1
|
Kim TK, Gil HY. Effects of Paraspinal Intramuscular Injection of Atelocollagen in Patients with Chronic Low Back Pain: A Retrospective Observational Study. J Clin Med 2024; 13:2607. [PMID: 38731135 PMCID: PMC11084233 DOI: 10.3390/jcm13092607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Background/Objectives: Atelocollagen is used for soft tissue repair and reconstruction by replacing defective or damaged muscles, membranes, ligaments, and tendons. This study aimed to evaluate the clinical efficacy and safety of additional paraspinal intramuscular injection of atelocollagen on lumbar epidural steroid injection for reducing pain and improving functional capacity of patients with chronic low back pain (CLBP). Methods: We retrospectively enrolled 608 consecutive patients with CLBP who received lumbar epidural steroid injection with or without additional paraspinal intramuscular injection of atelocollagen. The Numerical Rating Scale and the Oswestry Disability Index were used to assess pain and functional capacity, respectively, before the procedure, and three months after the injection. Also, we analyzed the relationship between the additional paraspinal intramuscular injection of atelocollagen and the success rate. Results: Both Numerical Rating Scale and the Oswestry Disability Index scores were significantly reduced in both groups at three months after injection. However, there was a significant difference between the two groups. Furthermore, the success rate was significantly higher in the additional paraspinal intramuscular injection of atelocollagen group. Conclusions: This study's results showed that additional paraspinal intramuscular injection of atelocollagen on lumbar epidural steroid injection reduced pain and improved functional capacity for patients with CLBP. Therefore, the paraspinal intramuscular injection of atelocollagen may be a promising option for the treatment of patients with CLBP.
Collapse
Affiliation(s)
- Tae Kwang Kim
- Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Ho Young Gil
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Gumi Hospital, Soonchunhyang University College of Medicine, Gumi 39371, Republic of Korea
| |
Collapse
|
2
|
Xu R, Ma LL, Cui S, Chen L, Xu H. Bioinformatics and Systems Biology Approach to Identify the Pathogenetic Link between Heart Failure and Sarcopenia. Arq Bras Cardiol 2023; 120:e20220874. [PMID: 37909603 PMCID: PMC10586817 DOI: 10.36660/abc.20220874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/15/2023] [Accepted: 08/16/2023] [Indexed: 11/03/2023] Open
Abstract
Despite increasing evidence that patients with heart failure (HF) are susceptible to sarcopenia, the reason for the association is not well understood. The purpose of this study is to explore further the molecular mechanism of the occurrence of this complication. Gene expression datasets for HF (GSE57345) and Sarcopenia (GSE1428) were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using 'edgeR' and "limma" packages of R, and their functions were analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Protein-protein interaction (PPI) networks were constructed and visualized using Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape. Hub genes were selected using the plugin cytoHubba and validation with GSE76701 for HF and GSE136344 for Sarcopenia. The related pathways and molecular mechanisms of the hub genes were performed by Gene set enrichment analysis (GSEA). The statistical analyses were performed using R software. P < 0.05 was considered statistically significant. A total of 114 common DEGs were found. Pathways related to growth factor, Insulin secretion and cGMP-PKG were enriched in both HF and Sarcopenia. CYP27A1, KCNJ8, PIK3R5, TIMP2, CXCL12, KIT, and VCAM1 were found to be significant hub genes after validation, with GSEA emphasizing the importance of the hub genes in the regulation of the inflammatory response. Our study reveals that HF and Sarcopenia share common pathways and pathogenic mechanisms. These findings may suggest new directions for future research into the underlying pathogenesis.
Collapse
Affiliation(s)
- Rui Xu
- Gerontology centerPeople’s Hospital of Xinjiang Uygur Autonomous RegionUrumqiChinaGerontology center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi – China
| | - Ling-ling Ma
- Gerontology centerPeople’s Hospital of Xinjiang Uygur Autonomous RegionUrumqiChinaGerontology center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi – China
| | - Shuai Cui
- Gerontology centerPeople’s Hospital of Xinjiang Uygur Autonomous RegionUrumqiChinaGerontology center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi – China
| | - Ling Chen
- Gerontology centerPeople’s Hospital of Xinjiang Uygur Autonomous RegionUrumqiChinaGerontology center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi – China
| | - Hong Xu
- Gerontology centerPeople’s Hospital of Xinjiang Uygur Autonomous RegionUrumqiChinaGerontology center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi – China
| |
Collapse
|
3
|
Shi X, Wang Y, Liu H, Han R. Targeting Hub Genes Involved in Muscle Injury Induced by Jumping Load Based on Transcriptomics. DNA Cell Biol 2023; 42:498-506. [PMID: 37339448 DOI: 10.1089/dna.2022.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
The purpose of this study was to find hub genes that may play key roles in skeletal muscle injury induced by jumping load. Twelve female Sprague Dawley rats were divided into the normal control (NC) group and the jumping-induced muscle injury (JI) group. After 6 weeks of jumping, transmission electron microscopy, hematoxylin-eosin staining, transcriptomics sequencing and genes analysis, interaction network prediction of multiple proteins, real-time PCR detection, and Western blotting were performed on gastrocnemius muscles from NC and JI groups. As compared with NC rats, excessive jumping can result in notable structural damage and inflammatory infiltration in JI rats. A total of 112 differentially expressed genes were confirmed in NC rats versus JI rats, with 59 genes upregulated and 53 genes downregulated. Using the online String database, four hub genes in the transcriptional regulatory network were targeted, including FOS, EGR1, ATF3, and NR4A3. All expression levels of FOS, EGR1, ATF3, and NR4A3 mRNAs were decreased in JI rats compared with NC rats (p < 0.05 or p < 0.01). All expression levels of c-Fos, EGR1, ATF3, and NOR1 proteins were upregulated in JI rats (p < 0.01, p < 0.05, p > 0.05, and p < 0.01, respectively). Collectively, these findings indicate that FOS, EGR1, ATF3, and NR4A3 genes may be functionally important in jumping-induced muscle injury.
Collapse
Affiliation(s)
- Xiaolan Shi
- Wushu College, Henan University, Kaifeng, China
| | - Yijie Wang
- School of Physical Education and Sport, Henan University, Kaifeng, China
| | - Haitao Liu
- School of Physical Education and Sport, Henan University, Kaifeng, China
- Sports Reform and Development Research Center, Henan University, Kaifeng, China
| | - Rui Han
- School of Physical Education and Sport, Henan University, Kaifeng, China
- Sports Reform and Development Research Center, Henan University, Kaifeng, China
| |
Collapse
|
4
|
Molière S, Jaulin A, Tomasetto CL, Dali-Youcef N. Roles of Matrix Metalloproteinases and Their Natural Inhibitors in Metabolism: Insights into Health and Disease. Int J Mol Sci 2023; 24:10649. [PMID: 37445827 DOI: 10.3390/ijms241310649] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-activated peptidases that can be classified into six major classes, including gelatinases, collagenases, stromelysins, matrilysins, membrane type metalloproteinases, and other unclassified MMPs. The activity of MMPs is regulated by natural inhibitors called tissue inhibitors of metalloproteinases (TIMPs). MMPs are involved in a wide range of biological processes, both in normal physiological conditions and pathological states. While some of these functions occur during development, others occur in postnatal life. Although the roles of several MMPs have been extensively studied in cancer and inflammation, their function in metabolism and metabolic diseases have only recently begun to be uncovered, particularly over the last two decades. This review aims to summarize the current knowledge regarding the metabolic roles of metalloproteinases in physiology, with a strong emphasis on adipose tissue homeostasis, and to highlight the consequences of impaired or exacerbated MMP actions in the development of metabolic disorders such as obesity, fatty liver disease, and type 2 diabetes.
Collapse
Affiliation(s)
- Sébastien Molière
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
- Department of Radiology, Strasbourg University Hospital, Hôpital de Hautepierre, Avenue Molière, 67200 Strasbourg, France
- Breast and Thyroid Imaging Unit, ICANS-Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Amélie Jaulin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
| | - Catherine-Laure Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
| | - Nassim Dali-Youcef
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
- Laboratoire de Biochimie et Biologie Moléculaire, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 67000 Strasbourg, France
| |
Collapse
|
5
|
Zuntini ACS, Damico MV, Gil CD, Godinho RO, Pacini ESA, Fortes-Dias CL, Moreira V. The early inhibition of the COX-2 pathway in viperid phospholipase A 2-induced skeletal muscle myotoxicity accelerates the tissue regeneration. Toxicol Appl Pharmacol 2023; 461:116384. [PMID: 36702313 DOI: 10.1016/j.taap.2023.116384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
The administration of non-steroidal anti-inflammatory drugs in the treatment of injury and muscle regeneration is still contradictory in effectiveness, especially regarding the timing of their administration. This can interfere with the production of prostaglandins originating from inflammatory isoform cyclooxygenase-2 (COX-2), which is essential to modulate tissue regeneration. The phospholipases A2 (PLA2) from viperid venoms cause myotoxicity, therefore constituting a tool for the study of supportive therapies to improve skeletal muscle regeneration. This study investigated the effect of early administration of lumiracoxib (selective inhibitor of COX-2) on the degeneration and regeneration stages of skeletal muscle after injury induced by a myotoxic PLA2. After 30 min and 48 h of intramuscular injection of PLA2, mice received lumiracoxib orally and histological, functional, and transcriptional parameters of muscle were evaluated from 6 h to 21 days. Inhibition of COX-2 in the early periods of PLA2-induced muscle degeneration reduced leukocyte influx, edema, and tissue damage. After the second administration of lumiracoxib, in regenerative stage, muscle showed increase in number of basophilic fibers, reduction in fibrosis content and advanced recovery of functionality characterized by the presence of fast type II fibers. The expression of Pax7 and myogenin were increased, indicating a great capacity for storing satellite cells and advanced mature state of tissue. Our data reveals a distinct role of COX-2-derived products during muscle degeneration and regeneration, in which early administration of lumiracoxib was a therapeutic strategy to modulate the effects of prostaglandins, providing a breakthrough in muscle tissue regeneration induced by a myotoxic PLA2.
Collapse
Affiliation(s)
- Ana Carolina Siqueira Zuntini
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | - Marcio Vinícius Damico
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | - Cristiane Damas Gil
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil
| | - Rosely Oliveira Godinho
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | - Enio Setsuo Arakaki Pacini
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | | | - Vanessa Moreira
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil.
| |
Collapse
|
6
|
Breast Cancer Treatment Decreases Serum Levels of TGF-β1, VEGFR2, and TIMP-2 Compared to Healthy Volunteers: Significance for Therapeutic Outcomes? PATHOPHYSIOLOGY 2022; 29:537-554. [PMID: 36136069 PMCID: PMC9500649 DOI: 10.3390/pathophysiology29030042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Various complications from a breast cancer treatment, in the pathogenesis of which excessive tissue fibrosis plays a leading role, are a common pathology. In this study, the levels of TGF-β1, VEGFR-2, and TIMP-2 were determined by the immuno-enzyme serum analysis for patients during the long-term period after breast cancer treatment as potential markers of fibrosis. The single-center study enrolled 92 participants, which were divided into two age-matched groups: (1) 67 patients following breast cancer treatment, and (2) 25 healthy female volunteers. The intergroup analysis demonstrated that the patients after breast cancer treatment showed a decrease in the serum levels of TGF-β1 (U = 666, p < 0.001) and TIMP-2 (U = 637, p < 0.001) as compared to the group of healthy volunteers. The levels of VEGFR-2 in these groups were comparable (U = 1345, p = 0.082). It was also found that the type of treatment, the presence of lymphedema, shoulder joint contracture, and changes in lymphoscintigraphy did not affect the levels of TGF-β1, VEGFR-2, and TIMP-2 within the group of patients after breast cancer treatment. These results may indicate that these biomarkers do not play a leading role in the maintenance and progression of fibrosis in the long-term period after breast cancer treatment. The reduced levels of TGF-β1 and TIMP-2 may reflect endothelial dysfunction caused by the antitumor therapy.
Collapse
|
7
|
Peeney D, Liu Y, Lazaroff C, Gurung S, Stetler-Stevenson WG. OUP accepted manuscript. Carcinogenesis 2022; 43:405-418. [PMID: 35436325 PMCID: PMC9167030 DOI: 10.1093/carcin/bgac037] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as endogenous inhibitors of matrixin and adamalysin endopeptidase activity. The matrixins and adamalysins are the major mediators of extracellular matrix (ECM) turnover, thus making TIMPs important regulators of ECM structure and composition. Despite their high sequence identity and relative redundancy in inhibitory profiles, each TIMP possesses unique biological characteristics that are independent of their regulation of metalloproteinase activity. As our understanding of TIMP biology has evolved, distinct roles have been assigned to individual TIMPs in cancer progression. In this respect, data regarding TIMP2's role in cancer have borne conflicting reports of both tumor suppressor and, to a lesser extent, tumor promoter functions. TIMP2 is the most abundant TIMP family member, prevalent in normal and diseased mammalian tissues as a constitutively expressed protein. Despite its apparent stable expression, recent work highlights how TIMP2 is a cell stress-induced gene product and that its biological activity can be dictated by extracellular posttranslational modifications. Hence an understanding of TIMP2 molecular targets, and how its biological functions evolve in the progressing tumor microenvironment may reveal new therapeutic opportunities. In this review, we discuss the continually evolving functions of TIMP proteins, future perspectives in TIMP research, and the therapeutic utility of this family, with a particular focus on TIMP2.
Collapse
Affiliation(s)
- David Peeney
- To whom correspondence should be addressed. Tel: 240-858-3233;
| | - Yueqin Liu
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Carolyn Lazaroff
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Sadeechya Gurung
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
8
|
Panayi AC, Smit L, Hays N, Udeh K, Endo Y, Li B, Sakthivel D, Tamayol A, Neppl RL, Orgill DP, Nuutila K, Sinha I. A porous collagen-GAG scaffold promotes muscle regeneration following volumetric muscle loss injury. Wound Repair Regen 2019; 28:61-74. [PMID: 31603580 DOI: 10.1111/wrr.12768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 09/03/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
Volumetric muscle loss (VML) is a segmental loss of skeletal muscle which commonly heals with fibrosis, minimal muscle regeneration, and loss of muscle strength. Treatment options for these wounds which promote functional recovery are currently lacking. This study was designed to investigate whether the collagen-GAG scaffold (CGS) promotes functional muscle recovery following VML. A total of 66 C57/Bl6 mice were used in a three-stage experiment. First, 24 animals were split into three groups which underwent sham injury or unilateral quadriceps VML injury with or without CGS implantation. Two weeks post-surgery, muscle was harvested for histological and gene expression analysis. In the second stage, 18 mice underwent bilateral quadriceps VML injury, followed by weekly functional testing using a treadmill. In the third stage, 24 mice underwent sham or bilateral quadriceps VML injury with or without CGS implantation, with tissue harvested six weeks post-surgery for histological and gene expression analysis. VML mice treated with CGS demonstrated increased remnant fiber hypertrophy versus both the VML with no CGS and uninjured groups. Both VML groups showed greater muscle fiber hypertrophy than non-injured muscle. This phenomenon was still evident in the longer-term experiment. The gene array indicated that the CGS promoted upregulation of factors involved in promoting wound healing and regeneration. In terms of functional improvement, the VML mice treated with CGS ran at higher maximum speeds than VML without CGS. A CGS was shown to enhance muscle hypertrophy in response to VML injury with a resultant improvement in functional performance. A gene array highlighted increased gene expression of multiple growth factors following CGS implantation. This suggests that implantation of a CGS could be a promising treatment for VML wounds.
Collapse
Affiliation(s)
- Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lucindi Smit
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Nicole Hays
- University of Maryland School of Medicine, Baltimore, Maryland
| | - Kodi Udeh
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Bin Li
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Dharaniya Sakthivel
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Nebraska
| | - Ronald L Neppl
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
9
|
Shilts J, Broadie K. Secreted tissue inhibitor of matrix metalloproteinase restricts trans-synaptic signaling to coordinate synaptogenesis. J Cell Sci 2017; 130:2344-2358. [PMID: 28576972 DOI: 10.1242/jcs.200808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/29/2017] [Indexed: 12/20/2022] Open
Abstract
Synaptogenesis is coordinated by trans-synaptic signals that traverse the specialized synaptomatrix between presynaptic and postsynaptic cells. Matrix metalloproteinase (Mmp) activity sculpts this environment, balanced by secreted tissue inhibitors of Mmp (Timp). Here, we use the simplified Drosophila melanogaster matrix metalloproteome to test the consequences of eliminating all Timp regulatory control of Mmp activity at the neuromuscular junction (NMJ). Using in situ zymography, we find Timp limits Mmp activity at the NMJ terminal and shapes extracellular proteolytic dynamics surrounding individual synaptic boutons. In newly generated timp null mutants, NMJs exhibit architectural overelaboration with supernumerary synaptic boutons. With cell-targeted RNAi and rescue studies, we find that postsynaptic Timp limits presynaptic architecture. Functionally, timp null mutants exhibit compromised synaptic vesicle cycling, with activity that is lower in amplitude and fidelity. NMJ defects manifest in impaired locomotor function. Mechanistically, we find that Timp limits BMP trans-synaptic signaling and the downstream synapse-to-nucleus signal transduction. Pharmacologically restoring Mmp inhibition in timp null mutants corrects bone morphogenetic protein (BMP) signaling and synaptic properties. Genetically restoring BMP signaling in timp null mutants corrects NMJ structure and motor function. Thus, Timp inhibition of Mmp proteolytic activity restricts BMP trans-synaptic signaling to coordinate synaptogenesis.
Collapse
Affiliation(s)
- Jarrod Shilts
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
10
|
Uhl FE, Wagner DE, Weiss DJ. Preparation of Decellularized Lung Matrices for Cell Culture and Protein Analysis. Methods Mol Biol 2017; 1627:253-283. [PMID: 28836208 PMCID: PMC7456164 DOI: 10.1007/978-1-4939-7113-8_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The limited available treatment options for patients with chronic lung diseases, such as fibrosis, lead to poor prognosis after diagnosis and short survival rates. An exciting new bioengineering approach utilizes de- and recellularization of lung tissue to potentially overcome donor organ shortage and immune reactions toward the received transplant. The goal of decellularization is to create a scaffold which contains the necessary framework for stability and functionality for regenerating lung tissue while removing immunomodulatory factors by removal of cells. After decellularization, the scaffold could be re-functionalized by repopulation with the patient's own stem/progenitor cells to create a fully functional organ or can be used as ex vivo models of disease. In this chapter the decellularization of lung tissue from multiple species (i.e., rodents, pigs, and humans) as well as disease states such as fibrosis is described. We discuss and describe the various quality control measures which should be used to characterize decellularized scaffolds, methods for protein analysis of the remaining scaffold, and methods for recellularization of scaffolds.
Collapse
Affiliation(s)
- Franziska E Uhl
- Department of Med-Pulmonary, College of Medicine, University of Vermont, Burlington, VT, USA.
| | - Darcy E Wagner
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Daniel J Weiss
- Department of Med-Pulmonary, College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
11
|
Cho KA, Park M, Kim YH, Woo SY, Ryu KH. Conditioned media from human palatine tonsil mesenchymal stem cells regulates the interaction between myotubes and fibroblasts by IL-1Ra activity. J Cell Mol Med 2016; 21:130-141. [PMID: 27619557 PMCID: PMC5192826 DOI: 10.1111/jcmm.12947] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/09/2016] [Indexed: 12/13/2022] Open
Abstract
Saturated free fatty acids (FFAs) act as lipid mediators and induce insulin resistance in skeletal muscle. Specifically, in obesity‐related diseases such as type 2 diabetes, FFAs directly reduce insulin sensitivity and glucose uptake in skeletal muscle. However, the knowledge of how FFAs mediate inflammation and subsequent tissue disorders, including fibrosis in skeletal muscle, is limited. FFAs are a natural ligand for toll‐like receptor 2 (TLR2) and TLR4, and induce chronic low‐grade inflammation that directly stimulates skeletal muscle tissue. However, persistent inflammatory stimulation in tissues could induce pro‐fibrogenic processes that ultimately lead to perturbation of the tissue architecture and dysfunction. Therefore, blocking the link between inflammatory primed skeletal muscle tissue and connective tissue might be an efficient therapeutic option for treating obesity‐induced muscle inactivity. In this study, we investigated the impact of conditioned medium obtained from human palatine tonsil‐derived mesenchymal stem cells (T‐MSCs) on the interaction between skeletal muscle cells stimulated with palmitic acid (PA) and fibroblasts. We found that PA‐treated skeletal muscle cells actively secreted interleukin‐1β (IL‐1β) and augmented the migration, proliferation and expression of fibronectin in L929 fibroblasts. Furthermore, T‐CM inhibited the skeletal muscle cell‐derived pro‐fibrogenic effect via the production of the interleukin‐1 receptor antagonist (IL‐1Ra), which is an inhibitor of IL‐1 signalling. Taken together, our data provide novel insights into the therapeutic potential of T‐MSC‐mediated therapy for the treatment of pathophysiological processes that occur in skeletal muscle tissues under chronic inflammatory conditions.
Collapse
Affiliation(s)
- Kyung-Ah Cho
- Department of Microbiology, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Minhwa Park
- Department of Microbiology, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Yu-Hee Kim
- Department of Microbiology, School of Medicine, Ewha Womans University, Seoul, Korea
| | - So-Youn Woo
- Department of Microbiology, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, School of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|
12
|
Abstract
Muscle regeneration recapitulates many aspects of embryonic myogenesis and is an important homeostatic process of the adult skeletal muscle, which, after development, retains the capacity to regenerate in response to appropriate stimuli, activating the muscle compartment of stem cells, namely, satellite cells, as well as other precursor cells. Moreover, significant evidence suggests that while stem cells represent an important determinant for tissue regeneration, a “qualified” environment is necessary to guarantee and achieve functional results. It is therefore plausible that the loss of control over these cell fate decisions could lead to a pathological transdifferentiation, leading to pathologic defects in the regenerative process. This review provides an overview about the general aspects of muscle development and discusses the cellular and molecular aspects that characterize the five interrelated and time-dependent phases of muscle regeneration, namely, degeneration, inflammation, regeneration, remodeling, and maturation/functional repair.
Collapse
|
13
|
Moore L, Fan D, Basu R, Kandalam V, Kassiri Z. Tissue inhibitor of metalloproteinases (TIMPs) in heart failure. Heart Fail Rev 2013; 17:693-706. [PMID: 21717224 DOI: 10.1007/s10741-011-9266-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Remodeling of the myocardium and the extracellular matrix (ECM) occurs in heart failure irrespective of its initial cause. The ECM serves as a scaffold to provide structural support as well as housing a number of cytokines and growth factors. Hence, disruption of the ECM will result in structural instability as well as activation of a number of signaling pathways that could lead to fibrosis, hypertrophy, and apoptosis. The ECM is a dynamic entity that undergoes constant turnover, and the integrity of its network structure is maintained by a balance in the function of matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). In heart disease, levels of MMPs and TIMPs are altered resulting in an imbalance between these two families of proteins. In this review, we will discuss the structure, function, and regulation of TIMPs, their MMP-independent functions, and their role in heart failure. We will review the knowledge that we have gained from clinical studies and animal models on the contribution of TIMPs in the development and progression of heart disease. We will further discuss how ECM molecules and regulatory genes can be used as biomarkers of disease in heart failure patients.
Collapse
Affiliation(s)
- Linn Moore
- Department of Physiology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Heritage Medical Research Centre, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
14
|
Bourboulia D, Han H, Jensen-Taubman S, Gavil N, Isaac B, Wei B, Neckers L, Stetler-Stevenson WG. TIMP-2 modulates cancer cell transcriptional profile and enhances E-cadherin/beta-catenin complex expression in A549 lung cancer cells. Oncotarget 2013; 4:166-76. [PMID: 23371049 PMCID: PMC3702216 DOI: 10.18632/oncotarget.801] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/26/2013] [Indexed: 12/22/2022] Open
Abstract
Tissue Inhibitor of Metalloproteinase 2 (TIMP-2) plays an essential role in regulating matrix remodeling, cell growth, differentiation, angiogenesis and apoptosis in vitro and in vivo. We have recently shown that TIMP-2-mediated inhibition of tumor growth is independent of matrix metalloproteinase-mediated mechanisms, and is a consequence of modulating both the tumor cells and the tumor microenvironment. In the current study we aim to identify the molecular pathways associated with these effects. We analyzed the transcriptional profile of the human lung cancer cell line A549 upon overexpression of TIMP-2 and Ala+TIMP-2 (mutant that does not inhibit MMP activity), and we found changes in gene expression predominantly related to decreased tumor development and metastasis. Increased E-cadherin expression in response to both TIMP-2 and Ala+TIMP-2 expression was confirmed by real time quantitative RT-PCR and immunoblotting. A549 cells treated with epidermal growth factor (EGF) displayed loss of cobblestone morphology and cell-cell contact, while cells overexpressing TIMP-2 or Ala+TIMP-2 were resistant to EGF-induced morphological changes. Moreover, exogenous treatment with recombinant Ala+TIMP-2 blocked EGF induced down-regulation of E-cadherin. In vivo, immunohistochemistry of A549 xenografts expressing either TIMP-2 or Ala+TIMP-2 demonstrated increased E-cadherin protein levels. More importantly, transcriptional profile analysis of tumor tissue revealed critical pathways associated with effects on tumor-host interaction and inhibition of tumor growth. In conclusion, we show that TIMP-2 promotes an anti-tumoral transcriptional profile in vitro and in vivo, including upregulation of E-cadherin, in A549 lung cancer cells.
Collapse
Affiliation(s)
- Dimitra Bourboulia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD, USA
| | - HuiYing Han
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD, USA
| | - Sandra Jensen-Taubman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD, USA
| | - Noah Gavil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD, USA
- Bowdoin College, Brunswick, ME, USA
| | - Biju Isaac
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD, USA
- Center for Computational Science, University of Miami, Miami, FL, USA
| | - Beiyang Wei
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - William G. Stetler-Stevenson
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD, USA
| |
Collapse
|
15
|
Alameddine HS. Matrix metalloproteinases in skeletal muscles: Friends or foes? Neurobiol Dis 2012; 48:508-18. [DOI: 10.1016/j.nbd.2012.07.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/28/2012] [Accepted: 07/25/2012] [Indexed: 12/13/2022] Open
|
16
|
Jensen T, Roszell B, Zang F, Girard E, Matson A, Thrall R, Jaworski DM, Hatton C, Weiss DJ, Finck C. A rapid lung de-cellularization protocol supports embryonic stem cell differentiation in vitro and following implantation. Tissue Eng Part C Methods 2012; 18:632-46. [PMID: 22404373 DOI: 10.1089/ten.tec.2011.0584] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pulmonary diseases represent a large portion of neonatal and adult morbidity and mortality. Many of these have no cure, and new therapeutic approaches are desperately needed. De-cellularization of whole organs, which removes cellular elements but leaves intact important extracellular matrix (ECM) proteins and three-dimensional architecture, has recently been investigated for ex vivo generation of lung tissues. As specific cell culture surfaces, including ECM composition, profoundly affect cell differentiation, this approach offers a potential means of using de-cellularized lungs to direct differentiation of embryonic and other types of stem/progenitor cells into lung phenotypes. Several different methods of whole-lung de-cellularization have been reported, but the optimal method that will best support re-cellularization and generation of lung tissues from embryonic stem cells (ESCs) has not been determined. We present a 24-h approach for de-cellularizing mouse lungs utilizing a detergent-based (Triton-X100 and sodium deoxycholate) approach with maintenance of three-dimensional lung architecture and ECM protein composition. Predifferentiated murine ESCs (mESCs), with phenotypic characteristics of type II alveolar epithelial cells, were seeded into the de-cellularized lung scaffolds. Additionally, we evaluated the effect of coating the de-cellularized scaffold with either collagen or Matrigel to determine if this would enhance cell adhesion and affect mechanics of the scaffold. Finally, we subcutaneously implanted scaffolds in vivo after seeding them with mESCs that are predifferentiated to express pro-surfactant protein C (pro-SPC). The in vivo environment supported maintenance of the pro-SPC-expressing phenotype and further resulted in vascularization of the implant. We conclude that a rapid detergent-based de-cellularization approach results in a scaffold that can maintain phenotypic evidence of alveolar epithelial differentiation of ESCs and support neovascularization after in vivo implantation.
Collapse
Affiliation(s)
- Todd Jensen
- Department of Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wallis JM, Borg ZD, Daly AB, Deng B, Ballif BA, Allen GB, Jaworski DM, Weiss DJ. Comparative assessment of detergent-based protocols for mouse lung de-cellularization and re-cellularization. Tissue Eng Part C Methods 2012; 18:420-32. [PMID: 22165818 DOI: 10.1089/ten.tec.2011.0567] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Several different detergent-based methods are currently being explored for de-cellularizing whole lungs for subsequent use as three-dimensional scaffolds for ex vivo lung tissue generation. However, it is not yet clear which of these methods may provide a scaffold that best supports re-cellularization and generation of functional lung tissue. Notably, the detergents used for de-cellularization activate matrix metalloproteinases that can potentially degrade extracellular matrix (ECM) proteins important for subsequent binding and growth of cells inoculated into the de-cellularized scaffolds. We assessed gelatinase activation and the histologic appearance, protein composition, and lung mechanics of the end product scaffolds produced with three different detergent-based de-cellularization methods utilizing either Triton-X 100/sodium deoxycholate (Triton/SDC), sodium dodecyl sulfate (SDS), or 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). There were significant differences both in gelatinase activation and in the retention of ECM and other intracellular proteins, assessed by immunohistochemistry, mass spectrometry, and western blotting as well as in airways resistance and elastance of lungs de-cellularized with the different methods. However, despite these differences, binding and initial growth following intratracheal inoculation with either bone marrow-derived mesenchymal stromal cells or with C10 mouse lung epithelial cells was similar between lungs de-cellularized with each method. Therefore despite differences in the structural composition of the de-cellularized lungs, initial re-cellularization does not appear significantly different between the three de-cellularization approaches studied.
Collapse
Affiliation(s)
- John M Wallis
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bourboulia D, Jensen-Taubman S, Rittler MR, Han HY, Chatterjee T, Wei B, Stetler-Stevenson WG. Endogenous angiogenesis inhibitor blocks tumor growth via direct and indirect effects on tumor microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2589-600. [PMID: 21933655 PMCID: PMC3204083 DOI: 10.1016/j.ajpath.2011.07.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/12/2011] [Accepted: 07/21/2011] [Indexed: 12/31/2022]
Abstract
Tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) belongs to a small family of endogenous proteins that inhibits a group of enzymes, the matrix metalloproteinases (MMPs). TIMP-2 inhibits endothelial cell proliferation and migration in vitro and angiogenesis in vivo, through MMP-dependent and -independent mechanisms. However, little is known regarding the contribution of these mechanisms to the antitumor effects of TIMP-2. Using a retroviral delivery system, we stably overexpressed TIMP-2 and its mutant Ala+TIMP-2 (devoid of MMP inhibitory activity) in human adenocarcinoma A549 cells. Using real time PCR, and enzyme-linked immunosorbent assay (ELISA), we confirmed enhanced TIMP-2 expression and its MMP inhibitory activity by reverse zymography. In vitro, growth assays suggested that TIMP-2 and Ala+TIMP-2 did not alter basal cell proliferation rates, however, tumor cell migration and invasion were inhibited. In vivo, both TIMP-2 and Ala+TIMP-2 A549 xenografts exhibited reduced growth rate, CD31 immunostaining indicated decreased intratumoral microvascular density, and TUNEL demonstrated enhanced tumor cell apoptosis. Immunoblotting and immunohistochemical analyses of A549 xenograft tissues with either phospho-FAK (Tyr397) or phospho-AKT (Ser473) showed decreased activation in both TIMP-2 and Ala+TIMP-2 tumor cells. We conclude that TIMP-2-mediated inhibition of tumor growth occurs, at least in part, independently of MMP inhibition, and is a consequence of both direct effects of TIMP-2 on tumor cells and modulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Dimitra Bourboulia
- Extracellular Matrix Pathology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, the National Institutes of Health, Advanced Technology Center, Bethesda, Maryland
| | - Sandra Jensen-Taubman
- Extracellular Matrix Pathology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, the National Institutes of Health, Advanced Technology Center, Bethesda, Maryland
| | - Matthew R. Rittler
- Extracellular Matrix Pathology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, the National Institutes of Health, Advanced Technology Center, Bethesda, Maryland
| | - Hui Ying Han
- Extracellular Matrix Pathology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, the National Institutes of Health, Advanced Technology Center, Bethesda, Maryland
| | - Tania Chatterjee
- Extracellular Matrix Pathology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, the National Institutes of Health, Advanced Technology Center, Bethesda, Maryland
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland
| | - Beiyang Wei
- Extracellular Matrix Pathology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, the National Institutes of Health, Advanced Technology Center, Bethesda, Maryland
| | - William G. Stetler-Stevenson
- Extracellular Matrix Pathology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, the National Institutes of Health, Advanced Technology Center, Bethesda, Maryland
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland
| |
Collapse
|
19
|
Broadie K, Baumgartner S, Prokop A. Extracellular matrix and its receptors in Drosophila neural development. Dev Neurobiol 2011; 71:1102-30. [PMID: 21688401 PMCID: PMC3192297 DOI: 10.1002/dneu.20935] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance, and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable, and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: (1) neural progenitor proliferation, (2) axonal growth and pathfinding, and (3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions.
Collapse
Affiliation(s)
- Kendal Broadie
- Departments of Biological Sciences and Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232 USA
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, BMC B12, 22184 Lund, Sweden
| | - Andreas Prokop
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
20
|
Serrano AL, Mann CJ, Vidal B, Ardite E, Perdiguero E, Muñoz-Cánoves P. Cellular and molecular mechanisms regulating fibrosis in skeletal muscle repair and disease. Curr Top Dev Biol 2011; 96:167-201. [PMID: 21621071 DOI: 10.1016/b978-0-12-385940-2.00007-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The repair of an injured tissue is a complex biological process involving the coordinated activities of tissue-resident and infiltrating cells in response to local and systemic signals. Following acute tissue injury, inflammatory cell infiltration and activation/proliferation of resident stem cells is the first line of defense to restore tissue homeostasis. However, in the setting of chronic tissue damage, such as in Duchenne Muscular Dystrophy, inflammatory infiltrates persist, the ability of stem cells (satellite cells) is blocked and fibrogenic cells are continuously activated, eventually leading to the conversion of muscle into nonfunctional fibrotic tissue. This review explores our current understanding of the cellular and molecular mechanisms underlying efficient muscle repair that are dysregulated in muscular dystrophy-associated fibrosis and in aging-related muscle dysfunction.
Collapse
Affiliation(s)
- Antonio L Serrano
- Department of Experimental and Health Sciences, Cell Biology Unit, CIBERNED, Pompeu Fabra University, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, Muñoz-Cánoves P. Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 2011; 1:21. [PMID: 21798099 PMCID: PMC3156644 DOI: 10.1186/2044-5040-1-21] [Citation(s) in RCA: 562] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/04/2011] [Indexed: 02/06/2023] Open
Abstract
The repair process of damaged tissue involves the coordinated activities of several cell types in response to local and systemic signals. Following acute tissue injury, infiltrating inflammatory cells and resident stem cells orchestrate their activities to restore tissue homeostasis. However, during chronic tissue damage, such as in muscular dystrophies, the inflammatory-cell infiltration and fibroblast activation persists, while the reparative capacity of stem cells (satellite cells) is attenuated. Abnormal dystrophic muscle repair and its end stage, fibrosis, represent the final common pathway of virtually all chronic neurodegenerative muscular diseases. As our understanding of the pathogenesis of muscle fibrosis has progressed, it has become evident that the muscle provides a useful model for the regulation of tissue repair by the local microenvironment, showing interplay among muscle-specific stem cells, inflammatory cells, fibroblasts and extracellular matrix components of the mammalian wound-healing response. This article reviews the emerging findings of the mechanisms that underlie normal versus aberrant muscle-tissue repair.
Collapse
Affiliation(s)
- Christopher J Mann
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Eusebio Perdiguero
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Yacine Kharraz
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Susana Aguilar
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Patrizia Pessina
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Antonio L Serrano
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
22
|
Jaworski DM, Sideleva O, Stradecki HM, Langlois GD, Habibovic A, Satish B, Tharp WG, Lausier J, Larock K, Jetton TL, Peshavaria M, Pratley RE. Sexually dimorphic diet-induced insulin resistance in obese tissue inhibitor of metalloproteinase-2 (TIMP-2)-deficient mice. Endocrinology 2011; 152:1300-13. [PMID: 21285317 PMCID: PMC3060627 DOI: 10.1210/en.2010-1029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Circulating levels of matrix metalloproteinases (MMPs) and their endogenous inhibitors, tissue inhibitor of metalloproteinases (TIMPs), are altered in human obesity and may contribute to its pathology. TIMP-2 exerts MMP-dependent (MMP inhibition and pro-MMP-2 activation) and MMP-independent functions. To assess the role of TIMP-2 in a murine model of nutritionally induced obesity, weight gain in wild-type and TIMP-2 deficient [knockout (KO)] mice fed a chow or high-fat diet (HFD) was determined. The effects of diet on glucose tolerance and insulin sensitivity, as well as pancreatic β-cell and adipocyte physiology, were assessed. Chow-fed TIMP-2 KO mice of both sexes became obese but maintained relatively normal glucose tolerance and insulin sensitivity. Obesity was exacerbated on the HFD. However, HFD-fed male, but not female, TIMP-2 KO mice developed insulin resistance with reduced glucose transporter 2 and pancreatic and duodenal homeobox 1 levels, despite increased β-cell mass and hyperplasia. Thus, although β-cell mass was increased, HFD-fed male TIMP-2 KO mice develop diabetes likely due to β-cell exhaustion and failure. TIMP-2 mRNA, whose expression was greatest in sc adipose tissue, was down-regulated in HFD-fed wild-type males, but not females. Furthermore, HFD increased membrane type 1-MMP (MMP-14) expression and activity in male, but not female, sc adipose tissue. Strikingly, MMP-14 expression increased to a greater extent in TIMP-2 KO males and was associated with decreased adipocyte collagen. Taken together, these findings demonstrate a role for TIMP-2 in maintaining extracellular matrix integrity necessary for normal β-cell and adipocyte physiology and that loss of extracellular matrix integrity may underlie diabetic and obesogenic phenotypes.
Collapse
Affiliation(s)
- Diane M Jaworski
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, 149 Beaumont Avenue, HSRF 418, Burlington, Vermont 05405, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Obesity is a complex genetic and behavioural disorder arising from the improper integration of peripheral signals at central autonomic centres. For the hypothalamus to respond to dynamic physiological alterations, it must retain a degree of plasticity throughout life. Evidence is mounting that an intricate balance between matrix metalloproteinase (MMP)-mediated extracellular matrix proteolysis and tissue inhibitor of metalloproteinase (TIMP)-mediated proteolysis inhibition contributes to tissue remodelling. However, few studies have examined the role of MMPs/TIMPs in hypothalamic remodelling and energy homeostasis. To determine the contribution of TIMP-2 to the hypothalamic regulation of feeding, body mass and food consumption were monitored in TIMP-2 knockout (KO) mice fed a standard chow or high-fat diet (HFD). TIMP-2 KO mice of both sexes gained more weight than wild-type (WT) mice, even when fed the chow diet. Before the onset of obesity, TIMP-2 KO mice were hyperphagic, without increased orexigenic or decreased anorexigenic neuropeptide expression, but leptin resistant (i.e. reduced leptin-induced anorexigenic response and signal transducer and activator of transcription 3 activation). HFD exacerbated weight gain and hyperleptinaemia. In addition, proteolysis was increased in the arcuate nucleus of TIMP-2 KO mice. These data suggest a role for TIMP-2 in hypothalamic control of feeding and energy homeostasis.
Collapse
Affiliation(s)
| | - Diane M. Jaworski
- Address all correspondence and requests for reprints to: Dr. Diane M. Jaworski, Department of Anatomy and Neurobiology, University of Vermont College of Medicine, 149 Beaumont Ave., HSRF 418, Burlington, VT 05405 Phone: (802) 656-0538 Fax: (802) 656-4674
| |
Collapse
|
24
|
Sun G, Haginoya K, Chiba Y, Uematsu M, Hino-Fukuyo N, Tanaka S, Onuma A, Iinuma K, Tsuchiya S. Elevated plasma levels of tissue inhibitors of metalloproteinase-1 and their overexpression in muscle in human and mouse muscular dystrophy. J Neurol Sci 2010; 297:19-28. [DOI: 10.1016/j.jns.2010.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 06/21/2010] [Accepted: 06/30/2010] [Indexed: 11/28/2022]
|
25
|
Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:55-71. [PMID: 20080133 DOI: 10.1016/j.bbamcr.2010.01.003] [Citation(s) in RCA: 919] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/17/2009] [Accepted: 01/04/2010] [Indexed: 12/14/2022]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are widely distributed in the animal kingdom and the human genome contains four paralogous genes encoding TIMPs 1 to 4. TIMPs were originally characterized as inhibitors of matrix metalloproteinases (MMPs), but their range of activities has now been found to be broader as it includes the inhibition of several of the disintegrin-metalloproteinases, ADAMs and ADAMTSs. TIMPs are therefore key regulators of the metalloproteinases that degrade the extracellular matrix and shed cell surface molecules. Structural studies of TIMP-MMP complexes have elucidated the inhibition mechanism of TIMPs and the multiple sites through which they interact with target enzymes, allowing the generation of TIMP variants that selectively inhibit different groups of metalloproteinases. Engineering such variants is complicated by the fact that TIMPs can undergo changes in molecular dynamics induced by their interactions with proteases. TIMPs also have biological activities that are independent of metalloproteinases; these include effects on cell growth and differentiation, cell migration, anti-angiogenesis, anti- and pro-apoptosis, and synaptic plasticity. Receptors responsible for some of these activities have been identified and their signaling pathways have been investigated. A series of studies using mice with specific TIMP gene deletions has illuminated the importance of these molecules in biology and pathology.
Collapse
Affiliation(s)
- Keith Brew
- Department of Basic Science, College of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | |
Collapse
|
26
|
Kawashima S, Imamura Y, Chandana EPS, Noda T, Takahashi R, Adachi E, Takahashi C, Noda M. Localization of the membrane-anchored MMP-regulator RECK at the neuromuscular junctions. J Neurochem 2007; 104:376-85. [PMID: 17953659 DOI: 10.1111/j.1471-4159.2007.04977.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nerve apposition on nicotinic acetylcholine receptor clusters and invagination of the post-synaptic membrane (i.e. secondary fold formation) occur by embryonic day 18.5 at the neuromuscular junctions (NMJs) in mouse skeletal muscles. Finding the molecules expressed at the NMJ at this stage of development may help elucidating how the strong linkage between a nerve terminal and a muscle fiber is established. Immunohistochemical analyses indicated that the membrane-anchored matrix metalloproteinase regulator RECK was enriched at the NMJ in adult skeletal muscles. Confocal and electron microscopy revealed the localization of RECK immunoreactivity in secondary folds and subsynaptic intracellular compartments in muscles. Time course studies indicated that RECK immunoreactivity becomes associated with the NMJ in the diaphragm at around embryonic day 18.5 and thereafter. These findings, together with known properties of RECK, support the hypothesis that RECK participates in NMJ formation and/or maintenance, possibly by protecting extracellular components, such as synaptic basal laminae, from proteolytic degradation.
Collapse
Affiliation(s)
- Satoshi Kawashima
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lluri G, Langlois GD, Soloway PD, Jaworski DM. Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates myogenesis and beta1 integrin expression in vitro. Exp Cell Res 2007; 314:11-24. [PMID: 17678891 PMCID: PMC2197161 DOI: 10.1016/j.yexcr.2007.06.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 05/29/2007] [Accepted: 06/18/2007] [Indexed: 11/28/2022]
Abstract
Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2(-/-) myotube formation. When differentiated in horse serum-containing medium, TIMP-2(-/-) myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2(-/-) myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with beta1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2(-/-) myotube size and induces increased MMP-9 activation and decreased beta1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on beta1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and beta1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Size
- Cells, Cultured
- Culture Media, Serum-Free/pharmacology
- Extracellular Matrix/drug effects
- Extracellular Matrix/metabolism
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Enzymologic/genetics
- Integrin beta1/genetics
- Integrin beta1/metabolism
- Matrix Metalloproteinase 14/metabolism
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 2/pharmacology
- Mice
- Mice, Knockout
- Muscle Development/drug effects
- Muscle Development/physiology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Myoblasts/drug effects
- Myoblasts/metabolism
- Tissue Inhibitor of Metalloproteinase-2/genetics
- Tissue Inhibitor of Metalloproteinase-2/physiology
Collapse
Affiliation(s)
- Gentian Lluri
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington VT 05405
| | - Garret D. Langlois
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington VT 05405
| | - Paul D. Soloway
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14853
| | - Diane M. Jaworski
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington VT 05405
- *Correspondence to: Dr. Diane M. Jaworski, Dept. of Anatomy & Neurobiology, Univ. of Vermont College of Medicine, 149 Beaumont Ave., HSRF 418, Burlington, VT 05405, Phone: (802) 656-0538, Fax: (802) 656-4674, E-mail:
| |
Collapse
|
28
|
Jaworski DM, Beem-Miller M, Lluri G, Barrantes-Reynolds R. Potential regulatory relationship between the nested gene DDC8 and its host gene tissue inhibitor of metalloproteinase-2. Physiol Genomics 2006; 28:168-78. [PMID: 16985004 PMCID: PMC3880020 DOI: 10.1152/physiolgenomics.00160.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nested genes are fairly common within the mammalian nervous system, yet few studies have examined whether the guest and host genes might be coordinately regulated. Tissue inhibitors of metalloproteinase (TIMPs) inhibit extracellular matrix proteolysis mediated by metzincin proteases. TIMP-2 is the only TIMP not nested within a synapsin gene. It does, however, serve as a host for differential display clone 8 (DDC8), a testis-specific gene whose expression is upregulated during spermatogenesis. Here, we demonstrate that DDC8 is not testis specific. Furthermore, DDC8 expression in nonneural and neural tissues mimics that of TIMP-2, including its upregulation in response to traumatic brain injury, suggesting a potential regulatory relationship. The most striking observation is that the TIMP-2 knockout mouse brain contains TIMP-2 mRNA encoding exons 2-5, which are downstream of DDC8, but not exon 1, which contains the signal sequence and cysteine residue required for MMP inhibition, indicating a functional knockout. That TIMP-2 transcripts in wild-type brain contain DDC8 sequence suggests alternative splicing between the two genes.
Collapse
Affiliation(s)
- Diane M Jaworski
- Departments of Anatomy & Neurobiology, University of Vermont College of Medicine, Burlington, Vermont 05405, USA.
| | | | | | | |
Collapse
|