1
|
Weist R, Flörkemeier T, Roger Y, Franke A, Schwanke K, Zweigerdt R, Martin U, Willbold E, Hoffmann A. Differential Expression of Cholinergic System Components in Human Induced Pluripotent Stem Cells, Bone Marrow-Derived Multipotent Stromal Cells, and Induced Pluripotent Stem Cell-Derived Multipotent Stromal Cells. Stem Cells Dev 2018; 27:166-183. [PMID: 29205106 DOI: 10.1089/scd.2017.0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The components of the cholinergic system are evolutionary very old and conserved molecules that are expressed in typical spatiotemporal patterns. They are involved in signaling in the nervous system, whereas their functions in nonneuronal tissues are hardly understood. Stem cells present an attractive cellular system to address functional issues. This study therefore compared human induced pluripotent stem cells (iPSCs; from cord blood endothelial cells), mesenchymal stromal cells derived from iPSCs (iPSC-MSCs), and bone marrow-derived MSCs (BM-MSCs) from up to 33 different human donors with respect to gene expressions of components of the cholinergic system. The status of cells was identified and characterized by the detection of cell surface antigens using flow cytometry. Acetylcholinesterase expression in iPSCs declined during their differentiation into MSCs and was comparably low in BM-MSCs. Butyrylcholinesterase was present in iPSCs, increased upon transition from the three-dimensional embryoid body phase into monolayer culture, and declined upon further differentiation into iPSC-MSCs. In BM-MSCs a notable butyrylcholinesterase expression could be detected in only four donors, but was elusive in other patient-derived samples. Different nicotinic acetylcholine receptor subunits were preferentially expressed in iPSCs and during early differentiation into iPSC-MSCs, low expression was detected in iPS-MSCs and in BM-MSCs. The m2 and m3 variants of muscarinic acetylcholine receptors were detected in all stem cell populations. In BM-MSCs, these gene expressions varied between donors. Together, these data reveal the differential expression of cholinergic signaling system components in stem cells from specific sources and suggest the utility of our approach to establish informative biomarkers.
Collapse
Affiliation(s)
- Ramona Weist
- 1 Department of Orthopaedic Surgery, Graded Implants and Regenerative Strategies, Hannover Medical School , Hannover, Germany .,2 Department of Trauma Surgery, Hannover Medical School , Hannover, Germany
| | - Thilo Flörkemeier
- 3 Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School , Hannover, Germany
| | - Yvonne Roger
- 1 Department of Orthopaedic Surgery, Graded Implants and Regenerative Strategies, Hannover Medical School , Hannover, Germany .,4 Lower Saxony Centre for Biomedical Engineering , Implant Research and Development (NIFE), Hannover, Germany
| | - Annika Franke
- 5 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School , Hannover, Germany .,6 REBIRTH-Cluster of Excellence, Hannover Medical School , Hannover, Germany
| | - Kristin Schwanke
- 5 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School , Hannover, Germany .,6 REBIRTH-Cluster of Excellence, Hannover Medical School , Hannover, Germany
| | - Robert Zweigerdt
- 5 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School , Hannover, Germany .,6 REBIRTH-Cluster of Excellence, Hannover Medical School , Hannover, Germany
| | - Ulrich Martin
- 5 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation, and Vascular Surgery (HTTG), Hannover Medical School , Hannover, Germany .,6 REBIRTH-Cluster of Excellence, Hannover Medical School , Hannover, Germany
| | - Elmar Willbold
- 3 Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School , Hannover, Germany .,4 Lower Saxony Centre for Biomedical Engineering , Implant Research and Development (NIFE), Hannover, Germany
| | - Andrea Hoffmann
- 1 Department of Orthopaedic Surgery, Graded Implants and Regenerative Strategies, Hannover Medical School , Hannover, Germany .,4 Lower Saxony Centre for Biomedical Engineering , Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
2
|
Garcia KE, Okamoto RJ, Bayly PV, Taber LA. Contraction and stress-dependent growth shape the forebrain of the early chicken embryo. J Mech Behav Biomed Mater 2017; 65:383-397. [PMID: 27639481 PMCID: PMC5260613 DOI: 10.1016/j.jmbbm.2016.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/21/2016] [Accepted: 08/03/2016] [Indexed: 12/14/2022]
Abstract
During early vertebrate development, local constrictions, or sulci, form to divide the forebrain into the diencephalon, telencephalon, and optic vesicles. These partitions are maintained and exaggerated as the brain tube inflates, grows, and bends. Combining quantitative experiments on chick embryos with computational modeling, we investigated the biophysical mechanisms that drive these changes in brain shape. Chemical perturbations of contractility indicated that actomyosin contraction plays a major role in the creation of initial constrictions (Hamburger-Hamilton stages HH11-12), and fluorescent staining revealed that F-actin is circumferentially aligned at all constrictions. A finite element model based on these findings shows that the observed shape changes are consistent with circumferential contraction in these regions. To explain why sulci continue to deepen as the forebrain expands (HH12-20), we speculate that growth depends on wall stress. This idea was examined by including stress-dependent growth in a model with cerebrospinal fluid pressure and bending (cephalic flexure). The results given by the model agree with observed morphological changes that occur in the brain tube under normal and reduced eCSF pressure, quantitative measurements of relative sulcal depth versus time, and previously published patterns of cell proliferation. Taken together, our results support a biphasic mechanism for forebrain morphogenesis consisting of differential contractility (early) and stress-dependent growth (late).
Collapse
Affiliation(s)
- Kara E Garcia
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, Saint Louis, MO 63130, USA.
| | - Ruth J Okamoto
- Department of Mechanical Engineering and Material Science, Washington University, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Philip V Bayly
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, Saint Louis, MO 63130, USA; Department of Mechanical Engineering and Material Science, Washington University, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, Saint Louis, MO 63130, USA; Department of Mechanical Engineering and Material Science, Washington University, 1 Brookings Drive, Saint Louis, MO 63130, USA
| |
Collapse
|
3
|
Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms. PLoS One 2016; 11:e0161675. [PMID: 27574787 PMCID: PMC5004892 DOI: 10.1371/journal.pone.0161675] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/09/2016] [Indexed: 11/19/2022] Open
Abstract
Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein.
Collapse
|
4
|
Abreu-Villaça Y, Filgueiras CC, Manhães AC. Developmental aspects of the cholinergic system. Behav Brain Res 2010; 221:367-78. [PMID: 20060019 DOI: 10.1016/j.bbr.2009.12.049] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 12/26/2009] [Indexed: 01/19/2023]
Abstract
Beyond its importance in sustaining or modulating different aspects of the activity of the central nervous system (CNS), the cholinergic system plays important roles during development. In the current review, we focus on the developmental aspects associated with major components of the cholinergic system: Acetylcholine, choline acetyltransferase, vesicular acetylcholine transporter, high-affinity choline transporter, acetylcholinesterase, nicotinic and muscarinic receptors. We describe when and where each one of these components is first identified in the CNS and the changes in their levels that occur during the course of prenatal and postnatal development. We also describe how these components are relevant to many events that occur during the development of the CNS, including progenitor cells proliferation and differentiation, neurogenesis, gliogenesis, neuronal maturation and plasticity, axonal pathfinding, regulation of gene expression and cell survival. It will be noticed that evidence regarding the developmental aspects of the cholinergic system comes mostly from studies that used agonists, such as nicotine, and antagonists, such as hemicholinium-3. Studies using immunohistochemistry and genetically altered mice also provided valuable information.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil.
| | | | | |
Collapse
|
5
|
Abstract
The expression of acetylcholinesterase is not restricted to cholinergically innervated tissues and relates to both neurotransmission and multiple biological aspects, including neural development, stress response and neurodegenerative diseases. Therefore, the classical function of acetylcholinesterase has to be distinguished from its non-classical, e.g. enzymatic from non-enzymatic, functions. Here, the roles of acetylcholinesterase in cell adhesion, promoting neurite outgrowth and neural network formation are reviewed briefly, together with potential mechanisms to support these functions. Part of these functions may depend on the structural properties of acetylcholinesterase, for example, protein-protein interactions. Recent findings have revealed that laminin-1 is an interaction partner for acetylcholinesterase. The binding of acetylcholinesterase to this extracellular matrix component may allow cell-to-cell recognition, and also cell signalling via membrane receptors. Studies using monolayer and 3D spheroid retinal cultures, as well as the acetylcholinesterase-knockout mouse, have been instrumental in elaborating the non-classical functions of acetylcholinesterase.
Collapse
|
6
|
Zimmerman G, Soreq H. Termination and beyond: acetylcholinesterase as a modulator of synaptic transmission. Cell Tissue Res 2006; 326:655-69. [PMID: 16802134 DOI: 10.1007/s00441-006-0239-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 05/05/2006] [Indexed: 11/28/2022]
Abstract
Termination of synaptic transmission by neurotransmitter hydrolysis is a substantial characteristic of cholinergic synapses. This unique termination mechanism makes acetylcholinesterase (AChE), the enzyme in charge of executing acetylcholine breakdown, a key component of cholinergic signaling. AChE is now known to exist not as a single entity, but rather as a combinatorial complex of protein products. The diverse AChE molecular forms are generated by a single gene that produces over ten different transcripts by alternative splicing and alternative promoter choices. These transcripts are translated into six different protein subunits. Mature AChE proteins are found as soluble monomers, amphipatic dimers, or tetramers of these subunits and become associated to the cellular membrane by specialized anchoring molecules or members of other heteromeric structural components. A substantial increasing body of research indicates that AChE functions in the central nervous system go far beyond the termination of synaptic transmission. The non-enzymatic neuromodulatory functions of AChE affect neurite outgrowth and synaptogenesis and play a major role in memory formation and stress responses. The structural homology between AChE and cell adhesion proteins, together with the recently discovered protein partners of AChE, predict the future unraveling of the molecular pathways underlying these multileveled functions.
Collapse
Affiliation(s)
- Gabriel Zimmerman
- The Institute of Life Sciences and the Interdisciplinary Center for Neural Computation (ICNC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
7
|
Abstract
The protein products of both of the identified chick engrailed-like (En) genes, chick En-1 and chick En-2, are localized in cells of the developing brain, mandibular arch, spinal cord, dermatome, and ventral limb bud ectoderm, as demonstrated by labeling with the polyclonal antiserum alpha Enhb-1 developed by Davis et al. (Development 111:281-298, 1991). A subpopulation of cephalic neural crest cells is also En-protein-positive. The monoclonal antibody 4D9 recognizes the chick En-2 gene product exclusively (Patel et al.: Cell 58:955-968, 1989; Davis et al., 1991) and colocalizes with chick En-2 mRNA in the developing head region of the chick embryo as shown by in situ hybridization (Gardner et al.: J. Neurosci. Res. 21:426-437, 1988). In the present study we examine the pattern of alpha Enhb-1 and 4D9 localization throughout the chick embryo from the first appearance of antibody (Ab)-positive cells at stage 8 (Hamburger and Hamilton: J. Morphol. 88:49-92, 1951) through stage 28 (1-5.5 days). We compare the localization patterns of the two Abs to each other, as well as to the localization of the monoclonal Ab, HNK-1, which recognizes many neural crest cells, using double- and triple-label fluorescence immunohistochemistry. Most En protein-positive cells in the path of neural crest cell migration are not HNK-1 positive. In detailed examination of alpha Enhb-1 and 4D9 localization, we find previously undetected patterns of En protein localization in the prechordal plate, hindbrain, myotome, ventral body-wall mesoderm, and extraembryonic membranes. Based upon these observations we propose: 1) that En expression in the mesoderm may be induced through interaction with En expressing cells in the neuroectoderm; 2) that En expression in the head mesenchyme is associated with somitomere 4; and 3) that En expression may be involved in epithelial-mesenchymal cell transformations.
Collapse
Affiliation(s)
- C A Gardner
- Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor 48109
| | | |
Collapse
|
8
|
Willbold E, Layer PG. A Hidden Retinal Regenerative Capacity from the Chick Ciliary Margin is Reactivated In Vitro, that is Accompanied by Down-regulation of Butyrylcholinesterase. Eur J Neurosci 2002; 4:210-220. [PMID: 12106367 DOI: 10.1111/j.1460-9568.1992.tb00869.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chicken retina has a capacity to regenerate in vivo, which is restricted up to embryonic day 4 (E4). Here we test the proliferative patterns of dissociated chicken cells from the centre retina or the ciliary margin, including pigmented cells, after their transfer into rotation culture. For central cells in culture, the uptake of [3H]thymidine after a short initial rise decreases similarly to their in ovo counterparts. In contrast, marginal cells that have been shown to regenerate up to E9 into retinotypic stratospheroids re-enter a novel and long-lasting phase of in vitro cell division. We have shown previously that cell types of all nuclear layers are produced. Both observations taken together indicate a pronounced self-renewal of multipotent stem cells. Molecularly, the enzyme butyrylcholinesterase, which in other systems has been shown to mark transitory neuronal cells between proliferation and differentiation, is strongly expressed at the ciliary margin over most of the embryonic period. After these cells are transferred into rotation culture, butyrylcholinesterase is down-regulated. Concomitantly, the neuronal differentiation marker acetylcholinesterase increases. We conclude that the regenerative capacity of the chick retina is not lost at E4, but rather remains hidden in the chicken ciliary margin, since it can be reactivated in vitro at least up to E9. We suggest that butyrylcholinesterase may be linked to the regulation of stem cell activity.
Collapse
Affiliation(s)
- Elmar Willbold
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstrasse 35/IV, D-7400 Tübingen, FRG
| | | |
Collapse
|
9
|
Sharma KV, Koenigsberger C, Brimijoin S, Bigbee JW. Direct evidence for an adhesive function in the noncholinergic role of acetylcholinesterase in neurite outgrowth. J Neurosci Res 2001; 63:165-75. [PMID: 11169626 DOI: 10.1002/1097-4547(20010115)63:2<165::aid-jnr1008>3.0.co;2-o] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acetylcholinesterase (AChE) can promote neurite outgrowth through a mechanism that is independent of its role in hydrolyzing the neurotransmitter acetylcholine. It has been proposed that this neuritogenic capacity of AChE may result from its intrinsic capacity to function in adhesion. In this study we directly tested this hypothesis using neuroblastoma cell lines that have been engineered for altered cell-surface expression of AChE. Using a microtiter-plate adhesion assay and the electrical cell-substrate impedance-sensing (ECIS) method, we demonstrate that the level of cell-substratum adhesion of these cells directly correlates with their level of AChE expression. Furthermore, this adhesion is blocked by either an anti-AChE antibody or a highly specific AChE inhibitor (BW284c51), both of which have also been shown to block neurite outgrowth. In addition, cells that overexpress AChE showed enhanced neurite initiation. By employing cell lines with different levels of AChE expression in two types of cell-substratum adhesion assays, our current studies provide evidence for an adhesive function for AChE. These results, together with the fact that AChE shares sequence homology and structural similarities with several known cell adhesion molecules, support the hypothesis that AChE promotes neurite outgrowth, at least in part, through an adhesive function.
Collapse
Affiliation(s)
- K V Sharma
- Department of Anatomy, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
| | | | | | | |
Collapse
|
10
|
Bigbee JW, Sharma KV, Chan EL, Bögler O. Evidence for the direct role of acetylcholinesterase in neurite outgrowth in primary dorsal root ganglion neurons. Brain Res 2000; 861:354-62. [PMID: 10760497 DOI: 10.1016/s0006-8993(00)02046-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dorsal root ganglion (DRG) neurons show a transient peak expression of acetylcholinesterase (AChE) during periods of axonal outgrowth prior to synaptogenesis, suggesting that AChE has a non-enzymatic role during development. We have previously shown that perturbation of cell surface AChE in cultured embryonic rat DRG neurons results in decreased neurite outgrowth and neurite detachment. In this report, we demonstrate a direct correlation between endogenous AChE content and neurite outgrowth in primary DRG neurons. Adenoviral vectors were constructed using full-length rat AChE(T) cDNA in either the sense or antisense orientations to overexpress or knock down AChE expression, respectively. Treatment with the sense-expressing vector produced a 2.5-fold increase in AChE expression and a 2-fold increase in neurite length compared with either untreated or null virus-treated control cells. Conversely, treatment with the antisense-expressing vector reduced AChE expression by 40% and resulted in a reduction in neurite length of similar magnitude. We also observed that overexpression of AChE resulted in greater branching at the distal tips of each primary neurite as well as an increase in cell body size. These findings further indicate that AChE expressed on the axonal surface of developing DRG neurons may modulate their adhesive properties and thereby support axonal development.
Collapse
Affiliation(s)
- J W Bigbee
- Department of Anatomy, Medical College of Virginia School of Medicine, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298-0709, USA.
| | | | | | | |
Collapse
|
11
|
Grisaru D, Sternfeld M, Eldor A, Glick D, Soreq H. Structural roles of acetylcholinesterase variants in biology and pathology. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:672-86. [PMID: 10491113 DOI: 10.1046/j.1432-1327.1999.00693.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apart from its catalytic function in hydrolyzing acetylcholine, acetylcholinesterase (AChE) affects cell proliferation, differentiation and responses to various insults, including stress. These responses are at least in part specific to the three C-terminal variants of AChE which are produced by alternative splicing of the single ACHE gene. 'Synaptic' AChE-S constitutes the principal multimeric enzyme in brain and muscle; soluble, monomeric 'readthrough' AChE-R appears in embryonic and tumor cells and is induced under psychological, chemical and physical stress; and glypiated dimers of erythrocytic AChE-E associate with red blood cell membranes. We postulate that the homology of AChE to the cell adhesion proteins, gliotactin, glutactin and the neurexins, which have more established functions in nervous system development, is the basis of its morphogenic functions. Competition between AChE variants and their homologs on interactions with the corresponding protein partners would inevitably modify cellular signaling. This can explain why AChE-S exerts process extension from cultured amphibian, avian and mammalian glia and neurons in a manner that is C-terminus-dependent, refractory to several active site inhibitors and, in certain cases, redundant to the function of AChE-like proteins. Structural functions of AChE variants can explain their proliferative and developmental roles in blood, bone, retinal and neuronal cells. Moreover, the association of AChE excess with amyloid plaques in the degenerating human brain and with progressive cognitive and neuromotor deficiencies observed in AChE-transgenic animal models most likely reflects the combined contributions of catalytic and structural roles.
Collapse
Affiliation(s)
- D Grisaru
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University, Jerusalem, 91904 Israel
| | | | | | | | | |
Collapse
|
12
|
Mi ZP, Weng W, Hankin MH, Narayanan V, Lagenaur CF. Maturational changes in cell surface antigen expression in the mouse retina and optic pathway. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 106:145-54. [PMID: 9554989 DOI: 10.1016/s0165-3806(97)00206-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The distribution of the cell surface molecules M6 and L1 was studied using the immunohistochemistry and in situ hybridization in the developing and adult mouse retina and optic nerve. L1 is a cell adhesion molecule while M6 is a cell surface molecule homologous to the myelin protein proteolipid protein (PLP/DM20). Although both molecules were expressed in retina and optic nerves of embryonic and neonatal mice, our studies show that their patterns of postnatal expression are quite different. While L1 continues to be expressed in optic axons throughout adulthood, expression of M6 on optic axons declines after birth and instead becomes strongly expressed on Müller glial endfeet and in the inner plexiform layer. The modulation of these molecules after birth could provide clues to changing cell-cell interactions occurring in the proximal portion of the optic pathway.
Collapse
Affiliation(s)
- Z P Mi
- Department of Neurobiology, School of Medicine, University of Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
13
|
Robitzki A, Mack A, Hoppe U, Chatonnet A, Layer PG. Regulation of cholinesterase gene expression affects neuronal differentiation as revealed by transfection studies on reaggregating embryonic chicken retinal cells. Eur J Neurosci 1997; 9:2394-405. [PMID: 9464933 DOI: 10.1111/j.1460-9568.1997.tb01656.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the embryonic chicken neuroepithelium, butyrylcholinesterase (BChE) as a proliferation marker and then acetylcholinesterase (AChE) as a differentiation marker are expressed in a mutually exclusive manner. These and other data indicate a coregulation of cholinesterase expression, and also possible roles of cholinesterases during neurogenesis. Here, both aspects are investigated by two independent transfection protocols of dissociated retina cells of the 6-day-old chick embryo in reaggregation culture, both protocols leading to efficient overexpression of AChE protein. The effect of the overexpressed AChE protein on the re-establishment of retina-like three-dimensional networks (so-called retinospheroids) was studied. In a first approach, we transfected retinospheroids with a pSVK3 expression vector into which a cDNA construct encoding the entire rabbit AChE gene had been inserted in sense orientation. As detected at the mRNA level, rabbit AChE was heterologously overexpressed in chicken retinospheroids. Remarkably, this was accompanied by a strong increase in endogenous chicken AChE protein, while the total AChE activity was only slightly increased. This increase was due to chicken enzyme, as shown by species-specific inhibition studies using fasciculin. Clearly, total AChE activity is regulated post-translationally. As an alternative method of AChE overexpression, transfection of spheroids was performed with an antisense-5'-BChE vector, which not only resulted in the down-regulation of BChE expression, but also strongly increased chicken AChE transcripts, protein and enzyme activity. Histologically, a higher concentration of AChE protein (as a consequence of either AChE overexpression or BChE suppression) was associated with an advanced degree of tissue differentiation, as detected by immunostaining for the cytoskeletal protein vimentin.
Collapse
Affiliation(s)
- A Robitzki
- Department of Developmental and Neurobiology, Institute for Zoology, University of Technology, Darmstadt, Germany
| | | | | | | | | |
Collapse
|
14
|
Abstract
Axonin-1/TAG-1, a member of the immunoglobulin (Ig) superfamily of adhesion molecules, has been shown to be selectively expressed by a subset of neurons and fiber tracts in the developing nervous system of vertebrates. Axonin-1/TAG-1 is thought to play a role in the outgrowth, guidance, and fasciculation of neurites. In the present study, we map the expression of axonin-1 in the diencephalon of the chicken brain at early and intermediate stages of development [2-8 days of incubation; embryonic day (E)2-E8] by immunohistochemical methods. Results show that axonin-1 is first expressed at about E2.5 by postmitotic neurons scattered throughout most of the diencephalon. During the neuromeric stage of brain development (about E3-E5), axonin-1+ nerve cell bodies are predominantly found in two neuromeric subdivisions: 1) in the alar plate of the precommissural pretectum and dorsal thalamus and 2) in the posterior preoptic region of the hypothalamus. The axonin-1+ fiber bundles emerging from these areas grow across segmental boundaries. For example, axonin-1+ neurites originating in the dorsal thalamus cross the zona limitans intrathalamica at a right angle to project to the striatum. Later, the axonin-1+ neuromere areas give rise to particular axonin-1+ gray and white matter structures. Most of these structures correspond to the structures described to express TAG-1 in rodents. In conclusion, axonin-1 can be used as a marker to study aspects of the transition from the early neuromeric structure to the mature anatomy of the chicken brain.
Collapse
Affiliation(s)
- C Redies
- Institute of Biology III, University of Freiburg, Germany.
| | | | | |
Collapse
|
15
|
Dupree JL, Bigbee JW. Acetylcholinesterase inhibitor treatment delays recovery from axotomy in cultured dorsal root ganglion neurons. JOURNAL OF NEUROCYTOLOGY 1996; 25:439-54. [PMID: 8899566 DOI: 10.1007/bf02284814] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have previously reported that dorsal root ganglion neurons cultured in the presence of the highly specific, reversible acetylcholinesterase inhibitor 1,5-bis-(4-allyldimethylammoniumphenyl) pentan-3-one dibromide (BW284c51), showed significantly reduced neurite outgrowth and contained massive perikaryal inclusions of neurofilaments. In the present report we have more closely examined these changes in a time course study over a 21-day culture period using a combined morphological, immunocytochemical and enzymatic approach and additionally, describe, the effects of acetylcholinesterase inhibitor treatment on the state of neurofilament phosphorylation. Finally, we have examined the effects of co-administration of N6,2'-0-dibutyryladenosine 3':5'-cyclic monophosphate (dbcAMP) with BW284c51. At 1 day in culture, both control and treated cells displayed eccentrically located nuclei, numerous polysomes and perikaryal accumulations of neurofilaments which were immunoreactive with both phosphorylation- and nonphosphorylation-dependent neurofilament antibodies. These cytological changes, which are common features of the chromatolytic reaction following axotomy in vivo, rapidly resolved in the control neurons, where by 7 days in culture, the neurofilament accumulations had completely disappeared and neurite outgrowth was robust. In contrast, inhibitor-treated neurons retained the post-axotomy features up to 21 days and had significantly reduced neurite outgrowth. In addition, we have investigated a possible role of cyclic adenosine monophosphate (cAMP) in the recovery process since it has been shown to enhance neuritic outgrowth in cultured neurons. Our results demonstrate that the addition of dbcAMP, a membrane permeable analog of cAMP, significantly enhanced neuritic outgrowth and accelerated the recovery of BW284c51-treated dorsal root ganglion cells, as gauged by the disappearance of the axotomy-related cytological changes. Treatment with dbcAMP also increased acetylcholinesterase activity which has been positively correlated with neurite outgrowth both in vivo and in vitro. Together, these observations suggest that acetylcholinesterase has a non-cholinolytic, neurotrophic role in neuronal regeneration and development.
Collapse
MESH Headings
- Acetylcholinesterase/metabolism
- Animals
- Axons/physiology
- Benzenaminium, 4,4'-(3-oxo-1,5-pentanediyl)bis(N,N-dimethyl-N-2-propenyl-), Dibromide/pharmacology
- Bucladesine
- Cell Nucleus/drug effects
- Cell Nucleus/physiology
- Cell Nucleus/ultrastructure
- Cells, Cultured
- Cholinesterase Inhibitors/pharmacology
- Embryo, Mammalian
- Fluorescent Antibody Technique
- Ganglia, Spinal/cytology
- Ganglia, Spinal/physiology
- Immunohistochemistry
- Kinetics
- Microscopy, Electron
- Neurites/drug effects
- Neurites/physiology
- Neurites/ultrastructure
- Neurofilament Proteins/analysis
- Neurofilament Proteins/metabolism
- Neurons/drug effects
- Neurons/physiology
- Neurons/ultrastructure
- Rats
Collapse
Affiliation(s)
- J L Dupree
- Department of Anatomy, Virginia Commonwealth University, Richmond 23298-0709, USA
| | | |
Collapse
|
16
|
Morales G, Sanchez-Puelles JM, Schwarz U, de la Rosa EJ. Synergistic neurite-outgrowth promoting activity of two related axonal proteins, Bravo/Nr-CAM and G4/Ng-CAM in chicken retinal explants. Eur J Neurosci 1996; 8:1098-105. [PMID: 8752579 DOI: 10.1111/j.1460-9568.1996.tb01277.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the developing chicken retina, optic fibres migrating to the tectum express on their surfaces several cell adhesion molecules, including Bravo/Nr-CAM and G4/Nr-CAM and G4/Ng-CAM. We have previously described differential distribution along the retinotectal projection and differential modulation by environmental cues for Bravo and G4 and here we further compare the characteristics of these immunoglobulin superfamily molecules. From day 6 of embryonic development (E6) to 20 (E20), Bravo and G4 were found to coexist in the retinal optic fibre layer. However, while G4 staining was confined to that layer, as development proceeded Bravo staining spread to plexiform layers and some radial structures of the retina. G4 displayed a dose-dependent neurite-outgrowth promoting activity for E6 retinal explants, while Bravo did not support neurite growth. Surprisingly, when the retinal explants were grown on mixtures of the two molecules, a much more vigorous growth of neurites was seen, revealing a synergistic effect. We propose that Bravo and G4, as well as other axonal surface molecules, affect axonal growth in different ways when they are present in combination than when they are alone.
Collapse
Affiliation(s)
- G Morales
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, Germany
| | | | | | | |
Collapse
|
17
|
Small DH, Michaelson S, Sberna G. Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer's disease. Neurochem Int 1996; 28:453-83. [PMID: 8792327 DOI: 10.1016/0197-0186(95)00099-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cholinesterases are members of the serine hydrolase family, which utilize a serine residue at the active site. Acetylcholinesterase (AChE) is distinguished from butyrylcholinesterase (BChE) by its greater specificity for hydrolysing acetylcholine. The function of AChE at cholinergic synapses is to terminate cholinergic neurotransmission. However, AChE is expressed in tissues that are not directly innervated by cholinergic nerves. AChE and BChE are found in several types of haematopoietic cells. Transient expression of AChE in the brain during embryogenesis suggests that AChE may function in the regulation of neurite outgrowth. Overexpression of cholinesterases has also been correlated with tumorigenesis and abnormal megakaryocytopoiesis. Acetylcholine has been shown to influence cell proliferation and neurite outgrowth through nicotinic and muscarinic receptor-mediated mechanisms and thus, that the expression of AChE and BChE at non-synaptic sites may be associated with a cholinergic function. However, structural homologies between cholinesterases and adhesion proteins indicate that cholinesterases could also function as cell-cell or cell-substrate adhesion molecules. Abnormal expression of AChE and BChE has been detected around the amyloid plaques and neurofibrillary tangles in the brains of patients with Alzheimer's disease. The function of the cholinesterases in these regions of the Alzheimer brain is unknown, but this function is probably unrelated to cholinergic neurotransmission. The presence of abnormal cholinesterase expression in the Alzheimer brain has implications for the pathogenesis of Alzheimer's disease and for therapeutic strategies using cholinesterase inhibitors.
Collapse
Affiliation(s)
- D H Small
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
18
|
Dupree JL, Maynor EN, Bigbee JW. Inverse correlation of acetylcholinesterase (AChE) activity with the presence of neurofilament inclusions in dorsal root ganglion neurons cultured in the presence of a reversible inhibitor of AChE. Neurosci Lett 1995; 197:37-40. [PMID: 8545050 DOI: 10.1016/0304-3940(95)11895-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously shown that treatment of cultured dorsal root ganglion neurons (DRGN) with a highly specific, reversible acetylcholinesterase (AChE) inhibitor, BW284c51, retards neuritic outgrowth in a dose dependent manner and is accompanied by the presence of abnormal, perikaryal neurofilament (NF) inclusions in approximately 40% of the cells. Since subpopulations of DRGN have been classified according to their levels of AChE activity, we have combined immunocytochemical and enzyme histochemical techniques to investigate a possible correlation between AChE activity and the presence of NF inclusion formation. Our results show that after inhibitor treatment, cells with low levels of AChE activity have a greater percentage of inclusions, with nearly 75% of cells with undetectable levels of AChE activity containing inclusions. In contrast, inclusions were present in only 3.2% of cells with high levels of AChE activity. This inverse relationship between AChE activity and the presence of NF inclusions supports our previous observations that this enzyme may have extra-synaptic functions which could affect neuronal development and regeneration.
Collapse
Affiliation(s)
- J L Dupree
- Department of Anatomy, Virginia Commonwealth University, Richmond 23298, USA
| | | | | |
Collapse
|
19
|
Bastmeyer M, Ott H, Leppert CA, Stuermer CA. Fish E587 glycoprotein, a member of the L1 family of cell adhesion molecules, participates in axonal fasciculation and the age-related order of ganglion cell axons in the goldfish retina. J Biophys Biochem Cytol 1995; 130:969-76. [PMID: 7642712 PMCID: PMC2199948 DOI: 10.1083/jcb.130.4.969] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Axons derived from young ganglion cells in the periphery of the retinae of larval and adult goldfish are known to fasciculate with one another and their immediate forerunners, creating the typical age-related order in the retinotectal pathway. Young axons express the E587 antigen, a member of the L1 family of cell adhesion molecules. Repeated injections of Fab fragments from a polyclonal E587 antiserum (E587 Fabs) into the eye of 3.4 cm goldfish disrupted the orderly fascicle pattern of RGC axons in the retina which was preserved in controls. Instead of bundling tightly, RGC axons crossed one another, grew between fascicles and arrived at the optic disk in a broadened front. When added to RGC axons growing in vitro, E587 Fabs neutralized the preference of growth cones to elongate on lanes of E587 protein, caused defasciculation of axons which normally prefer to grow along each other when explanted on polylysine, and prevented clustering of E587 antigen at axon-axon contact sites. Monoclonal E587 antibody disturbed axonal fasciculation moderately but led to a 30% reduction in growth velocities when axons tracked other axons. Therefore we conclude that E587 antigen mediates axonal recognition, selective fasciculation and the creation of the age-related order in the fish retina.
Collapse
Affiliation(s)
- M Bastmeyer
- Faculty of Biology, University of Konstanz, Germany
| | | | | | | |
Collapse
|
20
|
Fritzsch B, Nichols DH, Echelard Y, McMahon AP. Development of midbrain and anterior hindbrain ocular motoneurons in normal and Wnt-1 knockout mice. JOURNAL OF NEUROBIOLOGY 1995; 27:457-69. [PMID: 7561827 DOI: 10.1002/neu.480270403] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of homozygotic Wnt-1-/- mutations on the development of ocular motoneurons was examined with the lipophilic dye DiI and compared to control and phenotypic wild-type mouse embryos. A piece of DiI-soaked filter paper was inserted into the orbit, the midbrain, or rhombomere 5 of the hindbrain in six paraformaldehyde-fixed litters (10.5, 12.5, and 14.5 days postcoitum) containing Wnt-1, Wnt+/-, and Wnt-1+/+ individuals and three control litters. We labeled all ocular motoneurons retrogradely and all relevant nerves anterogradely in all control and phenotypic wild-type animals. In all phenotypically identified Wnt-1-/- mutants we could always label the abducens nerve and motoneurons and the optic fibers to the thalamus, but we were unable to label oculomotor or trochlear nerves or motoneurons. In addition to Wnt-1 knockout mutants, we also labeled mice from the WZT9B transgenic line carrying a lacZ reporter gene driven by the Wnt-1 gene enhancer. In these embryos we tested for co-localization of Wnt-1 expression in biotinylated dextran amine-labeled ocular motoneurons using a newly developed technique. In younger embryos we obtained evidence for co-localization of the beta-galactosidase reaction product derived from lacZ gene activity in some retrogradely filled oculomotor motoneurons and adjacent to other oculomotor and the trochlear motoneurons. Acetylcholine esterase, a marker of early differentiating cholinergic neurons, showed a similar topology with respect to the lacZ reaction product. Thus, at least some future oculomotor motoneurons express Wnt-1, whereas others and the trochlear motoneurons caudal to the ventral midbrain expression of Wnt-1 may be exposed to the short range diffusion of the Wnt-1 gene product. Thus, the Wnt-1-/- mutation precludes formation or survival of midbrain and anterior hindbrain neurons, including oculomotor and trochlear motoneurons.
Collapse
Affiliation(s)
- B Fritzsch
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178, USA
| | | | | | | |
Collapse
|
21
|
Abstract
The function of acetylcholinesterase (AChE) is to terminate the action of acetylcholine at the cholinergic synapse. Recent evidence suggests additional roles for acetylcholinesterase as a peptidase and/or a protease which is expressed by growing neurites as part of their invasion of developing neural structures. We report the localization of acetylcholinesterase in developing ferret retina. AChE histochemical staining is seen in the developing inner plexiform layer (IPL) of ferret retina at birth (post-natal day zero, PO), the earliest developmental stage examined. Transient expression is seen at the border between the ganglion cell layer and the nerve fiber layer at P14 and P21. A small amount of transient expression is seen in the outer plexiform layer (OPL) at this age as well. By P28, the transient expression in the OPL is at its peak, and is found at photoreceptor terminals and associated with apparent horizontal cell axons. Labeling is also seen intracellularly in the inner nuclear layer (INL), at the OPL/INL border, suggesting that horizontal cells are the source of the transient AChE expression in the OPL. Overt synaptic profiles also appear in the inner plexiform layer (IPL) at P21 and P28. About 2 days layer, the eyes open and the photoreceptor outer segments are fully developed. By 2 weeks later, at P42, the AChE staining pattern in the retina has taken on its adult appearance: no reaction product in the outer retina; intracellular reaction product in the Golgi apparatus of a subset of amacrine and displaced amacrine cells which manufacture AChE; and extracellular reaction product at both synaptic and non-synaptic sites in the IPL. These data are consistent with a role for AChE as a peptidase early in development, and as an enzyme essential in the termination of synaptic action at mature synapses.
Collapse
Affiliation(s)
- J B Hutchins
- Department of Anatomy, University of Mississippi Medical Center, Jackson 39216-4505, USA
| | | | | |
Collapse
|
22
|
Styren SD, Miller PD, Lagenaur CF, DeKosky ST. Alternate strategies in lesion-induced reactive synaptogenesis: differential expression of L1 in two populations of sprouting axons. Exp Neurol 1995; 131:165-73. [PMID: 7895817 DOI: 10.1016/0014-4886(95)90038-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the CNS the cell adhesion molecule L1 plays a role in axonal growth and fasciculation. Since its roles in synapse formation and CNS regeneration are unknown, we followed the staining of L1 through the sequence of degeneration and reactive axon sprouting in the denervated outer molecular layer (ML) of the hippocampal dentate gyrus following ipsilateral entorhinal cortex (ERC) lesion. We compared immunohistological and ultrastructural localization of L1 and employed image analysis to evaluate lamina-specific changes over time. L1 staining was uniformly distributed over the ML in unlesioned animals. Following ERC lesion, L1 staining markedly declined in the outer ML; L1 staining in the inner ML remained constant. Over 30 days postlesion, commissural and associational (C/A) afferents from inner ML sprouted partway into the denervated zone, and L1 was expressed on these sprouting afferents. L1 staining exactly corresponded to fiber outgrowth as assessed by Holmes fiber stain. As the L1-bearing axons of the C/A projection expanded, staining for embryonic N-CAM (reexpressed on the dendrites of the denervated zone) appeared to recede. There was never overlap of L1 and embryonic N-CAM staining; the difference always marked the boundary between inner and outer ML. Ultrastructural analysis confirmed localization of L1 staining to axonal profiles, indicating that the new pattern of L1 staining reflected distinct types of axonal growth. These changes in cell adhesion molecule expression closely paralleled the known sequence of reactive synaptogenesis and axonal sprouting and demonstrate a link between cell adhesion molecule expression and axonal sprouting during self-repair by the CNS.
Collapse
Affiliation(s)
- S D Styren
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pennsylvania 15123, USA
| | | | | | | |
Collapse
|
23
|
Dupree JL, Bigbee JW. Retardation of neuritic outgrowth and cytoskeletal changes accompany acetylcholinesterase inhibitor treatment in cultured rat dorsal root ganglion neurons. J Neurosci Res 1994; 39:567-75. [PMID: 7891392 DOI: 10.1002/jnr.490390508] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Over the past two decades acetylcholinesterase (AChE) has been shown to be present in numerous non-cholinergic and non-cholinoceptive tissues. Interestingly, transient expression of AChE in developing nervous tissue corresponds temporally with neuronal migration and neuritic outgrowth. This observation has led our laboratory to investigate a possible novel, non-cholinergic role for AChE in the development of the nervous system. In a previous study, we demonstrated that the activity of AChE in cultured dorsal root ganglion neurons (DRGN) can be modulated by the substratum. In our current study, we have examined the effects of AChE inhibitor treatment on neuritic outgrowth on the highly permissive substratum Matrigel and the less permissive substratum Collagen Type I. DRGN received serial dilutions of the AChE-specific inhibitor 1,5-bis-(4-allyldimethylammoniumphenyl) pentan-3-one dibromide (BW284c51) ranging from 10(-4) to 10(-7) M. Results showed that neuritic outgrowth was significantly reduced in DRGN grown on Matrigel at 10(-5) and 10(-4) M BW284c51, while outgrowth on Collagen Type I was significantly reduced at 10(-6), 10(-5), and 10(-4) M concentrations of BW284c51. Inhibitor treatment did not affect cell survival and neuritic outgrowth from BW284c51-treated cells recovered to control levels after removal of the inhibitor from the medium. In addition, massive spiraling accumulations of 10 nm filaments were observed in the cell bodies of treated neurons, which resemble neurofibrillary inclusions observed in neuropathological diseases such as Pick's disease. This study demonstrates that AChE inhibitor treatment retards neuritic outgrowth and neuronal migration of cultured DRGN which is accompanied by cytoskeletal abnormalities in the cell body.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
MESH Headings
- Acetylcholinesterase/analysis
- Animals
- Benzenaminium, 4,4'-(3-oxo-1,5-pentanediyl)bis(N,N-dimethyl-N-2-propenyl-), Dibromide/pharmacology
- Cells, Cultured
- Collagen
- Cytoskeleton/drug effects
- Cytoskeleton/ultrastructure
- Drug Combinations
- Ganglia, Spinal/cytology
- Ganglia, Spinal/embryology
- Laminin
- Nerve Tissue Proteins/analysis
- Neurites/drug effects
- Neurites/ultrastructure
- Neurons, Afferent/drug effects
- Neurons, Afferent/ultrastructure
- Proteoglycans
- Rats
Collapse
Affiliation(s)
- J L Dupree
- Department of Anatomy, Virginia Commonwealth University, Richmond
| | | |
Collapse
|
24
|
Alber R, Sporns O, Weikert T, Willbold E, Layer PG. Cholinesterases and peanut agglutinin binding related to cell proliferation and axonal growth in embryonic chick limbs. ANATOMY AND EMBRYOLOGY 1994; 190:429-38. [PMID: 7887493 DOI: 10.1007/bf00235489] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Embryonic cholinesterases are assigned important functions during morphogenesis. Here we describe the expression of butyrylcholinesterase and acetylcholinesterase, and the binding of peanut agglutinin, and relate the results to mitotic activity in chick wing and leg buds from embryonic day 4 to embryonic day 9. During early stages, butyrylcholinesterase is elevated in cells under the apical ectodermal ridge and around invading motoraxons, while acetylcholinesterase is found in the chondrogenic core, on motoraxons and along the ectoderm. Peanut agglutinin binds to the apical ectodermal ridge and most prominently to the chondrogenic core. Measurements of thymidine incorporation and enzyme activities were consistent with our histological findings. Butyrylcholinesterase is concentrated near proliferative zones and periods, while acetylcholinesterase is associated with low proliferative activity. At late stages of limb development, acetylcholinesterase is concentrated in muscles and nonexistent within bones, while butyrylcholinesterase shows an inverse pattern. Thus, as in other systems, in limb formation butyrylcholinesterase is a transmitotic marker preceding differentiation, acetylcholinesterase is found on navigating axons, while peanut agglutinin appears in non-invaded regions. These data suggest roles for cholinesterases as positive regulators and peanut-agglutinin-binding proteins as negative regulators of neural differentiation.
Collapse
Affiliation(s)
- R Alber
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | | | | | | | | |
Collapse
|
25
|
Abstract
Recent advances in the identification of factors that inhibit axon extension lead us to suggest that there exist at least two functionally distinct categories of inhibitory factors: those that inhibit the motile apparatus of the growth cone, and those that destabilize interactions of the growth cone with the substratum. These two types of inhibitory factors could play an important role in growth cone guidance.
Collapse
Affiliation(s)
- Y Luo
- Department of Neuroscience, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
26
|
Hankin MH, Lagenaur CF. Cell adhesion molecules in the early developing mouse retina: retinal neurons show preferential outgrowth in vitro on L1 but not N-CAM. JOURNAL OF NEUROBIOLOGY 1994; 25:472-87. [PMID: 8071656 DOI: 10.1002/neu.480250503] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Both L1 and N-CAM are present on optic axons early in the developing mouse retina and optic nerve. In in vitro assays on substrates of purified cell adhesion molecules cells derived from E13 mouse retinae showed vigorous neurite extension on L1 but not on N-CAM. Although retinal neurons on N-CAM showed only limited attachment to the substrate, they were able to form lamellipodia immediately around the cell perimeter. In contrast, similarly derived cortical cells showed extensive neurite outgrowth on both substrates. Under these culture conditions, nearly all of the L1 and N-CAM present in the cell membrane appeared to be sequestered on the lower surface of the growth cones and neurites, indicating that most of these cell adhesion molecules were involved in homophilic interactions. Our results suggest differential roles for L1 and N-CAM in initiation and establishment of the optic pathway.
Collapse
Affiliation(s)
- M H Hankin
- Department of Anatomy, Medical College of Ohio, Toledo 43614
| | | |
Collapse
|
27
|
Weikert T, Rathjen FG, Layer PG. Use of ELISA to G4 antigen to quantitate neurite outgrowth in the chick both in vivo and in vitro. J Neurochem 1994; 62:1570-7. [PMID: 8133285 DOI: 10.1046/j.1471-4159.1994.62041570.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The G4 glycoprotein is found on the earliest developing neurite tracts of the chick embryo. An ELISA is introduced here to quantify the amount of G4-expressing neurites in the picogram range. In this double-sandwich assay, an anti-G4 monoclonal antibody fixes the G4 antigen to the plastic surface, which then is detected by a polyclonal antiserum; nonspecific background is decreased by competitive displacement. The sensitivity of the assay allows us to follow quantitatively the very first neurite growth in embryonic heads, trunks, retinae, and brains. G4-based neurite growth is shown to occur earlier in heads than in trunks; in brain it is nearly 10-fold higher than in the retina by embryonic day 8. By determination of acetylcholinesterase (AChE) activities from the same homogenates, our earlier histochemical findings are verified now on a quantitative basis, again showing that AChE consistently precedes G4 antigen. Moreover, as an in vitro example, the G4 ELISA is applied to the nerve growth factor (NGF) standard bioassay on dorsal root ganglia; the half-maximal response is reached at approximately 10 ng/ml of NGF for G4-based neurite growth and at approximately 1 ng/ml of NGF for AChE expression, respectively.
Collapse
Affiliation(s)
- T Weikert
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, F.R.G
| | | | | |
Collapse
|
28
|
Chang S, Raible DW. Rin, a novel cell-surface protein that labels reticular neurons early in chick neurogenesis. JOURNAL OF NEUROBIOLOGY 1994; 25:395-405. [PMID: 8077965 DOI: 10.1002/neu.480250405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rin is a large cell-surface glycoprotein that we have recently purified from chick brain, with a molecular weight of approximately 200 kD. Protein microsequence obtained from immunopurified rin does not match any sequences in the Genbank data base. Based on the sequence information and on its localization in the early chick embryo, rin is a novel cell-surface protein. Rin is expressed on the surface of many, but not all, axons in the developing chick nervous system. In the chick hindbrain, rin is expressed on reticular neurons, the first neurons to extend axons within the brain. Cranial motoneurons, which extend axons just a few stages later, do not express rin. Rin-positive axons pioneer the caudal section of the medial longitudinal fasciculus. The very first rin-positive axons that reach the floorplate do not enter the floorplate, but remain ipsilateral. Some of the next immunopositive axons to reach the floorplate do cross the midline, often with an alteration in trajectory, and often extending within the floorplate for some distance before reaching the other side. The failure of the very first rin-positive axons to cross the floorplate, and the changes in trajectory observed when the next axons extend onto the floorplate, suggests that early differentiating neurons cross the midline with some difficulty.
Collapse
Affiliation(s)
- S Chang
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | |
Collapse
|
29
|
Layer PG, Willbold E. Cholinesterases in avian neurogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 151:139-81. [PMID: 8014021 DOI: 10.1016/s0074-7696(08)62632-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- P G Layer
- Technical University of Darmstadt, Institute for Zoology, Germany
| | | |
Collapse
|
30
|
Layer PG, Willbold E. Novel functions of cholinesterases in development, physiology and disease. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1994; 29:1-94. [PMID: 7568907 DOI: 10.1016/s0079-6336(11)80046-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- P G Layer
- Institut für Zoologie, Technische Hochschule Darmstadt, Germany
| | | |
Collapse
|
31
|
Schlaggar BL, De Carlos JA, O'Leary DD. Acetylcholinesterase as an early marker of the differentiation of dorsal thalamus in embryonic rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 75:19-30. [PMID: 8222210 DOI: 10.1016/0165-3806(93)90061-e] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The enzyme acetylcholinesterase (AChE) is transiently expressed in rats by neurons of the principal sensory thalamic nuclei, although these neurons do not use acetylcholine as a neurotransmitter. Reports that AChE expression begins at late embryonic stages led to the proposal that AChE may function in the establishment of connections, but not in earlier events. However, we find AChE reactivity in rat dorsal thalamus 5 days earlier than previously described. Cells that form the ventrobasal complex (VB), the dorsal lateral geniculate nucleus (dLG) and the medial geniculate nucleus, express AChE as they migrate and aggregate into definitive nuclei. AChE-positive cells are occasionally observed in the dorsal thalamic neuroepithelium, but are more common in others regions of the diencephalic neuroepithelium. AChE reactivity delineates VB and dLG earlier than Nissl-stained cytoarchitecture. These findings indicate that AChE is an early marker of neuronal differentiation. Certain properties of AChE, together with its early detection, are consistent with a proposed role in the migration of principal sensory neurons and their organization into discrete nuclei.
Collapse
Affiliation(s)
- B L Schlaggar
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | | | | |
Collapse
|
32
|
Layer PG, Weikert T, Alber R. Cholinesterases regulate neurite growth of chick nerve cells in vitro by means of a non-enzymatic mechanism. Cell Tissue Res 1993; 273:219-26. [PMID: 8103422 DOI: 10.1007/bf00312823] [Citation(s) in RCA: 179] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cholinesterases present homologies with some cell adhesion molecules; however, it is unclear whether and how they perform adhesive functions. Here, we provide the first direct evidence showing that neurite growth in vitro from various neuronal tissues of the chick embryo can be modified by some, but not all, anticholinesterase agents. By quantifying the neuritic G4 antigen in tectal cell cultures, the effect of anticholinesterases on neurite growth is directly compared with their cholinesterase inhibitory action. BW 284C51 and ethopropazine, inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), respectively, strongly decrease neurite growth in a dose-dependent manner. However, echothiophate which inhibits both cholinesterases, does not change neuritic growth. These quantitative data are supplemented by morphological observations in retinal explant cultures grown on striped laminin carpets, viz., defasciculation of neurite bundles by BW 284C51 and Bambuterol occurs, indicating that these drugs disturb adhesive mechanisms. These data strongly suggest that a) cholinesterases can participate in regulating axonal growth, b) both AChE and BChE can perform such a nonsynaptic function, and c) this function is not the result of the enzyme activity per se, since at least one drug was found that inhibits all cholinesterase activities but not neurite growth. Thus, a secondary site on cholinesterase molecules must be responsible for adhesive functions.
Collapse
Affiliation(s)
- P G Layer
- Technische Hochschule Darmstadt, Institut für Zoologie, Darmstadt, Germany
| | | | | |
Collapse
|
33
|
Layer PG, Willbold E. Histogenesis of the avian retina in reaggregation culture: from dissociated cells to laminar neuronal networks. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 146:1-47. [PMID: 8360010 DOI: 10.1016/s0074-7696(08)60378-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- P G Layer
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | | |
Collapse
|
34
|
Layer PG, Weikert T, Willbold E. Chicken retinospheroids as developmental and pharmacological in vitro models: acetylcholinesterase is regulated by its own and by butyrylcholinesterase activity. Cell Tissue Res 1992; 268:409-18. [PMID: 1628298 DOI: 10.1007/bf00319147] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The phylo- and ontogenetically related enzymes butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) are expressed consecutively at the onset of avian neuronal differentiation. In order to investigate their possible co-regulation, we have studied the effect of highly selective inhibitors on each of the cholinesterases with respect to their expression in rotary cultures of the retina (retinospheroids) and stationary cultures of the embryonic chick tectum. Adding the irreversible BChE inhibitor iso-OMPA to reaggregating retinal cells has only slight morphological effects and fully inhibits BChE expression. Unexpectedly, iso-OMPA also suppresses the expression of AChE to 35%-60% of its control activity. Histochemically, this inhibition is most pronounced in fibrous regions. The release of AChE into the media of both types of cultures is inhibited by iso-OMPA by more than 85%. Control experiments show that AChE suppression by the BChE inhibitor is only partially explainable by direct cross-inhibition of iso-OMPA on AChE. In contrast, the treatment of retinospheroids with the reversible AChE inhibitor BW284C51 first accelerates the expression of AChE and then leads to a rapid decay of the spheroids. After injection of BW284C51 into living embryos, we find that AChE is expressed prematurely in cells that normally express BChE. We conclude that the cellular expression of AChE is regulated by the amount of both active BChE and active AChE within neuronal tissues. Thus, direct interaction with classical cholinergic systems is indicated for the seemingly redundant BChE.
Collapse
Affiliation(s)
- P G Layer
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Federal Republic of Germany
| | | | | |
Collapse
|
35
|
Treskatis S, Ebert C, Layer PG. Butyrylcholinesterase from chicken brain is smaller than that from serum: its purification, glycosylation, and membrane association. J Neurochem 1992; 58:2236-47. [PMID: 1573404 DOI: 10.1111/j.1471-4159.1992.tb10969.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Applying a new four-step isolation procedure, we have purified butyrylcholinesterase (BChE) from chicken serum to homogeneity with more than 250 U/mg specific activity. The serum enzyme was used for producing monoclonal antibodies. These BChE-specific also recognize BChE from brain, and thus enabled us to isolate the enzymes from embryonic and adult brain that occur only in minute amounts. More than 50% of the brain BChE is membrane-bound. The catalytic and inhibition properties of brain BChE are similar to those of serum BChE. However on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the serum enzyme is represented by a double-band of 79/82 kDa, whereas the brain enzyme has a size of 74 kDa. Limited digestion of the serum and brain preparations by V8-protease leads to similar peptide patterns. Enzymatic deglycosylation shows that their core proteins consist of 59-kDa subunits and that the different molecular weights are due to different glycosylation patterns. The differently sized glycosylation parts of brain and serum BChE may indicate that they subserve different functions. Furthermore, the membrane-bound brain BChE can be solubilized by Pronase or protease K, but not by phosphatidylinositol-specific phospholipase C.
Collapse
Affiliation(s)
- S Treskatis
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, F.R.G
| | | | | |
Collapse
|
36
|
Gupta JJ, Bigbee JW. Substratum-induced modulation of acetylcholinesterase activity in cultured dorsal root ganglion neurons. J Neurosci Res 1992; 31:454-61. [PMID: 1640497 DOI: 10.1002/jnr.490310307] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acetylcholinesterase (AChE) has been shown to be transiently expressed in the developing nervous system during periods of neuronal migration and axonal outgrowth. We are investigating the possible interaction of substratum with AChE activity in dorsal root ganglion neurons (DRGN) cultured on substrata with varying degrees of permissiveness for neurite outgrowth: (1) extracellular matrix substrata: reconstituted basal lamina Matrigel (MGEL), laminin (LAM) and type I collagen (COL), and (2) organotypic substrata: unfixed, frozen sections of sciatic nerve (SN) and spinal cord (SC). In group 1, histochemical staining for AChE in DRGN was lowest on MGEL where outgrowth was most vigorous, intermediate on LAM, and highest on COL where neurite outgrowth was reduced by 55% compared to Matrigel and highly fasciculated. A similar trend was seen when the cultures were assayed biochemically, 2.84 +/- 0.14 nmoles ACh hydrolyzed/ganglion/hr (MGEL), 4.42 +/- 0.19 (LAM), 5.79 +/- 0.37 (COL). In group 2, SN supported an expansive outgrowth with lower AChE activity than in DRGN grown on SC where outgrowth was minimal. These studies show that the levels of AChE activity can be modulated by substratum, perhaps in proportion to the permissiveness of the substratum to neuritic outgrowth. These results are discussed in relation to possible non-cholinergic roles of AChE.
Collapse
Affiliation(s)
- J J Gupta
- Department of Anatomy, Medical College of Virginia, Richmond 23298-0709
| | | |
Collapse
|
37
|
Grumet M. Structure, expression, and function of Ng-CAM, a member of the immunoglobulin superfamily involved in neuron-neuron and neuron-glia adhesion. J Neurosci Res 1992; 31:1-13. [PMID: 1377280 DOI: 10.1002/jnr.490310102] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The neuron-glia cell adhesion molecule (Ng-CAM) mediates neuron-neuron adhesion by a homophilic mechanism and neuron-astrocyte adhesion by a heterophilic mechanism. The protein is expressed on neurons and Schwann cells but not on astrocytes. It is most prevalent during development on cell bodies of migrating neurons and on axons during formation of nerves. Ng-CAM expression is greatly increased following nerve injury. Anti-Ng-CAM antibodies inhibited migration of granule cells along Bergmann glia in cerebellar explants and fasciculation of neurites in outgrowths from explants of dorsal root ganglia. The combined results indicate that Ng-CAM on neurons binds to Ng-CAM on adjacent neurons and to as yet unidentified ligands on astrocytes. Ng-CAM is synthesized in chicken neurons from a 6 kb mRNA as Mr approximately 200,000 forms which are cleaved to yield two components of Mr 135,000 and 80,000. It is glycosylated and can be phosphorylated. Amino acid sequence analysis indicates that it contains six immunoglobulin domains, five fibronectin type III repeats, a transmembrane domain and a cytoplasmic region. Structural analyses indicate that Ng-CAM is most closely related to the mammalian glycoprotein L1 but significant differences between them strongly suggest that they are not equivalent molecules. The recent identification of another structurally related molecule in the chicken called Nr-CAM underscores the notion that these molecules are members of a subfamily of neural cell adhesion molecules within the immunoglobulin superfamily that have related or complementary functions in the nervous system.
Collapse
Affiliation(s)
- M Grumet
- Department of Developmental and Molecular Biology, Rockefeller University, New York, New York
| |
Collapse
|
38
|
Layer PG, Kaulich S. Cranial nerve growth in birds is preceded by cholinesterase expression during neural crest cell migration and the formation of an HNK-1 scaffold. Cell Tissue Res 1991; 265:393-407. [PMID: 1723928 DOI: 10.1007/bf00340862] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The expression of the neural crest cell (NCC) markers acetylcholinesterase (AChE) and the HNK-1-epitope is compared from the emigration of cephalic NCC until the formation of the cranial nerves V-X in chicken and quail hindbrain. We show that NCC transiently express acetylcholinesterase (AChE) activity during their emigration; NCC migrate into butyrylcholinesterase (BChE)-positive areas of the cranial mesenchyme. Along these migratory tracks that foreshadow the course of later projecting cranial nerves, BChE increases strongly in cells that may represent immature Schwann cells. Both AChE and BChE, but not HNK-1, are expressed in the ectodermal placodes. In NCC, HNK-1 is expressed strongly only when they approach their destination sites. Their intense expression of HNK-1 then leads to the establishment of tunnel-shaped HNK-1 matrices, within which G4-positive cranial neurites begin to extend. We conclude that AChE and HNK-1 expression in cephalic NCC serve different functions, since AChE is related to their migration, and HNK-1 to their aggregation and the formation of an extracellular neurite scaffold.
Collapse
Affiliation(s)
- P G Layer
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Federal Republic of Germany
| | | |
Collapse
|
39
|
Gray GE, Sanes JR. Migratory paths and phenotypic choices of clonally related cells in the avian optic tectum. Neuron 1991; 6:211-25. [PMID: 1704243 DOI: 10.1016/0896-6273(91)90357-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We used retrovirus-mediated gene transfer to study the migration of clonally related cells in the developing chicken optic tectum. Clonal cohorts initially form radial arrays in the ventricular zone (approximately E5), but eventually divide into three separate migratory streams. In the first migration, a minor population of cells migrates tangentially along axon fascicles in medio-laterally directed files (approximately E6-E7); these eventually differentiate into multipolar efferent cells. After E7, the majority of cells in each clone migrate radially along fascicles of radial glia to form the tectal plate, wherein they differentiate into neurons and astrocytes. Around E9, a set of small cells leaves the radial arrays in superficial layers to form a second tangential migration; at least some of these differentiate into astrocytes. Thus, as the tectum develops, cells derived from a single multipotential precursor migrate along three separate pathways, follow separate guidance cues, and adopt distinct phenotypes.
Collapse
Affiliation(s)
- G E Gray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
40
|
Abstract
1. Long before onset of synaptogenesis in the chicken neural tube, the closely related enzymes butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) are expressed in a mutually exclusive manner. Accordingly, neuroblasts on the ventricular side of the neural tube transiently express BChE before they abruptly accumulate AChE while approaching the outer brain surface. 2. By exploiting AChE as a sensitive and early histochemical differentiation marker, we have demonstrated complex polycentric waves of differentiation spreading upon the cranial part of the chicken neural tube but a smooth rostrocaudal wave along the spinal cord. Shortly after expression of AChE, these cells extend long projecting neurites. In particular, segmented spinal motor axons originate from AChE-positive motoneurones; they navigate through a BChE-active zone within the rostral half of the sclerotomes before contacting BChE/AChE-positive myotome cells. At synaptogenetic stages, cholinesterases additionally are detectable in neurofibrillar laminae foreshadowing the establishment of cholinergic synapses. 3. In order to elucidate the functional significance of cholinesterases at early stages, we have investigated specific cholinesterase molecules and their mechanisms of action in vivo and in vitro. A developmental shift from the low molecular weight forms to the tetramers of both enzymes has been determined. In vitro, the addition of a selective BChE inhibitor leads to a reduction of AChE gene expression. Thus, in vivo and in vitro data suggest roles of cholinesterases in the regulation of cell proliferation and neurite growth. 4. Future research has to show whether neurogenetic functioning of cholinesterases can help to understand their reported alterations in neural tube defects, mental retardations, dementias and in some tumours.
Collapse
Affiliation(s)
- P G Layer
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, FRG
| |
Collapse
|
41
|
Abstract
The role of acetylcholinesterase (AChE) in neurotransmission is well known. But long before synapses are formed in vertebrates, AChE is expressed in young postmitotic neuroblasts that are about to extend the first long tracts. AChE histochemistry can thus be used to map primary steps of brain differentiation. Preceding and possibly inducing AChE in avian brains, the closely related butyrylcholinesterase (BChE) spatially foreshadows AChE-positive cell areas and the course of their axons. In particular, before spinal motor axons grow, their corresponding rostral sclerotomes and myotomes express BChE, and both their neuronal source and myotomal target cells express AChE. Since axon growth has been found inhibited by acetylcholine, it is postulated that both cholinesterases can attract neurite growth cones by neutralizing the inhibitor. Thus, the early expression of both cholinesterases that is at least partially independent from classical cholinergic synaptogenesis, sheds new light on the developmental and medical significance of these enzymes.
Collapse
Affiliation(s)
- P G Layer
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, FRG
| |
Collapse
|