural and molecular mechanisms that underlie cricket behaviors.
Collapse
Affiliation(s)
- Chihiro Sato Matsumoto
- Department of Biological Science, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Oe M, Ogawa H. Neural basis of stimulus-angle-dependent motor control of wind-elicited walking behavior in the cricket Gryllus bimaculatus. PLoS One 2013; 8:e80184. [PMID: 24244644 PMCID: PMC3828193 DOI: 10.1371/journal.pone.0080184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/08/2013] [Indexed: 11/18/2022] Open
Abstract
Crickets exhibit oriented walking behavior in response to air-current stimuli. Because crickets move in the opposite direction from the stimulus source, this behavior is considered to represent ‘escape behavior’ from an approaching predator. However, details of the stimulus-angle-dependent control of locomotion during the immediate phase, and the neural basis underlying the directional motor control of this behavior remain unclear. In this study, we used a spherical-treadmill system to measure locomotory parameters including trajectory, turn angle and velocity during the immediate phase of responses to air-puff stimuli applied from various angles. Both walking direction and turn angle were correlated with stimulus angle, but their relationships followed different rules. A shorter stimulus also induced directionally-controlled walking, but reduced the yaw rotation in stimulus-angle-dependent turning. These results suggest that neural control of the turn angle requires different sensory information than that required for oriented walking. Hemi-severance of the ventral nerve cords containing descending axons from the cephalic to the prothoracic ganglion abolished stimulus-angle-dependent control, indicating that this control required descending signals from the brain. Furthermore, we selectively ablated identified ascending giant interneurons (GIs) in vivo to examine their functional roles in wind-elicited walking. Ablation of GI8-1 diminished control of the turn angle and decreased walking distance in the initial response. Meanwhile, GI9-1b ablation had no discernible effect on stimulus-angle-dependent control or walking distance, but delayed the reaction time. These results suggest that the ascending signals conveyed by GI8-1 are required for turn-angle control and maintenance of walking behavior, and that GI9-1b is responsible for rapid initiation of walking. It is possible that individual types of GIs separately supply the sensory signals required to control wind-elicited walking.
Collapse
Affiliation(s)
- Momoko Oe
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
- PREST, Japan Science and Technology Agency (JST), Kawaguchi, Japan
- * E-mail:
| |
Collapse
|
7
|
Pflüger HJ, Wolf H. Developmental and activity-dependent plasticity of filiform hair receptors in the locust. Front Physiol 2013; 4:70. [PMID: 23986712 PMCID: PMC3750942 DOI: 10.3389/fphys.2013.00070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/18/2013] [Indexed: 11/13/2022] Open
Abstract
A group of wind sensitive filiform hair receptors on the locust thorax and head makes contact onto a pair of identified interneuron, A4I1. The hair receptors' central nervous projections exhibit pronounced structural dynamics during nymphal development, for example, by gradually eliminating their ipsilateral dendritic field while maintaining the contralateral one. These changes are dependent not only on hormones controlling development but on neuronal activity as well. The hair-to-interneuron system has remarkably high gain (close to 1) and makes contact to flight steering muscles. During stationary flight in front of a wind tunnel, interneuron A4I1 is active in the wing beat rhythm, and in addition it responds strongly to stimulation of sensory hairs in its receptive field. A role of the hair-to-interneuron in flight steering is thus suggested. This system appears suitable for further study of developmental and activity-dependent plasticity in a sensorimotor context with known connectivity patterns.
Collapse
Affiliation(s)
- Hans-Joachim Pflüger
- Department of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin Berlin, Germany
| | | |
Collapse
|
8
|
Abstract
Presynaptic inhibition is a widespread mechanism modulating the efficiency of synaptic transmission and in sensory pathways is coupled to primary afferent depolarizations. Axonal terminals of bush-cricket auditory afferents received 2-5 mV graded depolarizing inputs, which reduced the amplitude of invading spikes and indicated presynaptic inhibition. These inputs were linked to a picrotoxin-sensitive increase of Ca(2+) in the terminals. Electrophysiological recordings and optical imaging showed that in individual afferents the sound frequency tuning based on spike rates was different from the tuning of the graded primary afferent depolarizations. The auditory neuropil of the bush-cricket Mecopoda elongata is tonotopically organized, with low frequencies represented anteriorly and high frequencies represented posteriorly. In contrast graded depolarizing inputs were tuned to high-frequencies anteriorly and to low-frequencies posteriorly. Furthermore anterior and posterior axonal branches of individual afferents received different levels of primary afferent depolarization depending on sound frequency. The presence of primary afferent depolarization in the afferent terminals indicates that presynaptic inhibition may shape the synaptic transmission of frequency-specific activity to auditory interneurons.
Collapse
|
9
|
Dupuy F, Casas J, Bagnères AG, Lazzari CR. OpenFluo: a free open-source software for optophysiological data analyses. J Neurosci Methods 2009; 183:195-201. [PMID: 19583983 DOI: 10.1016/j.jneumeth.2009.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/17/2009] [Accepted: 06/27/2009] [Indexed: 11/19/2022]
Abstract
Optophysiological imaging methods can be used to record the activity in vivo of groups of neurons from particular areas of the nervous system (e.g. the brain) or of cell cultures. Such methods are used, for example, in the spatio-temporal coding and processing of sensory information. However, the data generated by optophysiological methods must be processed carefully if relevant results are to be obtained. The raw fluorescence data must be digitally filtered and analyzed appropriately to obtain activity maps and fluorescence time course for single spots. We used a Matlab environment to implement the necessary procedures in a user-friendly manner. We developed OpenFluo, a program for people inexperienced in optophysiological methods and for advanced users wishing to perform simple, rapid data analyses without the need for complex, time-consuming programming procedures. This program will be made available as stand-alone software and as an open-source Matlab tool. It will therefore be possible for experienced users to integrate their own routines. We validated this software by assessing its ability to process both artificial recordings and real biological data corresponding to recordings of the honeybee brain.
Collapse
Affiliation(s)
- Fabienne Dupuy
- Institut de Recherche sur la Biologie de l'Insecte, UMR 6035, CNRS-Université François Rabelais, Parc Grandmont, 37200 Tours, France.
| | | | | | | |
Collapse
|
10
|
Peron SP, Jones PW, Gabbiani F. Precise subcellular input retinotopy and its computational consequences in an identified visual interneuron. Neuron 2009; 63:830-42. [PMID: 19778511 DOI: 10.1016/j.neuron.2009.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2009] [Indexed: 11/27/2022]
Abstract
The Lobula Giant Movement Detector (LGMD) is a higher-order visual interneuron of Orthopteran insects that responds preferentially to objects approaching on a collision course. It receives excitatory input from an entire visual hemifield that anatomical evidence suggests is retinotopic. We show that this excitatory projection activates calcium-permeable nicotinic acetylcholine receptors. In vivo calcium imaging reveals that the excitatory projection preserves retinotopy down to the level of a single ommatidium. Examining the impact of retinotopy on the LGMD's computational properties, we show that sublinear synaptic summation can explain orientation preference in this cell. Exploring retinotopy's impact on directional selectivity leads us to infer that the excitatory input to the LGMD is intrinsically directionally selective. Our results show that precise retinotopy has implications for the dendritic integration of visual information in a single neuron.
Collapse
Affiliation(s)
- Simon P Peron
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | | | | |
Collapse
|
11
|
Reska A, Gasteier P, Schulte P, Moeller M, Offenhäusser A, Groll J. Ultrathin Coatings with Change in Reactivity over Time Enable Functional In Vitro Networks Of Insect Neurons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2008; 20:2751-2755. [PMID: 25213901 DOI: 10.1002/adma.200800270] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 02/28/2008] [Indexed: 06/03/2023]
Abstract
It's just not cricket! A novel coating system that enables covalent attachment of biomolecules in a nonfouling environment without use of additional chemical crosslinkers is presented. Concanavalin A is patterned on the coatings to direct cell adhesion and growth of neurons from the cricket Gryllus bimaculatus and generate functional, patterned in vitro insect neuronal networks for the first time.
Collapse
Affiliation(s)
- Anna Reska
- Institute for Bio and Nanosystems (IBN-2), Forschungszentrum Jülich 52425 Jülich (Germany)
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
While sensory information is encoded by firing patterns of individual sensory neurons, it is also represented by spatiotemporal patterns of activity in populations of the neurons. Postsynaptic interneurons decode the population response and extract specific sensory information. This extraction of information represented by presynaptic activities is a process critical to defining the input-output function of postsynaptic neuron. To understand the "algorithm" for the extraction, we examined directional sensitivities of presynaptic and postsynaptic Ca(2+) responses in dendrites of two types of wind-sensitive interneurons (INs) with different dendritic geometries in the cricket cercal sensory system. In IN 10-3, whose dendrites arborize with various electrotonic distances to the spike-initiating zone (SIZ), the directional sensitivity of dendritic Ca(2+) responses corresponded to those indicated by Ca(2+) signals in presynaptic afferents arborizing on that dendrite. The directional tuning properties of individual dendrites varied from each other, and the directional sensitivity of the nearest dendrite to the SIZ dominates the tuning properties of the spiking response. In IN 10-2 with dendrites isometric to the SIZ, directional tuning properties of different dendrites were similar to each other, and each response property could be explained by the directional profile of the spatial overlap between that dendrite and Ca(2+)-elevated presynaptic terminals. For IN 10-2, the directional sensitivities extracted by the different dendritic-branches would contribute equally to the overall tuning. It is possible that the differences in the distribution of synaptic weights because of the dendritic geometry are related to the algorithm for extraction of sensory information in the postsynaptic interneurons.
Collapse
|
13
|
Jacobs GA, Miller JP, Aldworth Z. Computational mechanisms of mechanosensory processing in the cricket. J Exp Biol 2008; 211:1819-28. [DOI: 10.1242/jeb.016402] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Crickets and many other orthopteran insects face the challenge of gathering sensory information from the environment from a set of multi-modal sensory organs and transforming these stimuli into patterns of neural activity that can encode behaviorally relevant stimuli. The cercal mechanosensory system transduces low frequency air movements near the animal's body and is involved in many behaviors including escape from predators, orientation with respect to gravity, flight steering, aggression and mating behaviors. Three populations of neurons are sensitive to both the direction and dynamics of air currents:an array of mechanoreceptor-coupled sensory neurons, identified local interneurons and identified projection interneurons. The sensory neurons form a functional map of air current direction within the central nervous system that represents the direction of air currents as three-dimensional spatio-temporal activity patterns. These dynamic activity patterns provide excitatory input to interneurons whose sensitivity and spiking output depend on the location of the neuronal arbors within the sensory map and the biophysical and electronic properties of the cell structure. Sets of bilaterally symmetric interneurons can encode the direction of an air current stimulus by their ensemble activity patterns, functioning much like a Cartesian coordinate system. These interneurons are capable of responding to specific dynamic stimuli with precise temporal patterns of action potentials that may encode these stimuli using temporal encoding schemes. Thus, a relatively simple mechanosensory system employs a variety of complex computational mechanisms to provide the animal with relevant information about its environment.
Collapse
Affiliation(s)
- Gwen A. Jacobs
- Center for Computational Biology, 1 Lewis Hall, Montana State University,Bozeman, MT 59717, USA
| | - John P. Miller
- Center for Computational Biology, 1 Lewis Hall, Montana State University,Bozeman, MT 59717, USA
| | - Zane Aldworth
- Center for Computational Biology, 1 Lewis Hall, Montana State University,Bozeman, MT 59717, USA
| |
Collapse
|
14
|
Peron SP, Krapp HG, Gabbiani F. Influence of electrotonic structure and synaptic mapping on the receptive field properties of a collision-detecting neuron. J Neurophysiol 2006; 97:159-77. [PMID: 17021031 PMCID: PMC1945173 DOI: 10.1152/jn.00660.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lobula giant movement detector (LGMD) is a visual interneuron of Orthopteran insects involved in collision avoidance and escape behavior. The LGMD possesses a large dendritic field thought to receive excitatory, retinotopic projections from the entire compound eye. We investigated whether the LGMD's receptive field for local motion stimuli can be explained by its electrotonic structure and the eye's anisotropic sampling of visual space. Five locust (Schistocerca americana) LGMD neurons were stained and reconstructed. We show that the excitatory dendritic field and eye can be fitted by ellipsoids having similar geometries. A passive compartmental model fit to electrophysiological data was used to demonstrate that the LGMD is not electrotonically compact. We derived a spike rate to membrane potential transform using intracellular recordings under visual stimulation, allowing direct comparison between experimental and simulated receptive field properties. By assuming a retinotopic mapping giving equal weight to each ommatidium and equally spaced synapses, the model reproduced the experimental data along the eye equator, though it failed to reproduce the receptive field along the ventral-dorsal axis. Our results illustrate how interactions between the distribution of synaptic inputs and the electrotonic properties of neurons contribute to shaping their receptive fields.
Collapse
Affiliation(s)
- Simon P Peron
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
15
|
Shlens J, Field GD, Gauthier JL, Grivich MI, Petrusca D, Sher A, Litke AM, Chichilnisky EJ. The structure of multi-neuron firing patterns in primate retina. J Neurosci 2006; 26:8254-66. [PMID: 16899720 PMCID: PMC6673811 DOI: 10.1523/jneurosci.1282-06.2006] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Current understanding of many neural circuits is limited by our ability to explore the vast number of potential interactions between different cells. We present a new approach that dramatically reduces the complexity of this problem. Large-scale multi-electrode recordings were used to measure electrical activity in nearly complete, regularly spaced mosaics of several hundred ON and OFF parasol retinal ganglion cells in macaque monkey retina. Parasol cells exhibited substantial pairwise correlations, as has been observed in other species, indicating functional connectivity. However, pairwise measurements alone are insufficient to determine the prevalence of multi-neuron firing patterns, which would be predicted from widely diverging common inputs and have been hypothesized to convey distinct visual messages to the brain. The number of possible multi-neuron firing patterns is far too large to study exhaustively, but this problem may be circumvented if two simple rules of connectivity can be established: (1) multi-cell firing patterns arise from multiple pairwise interactions, and (2) interactions are limited to adjacent cells in the mosaic. Using maximum entropy methods from statistical mechanics, we show that pairwise and adjacent interactions accurately accounted for the structure and prevalence of multi-neuron firing patterns, explaining approximately 98% of the departures from statistical independence in parasol cells and approximately 99% of the departures that were reproducible in repeated measurements. This approach provides a way to define limits on the complexity of network interactions and thus may be relevant for probing the function of many neural circuits.
Collapse
Affiliation(s)
- Jonathon Shlens
- Department of Systems Neurobiology, The Salk Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|