1
|
Herrera-Astorga L, Silva S, Berrosteguieta I, Rosillo JC, Fernández AS. Müller glia in short-term dark adaptation of the Austrolebias charrua retina: Cell proliferation and cytoarchitecture. Exp Cell Res 2025; 444:114394. [PMID: 39722301 DOI: 10.1016/j.yexcr.2024.114394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Fish with unique life cycles offer valuable insights into retinal plasticity, revealing mechanisms of environmental adaptation, cell proliferation, and thus, potentially regeneration. The variability of the environmental factors to which Austrolebias annual fishes are exposed has acted as a strong selective pressure shaping traits such as nervous system plasticity. This has contributed to adaptation to their extreme conditions including the decreased luminosity as ponds dry out. In particular, the retina of A. charrua has been shown to respond to 30 days of decreased luminosity by exacerbating cell proliferation Now, we aimed to determine the cellular component of the retina involved in shorter-term responses. To this end, we performed 5-bromo-2'-deoxyuridine (BrdU) experiments, exposing adult fish to a short period (11 days) of constant darkness. Strikingly, in control conditions, neurogenesis in the inner nuclear and ganglion cell layer in the differentiated retina was detected. In constant darkness, we observed an effect on inner nuclear layer cell proliferation and changes in retinal cytoarchitecture of the retina with cell clusters located in the inner plexiform layer. Additionally, increased BLBP (brain lipid-binding protein) presence was detected in darkness, which has been previously associated with immature and reactivated Müller glia. Thus, our results suggest that the A. charrua retina can respond to environmental changes via rapid activation of progenitor cells in the INL, namely the Müller glia This leads us to hypothesize, that cell proliferation and neurogenesis might contribute to the responses to the functional needs of organisms, potentially playing an adaptive role.
Collapse
Affiliation(s)
- Laura Herrera-Astorga
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay; Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| | - Stephanie Silva
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay.
| | - Inés Berrosteguieta
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay.
| | - Juan Carlos Rosillo
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay; Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800, Montevideo, Uruguay.
| | - Anabel Sonia Fernández
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
2
|
Emmerich K, Walker SL, Wang G, White DT, Ceisel A, Wang F, Teng Y, Chunawala Z, Graziano G, Nimmagadda S, Saxena MT, Qian J, Mumm JS. Transcriptomic comparison of two selective retinal cell ablation paradigms in zebrafish reveals shared and cell-specific regenerative responses. PLoS Genet 2023; 19:e1010905. [PMID: 37819938 PMCID: PMC10593236 DOI: 10.1371/journal.pgen.1010905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/23/2023] [Accepted: 08/07/2023] [Indexed: 10/13/2023] Open
Abstract
Retinal Müller glia (MG) can act as stem-like cells to generate new neurons in both zebrafish and mice. In zebrafish, retinal regeneration is innate and robust, resulting in the replacement of lost neurons and restoration of visual function. In mice, exogenous stimulation of MG is required to reveal a dormant and, to date, limited regenerative capacity. Zebrafish studies have been key in revealing factors that promote regenerative responses in the mammalian eye. Increased understanding of how the regenerative potential of MG is regulated in zebrafish may therefore aid efforts to promote retinal repair therapeutically. Developmental signaling pathways are known to coordinate regeneration following widespread retinal cell loss. In contrast, less is known about how regeneration is regulated in the context of retinal degenerative disease, i.e., following the loss of specific retinal cell types. To address this knowledge gap, we compared transcriptomic responses underlying regeneration following targeted loss of rod photoreceptors or bipolar cells. In total, 2,531 differentially expressed genes (DEGs) were identified, with the majority being paradigm specific, including during early MG activation phases, suggesting the nature of the injury/cell loss informs the regenerative process from initiation onward. For example, early modulation of Notch signaling was implicated in the rod but not bipolar cell ablation paradigm and components of JAK/STAT signaling were implicated in both paradigms. To examine candidate gene roles in rod cell regeneration, including several immune-related factors, CRISPR/Cas9 was used to create G0 mutant larvae (i.e., "crispants"). Rod cell regeneration was inhibited in stat3 crispants, while mutating stat5a/b, c7b and txn accelerated rod regeneration kinetics. These data support emerging evidence that discrete responses follow from selective retinal cell loss and that the immune system plays a key role in regulating "fate-biased" regenerative processes.
Collapse
Affiliation(s)
- Kevin Emmerich
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Steven L. Walker
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Guohua Wang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - David T. White
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Anneliese Ceisel
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fang Wang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Zeeshaan Chunawala
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Gianna Graziano
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Saumya Nimmagadda
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Meera T. Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jeff S. Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Frey RA, Barrett LM, Parkin L, Blakeley B, Ålund M, Byford G, Euhus A, Tsarnas C, Boughman JW, Stenkamp DL. Eye flukes (Diplostomum spp) damage retinal tissue and may cause a regenerative response in wild threespine stickleback fish. Exp Eye Res 2022; 225:109298. [PMID: 36288754 DOI: 10.1016/j.exer.2022.109298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 01/29/2023]
Abstract
Fish rely upon vision as a dominant sensory system for foraging, predator avoidance, and mate selection. Damage to the visual system, in particular to the neural retina of the eye, has been demonstrated to result in a regenerative response in captive fish that serve as model organisms (e.g. zebrafish), and this response restores some visual function. The purpose of the present study is to determine whether damage to the visual system that occurs in wild populations of fish also results in a regenerative response, offering a potentially ecologically relevant model of retinal regeneration. Adult threespine stickleback were collected from several water bodies of Iceland, and cryosectioned eye tissues were processed for hematoxylin and eosin staining or for indirect immunofluorescence using cell-specific markers. In many of the samples, eye flukes (metacercariae of Diplostomum spp) were present, frequently between the neural retina and retinal pigmented epithelium (RPE). Damage to the retina and to the RPE was evident in eyes containing flukes, and RPE fragments were observed within fluke bodies, suggesting they had consumed this eye tissue. Expression of a cell proliferation marker was also observed in both retina and RPE, consistent with a proliferative response to the damage. Interestingly, some regions of infected retina displayed "laminar fusions," in which neuronal cell bodies were misplaced within the major synaptic layer of the retina. These laminar fusions are also frequently found in regenerated zebrafish retina following non-parasitic (experimental) forms of retinal damage. The stickleback retina may therefore respond to fluke-mediated damage by engaging in retinal regeneration.
Collapse
Affiliation(s)
- Ruth A Frey
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Lindsey M Barrett
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Lauren Parkin
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Brittany Blakeley
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Murielle Ålund
- Department of Integrative Biology, Michigan State University, Lansing, MI, 48824, USA
| | - Gregory Byford
- Department of Integrative Biology, Michigan State University, Lansing, MI, 48824, USA
| | - Abigail Euhus
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Christine Tsarnas
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Janette W Boughman
- Department of Integrative Biology, Michigan State University, Lansing, MI, 48824, USA
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
4
|
Sharma P, Ramachandran R. Retina regeneration: lessons from vertebrates. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac012. [PMID: 38596712 PMCID: PMC10913848 DOI: 10.1093/oons/kvac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 04/11/2024]
Abstract
Unlike mammals, vertebrates such as fishes and frogs exhibit remarkable tissue regeneration including the central nervous system. Retina being part of the central nervous system has attracted the interest of several research groups to explore its regenerative ability in different vertebrate models including mice. Fishes and frogs completely restore the size, shape and tissue structure of an injured retina. Several studies have unraveled molecular mechanisms underlying retina regeneration. In teleosts, soon after injury, the Müller glial cells of the retina reprogram to form a proliferating population of Müller glia-derived progenitor cells capable of differentiating into various neural cell types and Müller glia. In amphibians, the transdifferentiation of retinal pigment epithelium and differentiation of ciliary marginal zone cells contribute to retina regeneration. In chicks and mice, supplementation with external growth factors or genetic modifications cause a partial regenerative response in the damaged retina. The initiation of retina regeneration is achieved through sequential orchestration of gene expression through controlled modulations in the genetic and epigenetic landscape of the progenitor cells. Several developmental biology pathways are turned on during the Müller glia reprogramming, retinal pigment epithelium transdifferentiation and ciliary marginal zone differentiation. Further, several tumorigenic pathways and gene expression events also contribute to the complete regeneration cascade of events. In this review, we address the various retinal injury paradigms and subsequent gene expression events governed in different vertebrate species. Further, we compared how vertebrates such as teleost fishes and amphibians can achieve excellent regenerative responses in the retina compared with their mammalian counterparts.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| | - Rajesh Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| |
Collapse
|
5
|
Incomplete Recovery of Zebrafish Retina Following Cryoinjury. Cells 2022; 11:cells11081373. [PMID: 35456052 PMCID: PMC9030934 DOI: 10.3390/cells11081373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Zebrafish show an extraordinary potential for regeneration in several organs from fins to central nervous system. Most impressively, the outcome of an injury results in a near perfect regeneration and a full functional recovery. Indeed, among the various injury paradigms previously tested in the field of zebrafish retina regeneration, a perfect layered structure is observed after one month of recovery in most of the reported cases. In this study, we applied cryoinjury to the zebrafish eye. We show that retina exposed to this treatment for one second undergoes an acute damage affecting all retinal cell types, followed by a phase of limited tissue remodeling and regrowth. Surprisingly, zebrafish developed a persistent retinal dysplasia observable through 300 days post-injury. There is no indication of fibrosis during the regeneration period, contrary to the regeneration process after cryoinjury to the zebrafish cardiac ventricle. RNA sequencing analysis of injured retinas at different time points has uncovered enriched processes and a number of potential candidate genes. By means of this simple, time and cost-effective technique, we propose a zebrafish injury model that displays a unique inability to completely recover following focal retinal damage; an outcome that is unreported to our knowledge. Furthermore, RNA sequencing proved to be useful in identifying pathways, which may play a crucial role not only in the regeneration of the retina, but in the first initial step of regeneration, degeneration. We propose that this model may prove useful in comparative and translational studies to examine critical pathways for successful regeneration.
Collapse
|
6
|
Hammer J, Röppenack P, Yousuf S, Schnabel C, Weber A, Zöller D, Koch E, Hans S, Brand M. Visual Function is Gradually Restored During Retina Regeneration in Adult Zebrafish. Front Cell Dev Biol 2022; 9:831322. [PMID: 35178408 PMCID: PMC8844564 DOI: 10.3389/fcell.2021.831322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
In comparison to mammals, zebrafish are able to regenerate many organs and tissues, including the central nervous system (CNS). Within the CNS-derived neural retina, light lesions result in a loss of photoreceptors and the subsequent activation of Müller glia, the retinal stem cells. Müller glia-derived progenitors differentiate and eventually restore the anatomical tissue architecture within 4 weeks. However, little is known about how light lesions impair vision functionally, as well as how and to what extent visual function is restored during the course of regeneration, in particular in adult animals. Here, we applied quantitative behavioral assays to assess restoration of visual function during homeostasis and regeneration in adult zebrafish. We developed a novel vision-dependent social preference test, and show that vision is massively impaired early after lesion, but is restored to pre-lesion levels within 7 days after lesion. Furthermore, we employed a quantitative optokinetic response assay with different degrees of difficulty, similar to vision tests in humans. We found that vision for easy conditions with high contrast and low level of detail, as well as color vision, was restored around 7–10 days post lesion. Vision under more demanding conditions, with low contrast and high level of detail, was regained only later from 14 days post lesion onwards. Taken together, we conclude that vision based on contrast sensitivity, spatial resolution and the perception of colors is restored after light lesion in adult zebrafish in a gradual manner.
Collapse
Affiliation(s)
- Juliane Hammer
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Paul Röppenack
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Sarah Yousuf
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Christian Schnabel
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Anke Weber
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Daniela Zöller
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Stefan Hans
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Michael Brand
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| |
Collapse
|
7
|
Too LK, Simunovic MP. Retinal Stem/Progenitor Cells Derived From Adult Müller Glia for the Treatment of Retinal Degeneration. Front Cell Dev Biol 2021; 9:749131. [PMID: 34660607 PMCID: PMC8511496 DOI: 10.3389/fcell.2021.749131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/06/2021] [Indexed: 01/09/2023] Open
Abstract
Over the past two decades, progress in our understanding of glial function has been revolutionary. Within the retina, a subset of glial cells termed the “Müller glia (MG),” have been demonstrated to play key roles in retinal homeostasis, structure and metabolism. Additionally, MG have also been shown to possess the regenerative capacity that varies across species. In teleost fish, MG respond to injury by reprogramming into stem-like cells capable of regenerating lost tissue. The expression of stem/progenitor cell markers has been demonstrated broadly in mammalian MG, including human MG, but their in vivo regenerative capacity appears evolutionarily limited. Advances in stem cell therapy have progressively elucidated critical mechanisms underlying innate MG reprogramming in teleost fish, which have shown promising results when applied to rodents. Furthermore, when cultured ex vivo, MG from mammals can differentiate into several retina cell types. In this review, we will explore the reparative and regenerative potential of MG in cellular therapy approaches, and outline our current understanding of embryonic retinal development, the stem-cell potential of MG in adult vertebrate retina (including human), and microenvironmental cues that guide MG reprogramming.
Collapse
Affiliation(s)
- Lay Khoon Too
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Matthew P Simunovic
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Sydney Eye Hospital, Sydney, NSW, Australia
| |
Collapse
|
8
|
Stenkamp DL, Viall DD, Mitchell DM. Evidence of regional specializations in regenerated zebrafish retina. Exp Eye Res 2021; 212:108789. [PMID: 34653519 DOI: 10.1016/j.exer.2021.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 10/09/2021] [Indexed: 10/20/2022]
Abstract
Adult zebrafish are capable of functional retinal regeneration following damage. A goal of vision science is to stimulate or permit a similar process in mammals to treat human retinal disease and trauma. Ideally such a process would reconstitute the stereotyped, two-dimensional topographic patterns and regional specializations of specific cell types, functionally important for representation of the visual field. An example in humans is the cone-rich fovea, essential for high-acuity color vision. Stereotyped, global topographic patterns of specific retinal cell types are also found in zebrafish, particularly for cone types expressing the tandemly-replicated lws (long wavelength-sensitive) and rh2 (middle wavelength-sensitive) opsins. Here we examine whether regionally specialized patterns of LWS1 and LWS2 cones are restored in regenerated retinas in zebrafish. Adult transgenic zebrafish carrying fluorescent reporters for lws1 and lws2 were subjected to retinal lesions that destroy all neurons but spare glia, via intraocular injection of the neurotoxin ouabain. Regenerated and contralateral control retinas were mounted whole or sectioned, and imaged. Overall spatial patterns of lws1 vs. lws2 opsin-expressing cones in regenerated retinas were remarkably similar to those of control retinas, with LWS1 cones in ventral/peripheral regions, and LWS2 cones in dorsal/central regions. However, LWS2 cones occupied a smaller fraction of regenerated retina, and several cones co-expressed the lws1 and lws2 reporters in regenerated retinas. Local patterns of regenerated LWS1 cones showed modest reductions in regularity. These results suggest that some of the regional patterning information, or the source of such signals, for LWS cone subtypes may be retained by undamaged cell types (Müller glia or RPE) and re-deployed during regeneration.
Collapse
Affiliation(s)
- Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, 82844, USA.
| | - Derek D Viall
- Department of Biological Sciences, University of Idaho, Moscow, ID, 82844, USA
| | - Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, 82844, USA
| |
Collapse
|
9
|
DeOliveira-Mello L, Lara JM, Arevalo R, Velasco A, Mack AF. Sox2 expression in the visual system of two teleost species. Brain Res 2019; 1722:146350. [DOI: 10.1016/j.brainres.2019.146350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/20/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
|
10
|
Devoldere J, Peynshaert K, De Smedt SC, Remaut K. Müller cells as a target for retinal therapy. Drug Discov Today 2019; 24:1483-1498. [PMID: 30731239 DOI: 10.1016/j.drudis.2019.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/20/2018] [Accepted: 01/30/2019] [Indexed: 12/28/2022]
Abstract
Müller cells are specialized glial cells that span the entire retina from the vitreous cavity to the subretinal space. Their functional diversity and unique radial morphology render them particularly interesting targets for new therapeutic approaches. In this review, we reflect on various possibilities for selective Müller cell targeting and describe how some of their cellular mechanisms can be used for retinal neuroprotection. Intriguingly, cross-species investigation of their properties has revealed that Müller cells also have an essential role in retinal regeneration. Although many questions regarding this subject remain, it is clear that Müller cells have unique characteristics that make them suitable targets for the prevention and treatment of numerous retinal diseases.
Collapse
Affiliation(s)
- Joke Devoldere
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Karen Peynshaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
11
|
Ventura T, Stewart MJ, Chandler JC, Rotgans B, Elizur A, Hewitt AW. Molecular aspects of eye development and regeneration in the Australian redclaw crayfish, Cherax quadricarinatus. AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2018.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Garcia-Pradas L, Gleiser C, Wizenmann A, Wolburg H, Mack AF. Glial Cells in the Fish Retinal Nerve Fiber Layer Form Tight Junctions, Separating and Surrounding Axons. Front Mol Neurosci 2018; 11:367. [PMID: 30364233 PMCID: PMC6192225 DOI: 10.3389/fnmol.2018.00367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/18/2018] [Indexed: 02/01/2023] Open
Abstract
In the retina of teleost fish, cell addition continues throughout life involving proliferation and axonal growth. To study how this is achieved in a fully functioning retina, we investigated the nerve fiber layer (NFL) of the cichlid fish Astatotilapia burtoni for components that might regulate the extracellular environment. We hypothesized that growing axons are surrounded by different cell structures than signal conducting axons. Using immunohistochemistry and freeze fracture electron microscopy we found that the endfeet of Müller cells (MCs) expressed aquaporin-4 but not in high densities as in mammals. The presence of this water channel indicates the involvement of MCs in water homeostasis. Remarkably, we discovered conspicuous tight junctions in the retinal NFL. These tight junctions formed branching strands between myelin-like wrappings of ganglion cell axons that differed morphologically from any known myelin, and also an elaborate meshwork on large membrane faces between axons. We speculated that these tight junctions have additional functions than solely facilitating nerve conductance. Immunostainings against the adaptor protein ZO-1 labeled the NFL as did antibodies against the mammalian claudin-1, 3, and 19. Performing PCR analysis, we showed expression of claudin-1, 3, 5a, 5b, 9, 11, and 19 in the fish retina, claudins that typically occur at brain barriers or myelin. We could show by immunostains for doublecortin, a marker for differentiating neurons, that new axons are not surrounded by the myelin-like wrappings but only by the endfeet of MCs. We hypothesize that the tight junctions in the NFL of fish might contribute to the separation of an extracellular space around axons facilitating conductance, from a growth-promoting environment. For a functional test we applied Evans Blue dye to eye cup preparations which showed a retention of the dye in the NFL. This indicates that these remarkable tight junctions can indeed act as a diffusion barrier.
Collapse
Affiliation(s)
- Lidia Garcia-Pradas
- Institut für klinische Anatomie und Zellanalytik, Universität Tübingen, Tübingen, Germany
| | - Corinna Gleiser
- Institut für klinische Anatomie und Zellanalytik, Universität Tübingen, Tübingen, Germany
| | - Andrea Wizenmann
- Institut für klinische Anatomie und Zellanalytik, Universität Tübingen, Tübingen, Germany
| | - Hartwig Wolburg
- Institut für Pathologie und Neuropathologie, Universität Tübingen, Tübingen, Germany
| | - Andreas F Mack
- Institut für klinische Anatomie und Zellanalytik, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Lahne M, Piekos SM, O'Neill J, Ackerman KM, Hyde DR. Photo-regulation of rod precursor cell proliferation. Exp Eye Res 2018; 178:148-159. [PMID: 30267656 DOI: 10.1016/j.exer.2018.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 11/29/2022]
Abstract
Teleosts are unique in their ability to undergo persistent neurogenesis and to regenerate damaged and lost retinal neurons in adults. This contrasts with the human retina, which is incapable of replacing lost retinal neurons causing vision loss/blindness in the affected individuals. Two cell populations within the adult teleost retina generate new retinal neurons throughout life. Stem cells within the ciliary marginal zone give rise to all retinal cell types except for rod photoreceptors, which are produced by the resident Müller glia that are located within the inner nuclear layer of the entire retina. Understanding the mechanisms that regulate the generation of photoreceptors in the adult teleost retina may ultimately aid developing strategies to overcome vision loss in diseases such as retinitis pigmentosa. Here, we investigated whether photic deprivation alters the proliferative capacity of rod precursor cells, which are generated from Müller glia. In dark-adapted retinas, rod precursor cell proliferation increased, while the number of proliferating Müller glia and their derived olig2:EGFP-positive neuronal progenitor cells was not significantly changed. Cell death of rod photoreceptors was excluded as the inducer of rod precursor cell proliferation, as the number of TUNEL-positive cells and l-plastin-positive microglia in both the outer (ONL) and inner nuclear layer (INL) remained at a similar level throughout the dark-adaptation timecourse. Rod precursor cell proliferation in response to dark-adaptation was characterized by an increased number of EdU-positive cells, i.e. cells that were undergoing DNA replication. These proliferating rod precursor cells in dark-adapted zebrafish differentiated into rod photoreceptors at a comparable percentage and in a similar time frame as those maintained under standard light conditions suggesting that the cell cycle did not stall in dark-adapted retinas. Inhibition of IGF1-receptor signaling reduced the dark-adaptation-mediated proliferation response; however, caloric restriction which has been suggested to be integrated by the IGF1/growth hormone signaling axis did not influence rod precursor cell proliferation in dark-adapted retinas, as similar numbers were observed in starved and normal fed zebrafish. In summary, photic deprivation induces cell cycle entry of rod precursor cells via IGF1-receptor signaling independent of Müller glia proliferation.
Collapse
Affiliation(s)
- Manuela Lahne
- Department of Biological Sciences, The Center for Stem Cells and Regenerative Medicine and The Center for Zebrafish Research, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Samantha M Piekos
- Department of Biological Sciences, The Center for Stem Cells and Regenerative Medicine and The Center for Zebrafish Research, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - John O'Neill
- Department of Biological Sciences, The Center for Stem Cells and Regenerative Medicine and The Center for Zebrafish Research, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kristin M Ackerman
- Department of Biological Sciences, The Center for Stem Cells and Regenerative Medicine and The Center for Zebrafish Research, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - David R Hyde
- Department of Biological Sciences, The Center for Stem Cells and Regenerative Medicine and The Center for Zebrafish Research, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
14
|
Angueyra JM, Kindt KS. Leveraging Zebrafish to Study Retinal Degenerations. Front Cell Dev Biol 2018; 6:110. [PMID: 30283779 PMCID: PMC6156122 DOI: 10.3389/fcell.2018.00110] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
Retinal degenerations are a heterogeneous group of diseases characterized by death of photoreceptors and progressive loss of vision. Retinal degenerations are a major cause of blindness in developed countries (Bourne et al., 2017; De Bode, 2017) and currently have no cure. In this review, we will briefly review the latest advances in therapies for retinal degenerations, highlighting the current barriers to study and develop therapies that promote photoreceptor regeneration in mammals. In light of these barriers, we present zebrafish as a powerful model to study photoreceptor regeneration and their integration into retinal circuits after regeneration. We outline why zebrafish is well suited for these analyses and summarize the powerful tools available in zebrafish that could be used to further uncover the mechanisms underlying photoreceptor regeneration and rewiring. In particular, we highlight that it is critical to understand how rewiring occurs after regeneration and how it differs from development. Insights derived from photoreceptor regeneration and rewiring in zebrafish may provide leverage to develop therapeutic targets to treat retinal degenerations.
Collapse
Affiliation(s)
- Juan M. Angueyra
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Katie S. Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Mitchell DM, Lovel AG, Stenkamp DL. Dynamic changes in microglial and macrophage characteristics during degeneration and regeneration of the zebrafish retina. J Neuroinflammation 2018; 15:163. [PMID: 29804544 PMCID: PMC5971432 DOI: 10.1186/s12974-018-1185-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/30/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In contrast to mammals, zebrafish have the capacity to regenerate retinal neurons following a variety of injuries. Two types of glial cells, Müller glia (MG) and microglia, are known to exist in the zebrafish retina. Recent work has shown that MG give rise to regenerated retinal neurons, but the role of resident microglia, and the innate immune system more generally, during retinal regeneration is not well defined. Specifically, characteristics of the immune system and microglia following substantial neuron death and a successful regenerative response have not been documented. METHODS The neurotoxin ouabain was used to induce a substantial retinal lesion of the inner retina in zebrafish. This lesion results in a regenerative response that largely restores retinal architecture, neuronal morphologies, and connectivities, as well as recovery of visual function. We analyzed cryosections from damaged eyes following immunofluorescence and H&E staining to characterize the initial immune response to the lesion. Whole retinas were analyzed by confocal microscopy to characterize microglia morphology and distribution. Statistical analysis was performed using a two-tailed Student's t test comparing damaged to control samples. RESULTS We find evidence of early leukocyte infiltration to the retina in response to ouabain injection followed by a period of immune cell proliferation that likely includes both resident microglia and substantial numbers of proliferating, extra-retinally derived macrophages, leading to rapid accumulation upon retinal damage. Following immune cell proliferation, Müller glia re-enter the cell cycle. In retinas that have regenerated the layers lost to the initial injury (histologically regenerated), microglia retain morphological features of activation, suggesting ongoing functions that are likely essential to restoration of retinal function. CONCLUSIONS Collectively, these results indicate that microglia and the immune system are dynamic during a successful regenerative response in the retina. This study provides an important framework to probe inflammation in the initiation of, and functional roles of microglia during retinal regeneration.
Collapse
Affiliation(s)
- Diana M. Mitchell
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051 USA
| | - Anna G. Lovel
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051 USA
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051 USA
| |
Collapse
|
16
|
Restoration of Dendritic Complexity, Functional Connectivity, and Diversity of Regenerated Retinal Bipolar Neurons in Adult Zebrafish. J Neurosci 2017; 38:120-136. [PMID: 29133431 DOI: 10.1523/jneurosci.3444-16.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/29/2022] Open
Abstract
Adult zebrafish (Danio rerio) are capable of regenerating retinal neurons that have been lost due to mechanical, chemical, or light damage. In the case of chemical damage, there is evidence that visually mediated behaviors are restored after regeneration, consistent with recovery of retinal function. However, the extent to which regenerated retinal neurons attain appropriate morphologies and circuitry after such tissue-disrupting lesions has not been investigated. Adult zebrafish of both sexes were subjected to intravitreal injections of ouabain, which destroys the inner retina. After retinal regeneration, cell-selective markers, confocal microscopy, morphometrics, and electrophysiology were used to examine dendritic and axonal morphologies, connectivities, and the diversities of each, as well as retinal function, for a subpopulation of regenerated bipolar neurons (BPs). Although regenerated BPs were reduced in numbers, BP dendritic spreads, dendritic tree morphologies, and cone-bipolar connectivity patterns were restored in regenerated retinas, suggesting that regenerated BPs recover accurate input pathways from surviving cone photoreceptors. Morphological measurements of bipolar axons found that numbers and types of stratifications were also restored; however, the thickness of the inner plexiform layer and one measure of axon branching were slightly reduced after regeneration, suggesting some minor differences in the recovery of output pathways to downstream partners. Furthermore, ERG traces from regenerated retinas displayed waveforms matching those of controls, but with reduced b-wave amplitudes. These results support the hypothesis that regenerated neurons of the adult zebrafish retina are capable of restoring complex morphologies and circuitry, suggesting that complex visual functions may also be restored.SIGNIFICANCE STATEMENT Adult zebrafish generate new retinal neurons after a tissue-disrupting lesion. Existing research does not address whether regenerated neurons of adults successfully reconnect with surrounding neurons and establish complex morphologies and functions. We report that, after a chemical lesion that ablates inner retinal neurons, regenerated retinal bipolar neurons (BPs), although reduced in numbers, reconnected to undamaged cone photoreceptors with correct wiring patterns. Regenerated BPs had complex morphologies similar to those within undamaged retina and a physiological measure of photoreceptor-BP connectivity, the ERG, was restored to a normal waveform. This new understanding of neural connectivity, morphology, and physiology suggests that complex functional processing is possible within regenerated adult retina and offers a system for the future study of synaptogenesis during adult retinal regeneration.
Collapse
|
17
|
Ail D, Perron M. Retinal Degeneration and Regeneration-Lessons From Fishes and Amphibians. CURRENT PATHOBIOLOGY REPORTS 2017; 5:67-78. [PMID: 28255526 PMCID: PMC5309292 DOI: 10.1007/s40139-017-0127-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Retinal degenerative diseases have immense socio-economic impact. Studying animal models that recapitulate human eye pathologies aids in understanding the pathogenesis of diseases and allows for the discovery of novel therapeutic strategies. Some non-mammalian species are known to have remarkable regenerative abilities and may provide the basis to develop strategies to stimulate self-repair in patients suffering from these retinal diseases. RECENT FINDINGS Non-mammalian organisms, such as zebrafish and Xenopus, have become attractive model systems to study retinal diseases. Additionally, many fish and amphibian models of retinal cell ablation and cell lineage analysis have been developed to study regeneration. These investigations highlighted several cellular sources for retinal repair in different fish and amphibian species. Moreover, major differences in repair mechanisms have been reported in these animal models. SUMMARY This review aims to emphasize first on the importance of zebrafish and Xenopus models in studying the pathogenesis of retinal diseases and, second, on the different modes of regeneration processes in these model organisms.
Collapse
Affiliation(s)
- Divya Ail
- Paris-Saclay Institute of Neuroscience, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
- Centre d’Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| |
Collapse
|
18
|
Regulation of Stem Cell Properties of Müller Glia by JAK/STAT and MAPK Signaling in the Mammalian Retina. Stem Cells Int 2017; 2017:1610691. [PMID: 28194183 PMCID: PMC5282447 DOI: 10.1155/2017/1610691] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/21/2016] [Indexed: 12/15/2022] Open
Abstract
In humans and other mammals, the neural retina does not spontaneously regenerate, and damage to the retina that kills retinal neurons results in permanent blindness. In contrast to embryonic stem cells, induced pluripotent stem cells, and embryonic/fetal retinal stem cells, Müller glia offer an intrinsic cellular source for regenerative strategies in the retina. Müller glia are radial glial cells within the retina that maintain retinal homeostasis, buffer ion flux associated with phototransduction, and form the blood/retinal barrier within the retina proper. In injured or degenerating retinas, Müller glia contribute to gliotic responses and scar formation but also show regenerative capabilities that vary across species. In the mammalian retina, regenerative responses achieved to date remain insufficient for potential clinical applications. Activation of JAK/STAT and MAPK signaling by CNTF, EGF, and FGFs can promote proliferation and modulate the glial/neurogenic switch. However, to achieve clinical relevance, additional intrinsic and extrinsic factors that restrict or promote regenerative responses of Müller glia in the mammalian retina must be identified. This review focuses on Müller glia and Müller glial-derived stem cells in the retina and phylogenetic differences among model vertebrate species and highlights some of the current progress towards understanding the cellular mechanisms regulating their regenerative response.
Collapse
|
19
|
Abstract
Sensing and responding to our environment requires functional neurons that act in concert. Neuronal cell loss resulting from degenerative diseases cannot be replaced in humans, causing a functional impairment to integrate and/or respond to sensory cues. In contrast, zebrafish (Danio rerio) possess an endogenous capacity to regenerate lost neurons. Here, we will focus on the processes that lead to neuronal regeneration in the zebrafish retina. Dying retinal neurons release a damage signal, tumor necrosis factor α, which induces the resident radial glia, the Müller glia, to reprogram and re-enter the cell cycle. The Müller glia divide asymmetrically to produce a Müller glia that exits the cell cycle and a neuronal progenitor cell. The arising neuronal progenitor cells undergo several rounds of cell divisions before they migrate to the site of damage to differentiate into the neuronal cell types that were lost. Molecular and immunohistochemical studies have predominantly provided insight into the mechanisms that regulate retinal regeneration. However, many processes during retinal regeneration are dynamic and require live-cell imaging to fully discern the underlying mechanisms. Recently, a multiphoton imaging approach of adult zebrafish retinal cultures was developed. We will discuss the use of live-cell imaging, the currently available tools and those that need to be developed to advance our knowledge on major open questions in the field of retinal regeneration.
Collapse
Affiliation(s)
- Manuela Lahne
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - David R Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
20
|
Abstract
Traditional views maintain that the generation of neurons within the mammalian brain is restricted to a discrete developmental period. This perspective has undergone significant revision during the later half of this century, culminating recently with the demonstration of neurogenesis in the brains of adult primates, including humans. Although it is becoming increasingly clear that adult neurogenesis represents an important mode of structural modification for the adult brain, its functional significance has not been determined. The production and survival of new neurons in the adult mammalian brain is regulated by both experiential and neuroendocrine factors, suggesting that adult-generated neurons may serve as a substrate by which these cues influence normal brain function. This article reviews significant advances that have led to the discovery of neurogenesis in adult mammals and examines comparative data suggesting that adult neurogenesis may play a role in certain forms of learning. Neural activity associated with behavioral experience is known to result in changes in brain structure and connectivity, for example, by modifying synapse number, axonal sprouting, dendrite length and branching, or synaptic strength. In the case of adult neurogenesis, experience may shape neural networks by directing the production and connectivity of whole cell populations.
Collapse
Affiliation(s)
| | - Patima Tanapat
- Department of Psychology, Princeton University, Princeton, New Jersey
| | - Elizabeth Gould
- Department of Psychology, Princeton University, Princeton, New Jersey
| |
Collapse
|
21
|
Easter SS, Hitchcock PF. Stem Cells and Regeneration in the Retina: What Fish Have Taught Us about Neurogenesis. Neuroscientist 2016. [DOI: 10.1177/107385840000600608] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many species of fish grow for much of their lifetimes and add neurons to the CNS continuously. The retina has proved to be a convenient model in which to study neurogenesis, both the normal variety associated with growth and regeneration in response to a lesion. Initial neurogenesis in the embryonic eye cup begins in a tiny cluster of neuroepithelial cells that steadily enlarges to produce a central disk of neurons. Subsequent growth occurs mainly at the edge of this disk, in the circumferential germinal zone, where the retina adds annuli of new neurons of all varieties except the rod photoreceptors. A few proliferative cells persist to adulthood in central retina and normally produce only rods, but when the retina is damaged, these cells contribute to the production of new neurons of diverse classes. Recent work has revealed two additional populations of dividing cells in central retina; they normally proliferate so slowly that special methods are required to reveal them. We suggest that the three proliferative cell types are related through lineage in a model similar to those described for hematopoiesis. The persistent neurogenesis of fish retina seems to resemble qualitatively the neurogenesis of the mammalian brain, but quantitatively the neurogenesis is much more vigorous in the fish.
Collapse
Affiliation(s)
| | - Peter F. Hitchcock
- Department of Ophthalmology and Visual Sciences and Department of Cell and Developmental Biology, Kellogg Eye Center, University of Michigan, Ann Arbor
| |
Collapse
|
22
|
Gao Y, Yang Z, Li X. Regeneration strategies after the adult mammalian central nervous system injury-biomaterials. Regen Biomater 2016; 3:115-22. [PMID: 27047678 PMCID: PMC4817328 DOI: 10.1093/rb/rbw004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 01/12/2023] Open
Abstract
The central nervous system (CNS) has very restricted intrinsic regeneration ability under the injury or disease condition. Innovative repair strategies, therefore, are urgently needed to facilitate tissue regeneration and functional recovery. The published tissue repair/regeneration strategies, such as cell and/or drug delivery, has been demonstrated to have some therapeutic effects on experimental animal models, but can hardly find clinical applications due to such methods as the extremely low survival rate of transplanted cells, difficulty in integrating with the host or restriction of blood–brain barriers to administration patterns. Using biomaterials can not only increase the survival rate of grafts and their integration with the host in the injured CNS area, but also sustainably deliver bioproducts to the local injured area, thus improving the microenvironment in that area. This review mainly introduces the advances of various strategies concerning facilitating CNS regeneration.
Collapse
Affiliation(s)
- Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China,; Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China,; Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
23
|
Hamon A, Roger JE, Yang XJ, Perron M. Müller glial cell-dependent regeneration of the neural retina: An overview across vertebrate model systems. Dev Dyn 2016; 245:727-38. [PMID: 26661417 PMCID: PMC4900950 DOI: 10.1002/dvdy.24375] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/12/2015] [Accepted: 11/22/2015] [Indexed: 12/21/2022] Open
Abstract
Retinal dystrophies are a major cause of blindness for which there are currently no curative treatments. Transplantation of stem cell‐derived neuronal progenitors to replace lost cells has been widely investigated as a therapeutic option. Another promising strategy would be to trigger self‐repair mechanisms in patients, through the recruitment of endogenous cells with stemness properties. Accumulating evidence in the past 15 year0s has revealed that several retinal cell types possess neurogenic potential, thus opening new avenues for regenerative medicine. Among them, Müller glial cells have been shown to be able to undergo a reprogramming process to re‐acquire a stem/progenitor state, allowing them to proliferate and generate new neurons for repair following retinal damages. Although Müller cell–dependent spontaneous regeneration is remarkable in some species such as the fish, it is extremely limited and ineffective in mammals. Understanding the cellular events and molecular mechanisms underlying Müller cell activities in species endowed with regenerative capacities could provide knowledge to unlock the restricted potential of their mammalian counterparts. In this context, the present review provides an overview of Müller cell responses to injury across vertebrate model systems and summarizes recent advances in this rapidly evolving field. Developmental Dynamics 245:727–738, 2016. © 2015 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. The present review provides an overview of Müller cell responses to injury across vertebrate model systems and summarizes recent advances in this rapidly evolving field.
Collapse
Affiliation(s)
- Annaïg Hamon
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Xian-Jie Yang
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France.,Stein Eye Institute, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
24
|
Gramage E, Li J, Hitchcock P. The expression and function of midkine in the vertebrate retina. Br J Pharmacol 2014; 171:913-23. [PMID: 24460673 PMCID: PMC3925030 DOI: 10.1111/bph.12495] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/20/2022] Open
Abstract
The functional role of midkine during development, following injury and in disease has been studied in a variety of tissues. In this review, we summarize what is known about midkine in the vertebrate retina, focusing largely on recent studies utilizing the zebrafish (Danio rerio) as an animal model. Zebrafish are a valuable animal model for studying the retina, due to its very rapid development and amazing ability for functional neuronal regeneration following neuronal cell death. The zebrafish genome harbours two midkine paralogues, midkine-a (mdka) and midkine-b (mdkb), which, during development, are expressed in nested patterns among different cell types. mdka is expressed in the retinal progenitors and mdkb is expressed in newly post-mitotic cells. Interestingly, studies of loss-and gain-of-function in zebrafish larvae indicate that midkine-a regulates cell cycle kinetics. Moreover, both mdka and mdkb are expressed in different cell types in the normal adult zebrafish retina, but after light-induced death of photoreceptors, both are up-regulated and expressed in proliferating Müller glia and photoreceptor progenitors, suggesting an important and (perhaps) coincident role for these cytokines during stem cell-based neuronal regeneration. Based on its known role in other tissues and the expression and function of the midkine paralogues in the zebrafish retina, we propose that midkine has an important functional role both during development and regeneration in the retina. Further studies are needed to understand this role and the mechanisms that underlie it.
Collapse
Affiliation(s)
- E Gramage
- Department of Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
25
|
Abstract
Müller glia are the major glial component of the retina. They are one of the last retinal cell types to be born during development, and they function to maintain retinal homeostasis and integrity. In mammals, Müller glia respond to retinal injury in various ways that can be either protective or detrimental to retinal function. Although these cells can be coaxed to proliferate and generate neurons under special circumstances, these responses are meagre and insufficient for repairing a damaged retina. By contrast, in teleost fish (such as zebrafish), the response of Müller glia to retinal injury involves a reprogramming event that imparts retinal stem cell characteristics and enables them to produce a proliferating population of progenitors that can regenerate all major retinal cell types and restore vision. Recent studies have revealed several important mechanisms underlying Müller glial cell reprogramming and retina regeneration in fish that may lead to new strategies for stimulating retina regeneration in mammals.
Collapse
Affiliation(s)
- Daniel Goldman
- Molecular and Behavioral Neuroscience Institute and Department of
Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
26
|
Sherpa T, Lankford T, McGinn TE, Hunter SS, Frey RA, Sun C, Ryan M, Robison BD, Stenkamp DL. Retinal regeneration is facilitated by the presence of surviving neurons. Dev Neurobiol 2014; 74:851-76. [PMID: 24488694 DOI: 10.1002/dneu.22167] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 12/22/2022]
Abstract
Teleost fish regenerate their retinas after damage, in contrast to mammals. In zebrafish subjected to an extensive ouabain-induced lesion that destroys all neurons and spares Müller glia, functional recovery and restoration of normal optic nerve head (ONH) diameter take place at 100 days postinjury. Subsequently, regenerated retinas overproduce cells in the retinal ganglion cell (RGC) layer, and the ONH becomes enlarged. Here, we test the hypothesis that a selective injury, which spares photoreceptors and Müller glia, results in faster functional recovery and fewer long-term histological abnormalities. Following this selective retinal damage, recovery of visual function required 60 days, consistent with this hypothesis. In contrast to extensively damaged retinas, selectively damaged retinas showed fewer histological errors and did not overproduce neurons. Extensively damaged retinas had RGC axons that were delayed in pathfinding to the ONH, and showed misrouted axons within the ONH, suggesting that delayed functional recovery following an extensive lesion is related to defects in RGC axons exiting the eye and/or reaching their central targets. The atoh7, fgf8a, Sonic hedgehog (shha), and netrin-1 genes were differentially expressed, and the distribution of hedgehog protein was disrupted after extensive damage as compared with selective damage. Confirming a role for Shh signaling in supporting rapid regeneration, shha(t4) +/- zebrafish showed delayed functional recovery after selective damage. We suggest that surviving retinal neurons provide structural/molecular information to regenerating neurons, and that this patterning mechanism regulates factors such as Shh. These factors in turn control neuronal number, retinal lamination, and RGC axon pathfinding during retinal regeneration.
Collapse
Affiliation(s)
- Tshering Sherpa
- Department of Biological Sciences, University of Idaho, Moscow, Idaho; Department of Biological Sciences, Graduate Program in Neuroscience, University of Idaho, Moscow, Idaho
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lenkowski JR, Raymond PA. Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Prog Retin Eye Res 2014; 40:94-123. [PMID: 24412518 DOI: 10.1016/j.preteyeres.2013.12.007] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/28/2013] [Accepted: 12/30/2013] [Indexed: 12/31/2022]
Abstract
Adult zebrafish generate new neurons in the brain and retina throughout life. Growth-related neurogenesis allows a vigorous regenerative response to damage, and fish can regenerate retinal neurons, including photoreceptors, and restore functional vision following photic, chemical, or mechanical destruction of the retina. Müller glial cells in fish function as radial-glial-like neural stem cells. During adult growth, Müller glial nuclei undergo sporadic, asymmetric, self-renewing mitotic divisions in the inner nuclear layer to generate a rod progenitor that migrates along the radial fiber of the Müller glia into the outer nuclear layer, proliferates, and differentiates exclusively into rod photoreceptors. When retinal neurons are destroyed, Müller glia in the immediate vicinity of the damage partially and transiently dedifferentiate, re-express retinal progenitor and stem cell markers, re-enter the cell cycle, undergo interkinetic nuclear migration (characteristic of neuroepithelial cells), and divide once in an asymmetric, self-renewing division to generate a retinal progenitor. This daughter cell proliferates rapidly to form a compact neurogenic cluster surrounding the Müller glia; these multipotent retinal progenitors then migrate along the radial fiber to the appropriate lamina to replace missing retinal neurons. Some aspects of the injury-response in fish Müller glia resemble gliosis as observed in mammals, and mammalian Müller glia exhibit some neurogenic properties, indicative of a latent ability to regenerate retinal neurons. Understanding the specific properties of fish Müller glia that facilitate their robust capacity to generate retinal neurons will inform and inspire new clinical approaches for treating blindness and visual loss with regenerative medicine.
Collapse
Affiliation(s)
- Jenny R Lenkowski
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.
| | - Pamela A Raymond
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Gallina D, Todd L, Fischer AJ. A comparative analysis of Müller glia-mediated regeneration in the vertebrate retina. Exp Eye Res 2013; 123:121-30. [PMID: 23851023 DOI: 10.1016/j.exer.2013.06.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
This article reviews the current state of knowledge regarding the potential of Müller glia to become neuronal progenitor cells in the avian retina. We compare and contrast the remarkable proliferative and neurogenic capacity of Müller glia in the fish retina to the limited capacity of Müller glia in avian and rodent retinas. We summarize recent findings regarding the secreted factors, signaling pathways and cell intrinsic factors that have been implicated in the formation of Müller glia-derived progenitors. We discuss several key similarities and differences between the fish, rodent and chick model systems, highlighting several of the key transcription factors and signaling pathways that regulate the formation of Müller glia-derived progenitors.
Collapse
Affiliation(s)
- Donika Gallina
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210-1239, USA
| | - Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210-1239, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210-1239, USA.
| |
Collapse
|
29
|
Abstract
Teleost fish grow continuously throughout their lifespan, and this growth includes visual system components: eyes, optic nerves, and brain. As fish grow, the optic nerve lengthens and neural signals must travel increasing distances from the eye to the optic tectum along thousands of retinal ganglion cell (RGC) axons. Larger fish have better vision that enhances their ability to capture prey, but they are faced with the potential computational problem of changes in the relative timing of visual information arriving at the brain. Optic nerve conduction delays depend on RGC axon conduction velocities, and velocity is primarily determined by axon diameters. If axon diameters do not increase in proportion to body length, then absolute and relative conduction delays will vary with fish size. We have measured optic nerve lengths and axon diameter distributions in different sized zebrafish (Danio rerio) and goldfish (Carassius auratus) and find that, as both species of fish grow, axon diameters increase to reduce average conduction delays by about half and to keep relative delays constant. This invariance of relative conduction delays simplifies computational problems faced by the optic tectum.
Collapse
Affiliation(s)
- Trygve E Bakken
- Neurosciences Graduate Program, University of California-San Diego, La Jolla, CA 92037, USA
| | | |
Collapse
|
30
|
Müller glia as a source of neuronal progenitor cells to regenerate the damaged zebrafish retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:425-30. [PMID: 22183361 DOI: 10.1007/978-1-4614-0631-0_54] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Teleost fish as a model system to study successful regeneration of the central nervous system. Curr Top Microbiol Immunol 2012; 367:193-233. [PMID: 23239273 DOI: 10.1007/82_2012_297] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury and spinal cord injury are devastating conditions that may result in death or long-term disability. A promising strategy for the development of effective cell replacement therapies involves the study of regeneration-competent organisms. Among this group, teleost fish are distinguished by their excellent potential to regenerate nervous tissue and to regain function after injury to the central nervous system. In this chapter, we summarize our current understanding of the cellular processes that mediate this regenerative potential, and we show that several of these processes are shared with the normal development of the intact central nervous system; we describe how the spontaneous self-repair of the teleostean central nervous system leads to functional recovery, at physiological and behavioral levels; we discuss the possible function of molecular factors associated with the degenerative and regenerative processes after injury; and, finally, we speculate on evolutionary aspects of adult neurogenesis and neuronal regeneration, and on how a better understanding of these aspects could catalyze the development of therapeutic strategies to overcome the regenerative limits of the mammalian CNS.
Collapse
|
32
|
Bibliowicz J, Gross JM. Ectopic proliferation contributes to retinal dysplasia in the juvenile zebrafish patched2 mutant eye. Invest Ophthalmol Vis Sci 2011; 52:8868-77. [PMID: 22003118 DOI: 10.1167/iovs.11-8033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Patched is a well-studied tumor suppressor and negative regulator of the Hedgehog (Hh) pathway. Earlier work in this laboratory has shown that embryonic zebrafish patched2 (ptc2) mutant retinas possess an expanded ciliary marginal zone (CMZ) and phenotypes similar to those in human patients with basal cell naevus syndrome (BCNS), a congenital disorder linked to mutations in the human PTCH gene. This study extends the analysis of retinal structure and homeostasis in ptc2-/- mutants to juvenile stages, to determine whether Patched 2 function is essential in the postembryonic eye. METHODS Histologic, immunohistochemical, and molecular analyses were used to characterize retinal defects in the 6-week-old juvenile ptc2-/- retina. RESULTS Juvenile ptc2-/- mutants exhibited peripheral retinal dysplasias that included the presence of ectopic neuronal clusters in the inner nuclear layer (INL) and regions of disrupted retinal lamination. Retinal dysplasias were locally associated with ectopic proliferation. BrdU/EdU labeling and immunohistochemistry assays demonstrated that a population of ectopically proliferating cells gave rise to the ectopic neuronal clusters in the INL of ptc2-/- mutants and that this contributed to retinal dysplasia in the mutant eye. CONCLUSIONS These results demonstrate a direct link between overproliferation and retinal dysplasia in the ptc2-/- juvenile retina and establish ectopic proliferation as the likely cellular underpinning of retinal dysplasia in juvenile ptc2-/- mutants.
Collapse
Affiliation(s)
- Jonathan Bibliowicz
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
33
|
The rod photoreceptor lineage of teleost fish. Prog Retin Eye Res 2011; 30:395-404. [PMID: 21742053 DOI: 10.1016/j.preteyeres.2011.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 11/24/2022]
Abstract
The retinas of postembryonic teleost fish continue to grow for the lifetime of the fish. New retinal cells are added continuously at the retinal margin, by stem cells residing at the circumferential germinal zone. Some of these retinal cells differentiate as Müller glia with cell bodies that reside within the inner nuclear layer. These glia retain some stem cell properties in that they carry out asymmetric cell divisions and continuously generate a population of transit-amplifying cells--the rod photoreceptor lineage--that are committed to rod photoreceptor neurogenesis. These rod progenitors progress through a stereotyped sequence of changes in gene expression as they continue to divide and migrate to the outer nuclear layer. Now referred to as rod precursors, they undergo terminal mitoses and then differentiate as rods, which are inserted into the existing array of rod and cone photoreceptors. The rod lineage displays developmental plasticity, as rod precursors can respond to the loss of rods through increased proliferation, resulting in rod replacement. The stem cells of the rod lineage, Müller glia, respond to acute damage of other retinal cell types by increasing their rate of proliferation. In addition, the Müller glia in an acutely damaged retina dedifferentiate and become multipotent, generating new, functional neurons. This review focuses on the cells of the rod lineage and includes discussions of experiments over the last 30 years that led to their identification and characterization, and the discovery of the stem cells residing at the apex of the lineage. The plasticity of cells of the rod lineage, their relationships to cone progenitors, and the applications of this information for developing future treatments for human retinal disorders will also be discussed.
Collapse
|
34
|
Sherpa T, Hunter SS, Frey RA, Robison BD, Stenkamp DL. Retinal proliferation response in the buphthalmic zebrafish, bugeye. Exp Eye Res 2011; 93:424-36. [PMID: 21723280 DOI: 10.1016/j.exer.2011.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 05/23/2011] [Accepted: 06/05/2011] [Indexed: 10/18/2022]
Abstract
The zebrafish retina regenerates in response to acute retinal lesions, replacing damaged neurons with new neurons. In this study we test the hypothesis that chronic stress to inner retinal neurons also triggers a retinal regeneration response in the bugeye zebrafish. Mutations in the lrp2 gene in zebrafish are associated with a progressive eye phenotype (bugeye) that models several risk factors for human glaucoma including buphthalmos (enlarged eyes), elevated intraocular pressure (IOP), and upregulation of genes related to retinal ganglion cell pathology. The retinas of adult bugeye zebrafish showed high rates of ongoing proliferation which resulted in the production of a small number of new retinal neurons, particularly photoreceptors. A marker of mechanical cell stress, Hsp27, was strongly expressed in inner retinal neurons and glia of bugeye retinas. The more enlarged eyes of individual bugeye zebrafish showed disrupted retinal lamination, and a persistent reduced density of neurons in the ganglion cell layer (GCL), although total numbers of GCL neurons were higher than in control eyes. Despite the presence of a proliferative response to damage, the adult bugeye zebrafish remained behaviorally blind. These findings suggest the existence of an unsuccessful regenerative response to a persistent pathological condition in the bugeye zebrafish.
Collapse
Affiliation(s)
- Tshering Sherpa
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA
| | | | | | | | | |
Collapse
|
35
|
Ayari B, El Hachimi KH, Yanicostas C, Landoulsi A, Soussi-Yanicostas N. Prokineticin 2 expression is associated with neural repair of injured adult zebrafish telencephalon. J Neurotrauma 2010; 27:959-72. [PMID: 20102264 DOI: 10.1089/neu.2009.0972] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Prokineticin 2 (PROK2) is a secreted protein that regulates diverse biological processes including olfactory bulb neurogenesis in adult mammals. However, its precise role in this process is as yet not fully understood. Because it is well known that adult teleost fish, including zebrafish, display an intense proliferative activity in several brain regions, we took advantage of this feature to analyze the distribution of PROK2 transcripts in the adult zebrafish brain and during injury-induced telencephalon (TC) regeneration. First, we characterized the zebrafish PROK2 gene and showed that its transcription takes place in almost all proliferating areas previously identified in adult zebrafish brain. Moreover, in TC, PROK2 transcription was mainly restricted to neurons. Next, using a novel model of TC injury in adult zebrafish, we observed that TC lesion induced a dramatic increase in cell proliferation within the injured hemisphere in regions located both adjacent and distal to injury sites. Moreover, our data strongly suggest that cell proliferation was followed by the migration of newly generated neurons toward injury sites. In addition, we observed a transient over-expression of PROK2 transcripts, which was detected in cells surrounding the lesion during the very first days post injury, and, a few days later, in broad cell rows extending from cortical regions of the TC toward injury sites. PROK2 over-expression was no longer detected when the regeneration process was close to completion, showing that ectopic PROK2 transcription paralleled neuronal regeneration. Taken together, our results suggest that in adult zebrafish brain, PROK2 may play a role in both constitutive and injury-induced neurogenesis.
Collapse
Affiliation(s)
- Besma Ayari
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM), 75651 Paris Cedex, France
| | | | | | | | | |
Collapse
|
36
|
Fleisch VC, Fraser B, Allison WT. Investigating regeneration and functional integration of CNS neurons: lessons from zebrafish genetics and other fish species. Biochim Biophys Acta Mol Basis Dis 2010; 1812:364-80. [PMID: 21044883 DOI: 10.1016/j.bbadis.2010.10.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 10/05/2010] [Accepted: 10/21/2010] [Indexed: 12/21/2022]
Abstract
Zebrafish possess a robust, innate CNS regenerative ability. Combined with their genetic tractability and vertebrate CNS architecture, this ability makes zebrafish an attractive model to gain requisite knowledge for clinical CNS regeneration. In treatment of neurological disorders, one can envisage replacing lost neurons through stem cell therapy or through activation of latent stem cells in the CNS. Here we review the evidence that radial glia are a major source of CNS stem cells in zebrafish and thus activation of radial glia is an attractive therapeutic target. We discuss the regenerative potential and the molecular mechanisms thereof, in the zebrafish spinal cord, retina, optic nerve and higher brain centres. We evaluate various cell ablation paradigms developed to induce regeneration, with particular emphasis on the need for (high throughput) indicators that neuronal regeneration has restored sensory or motor function. We also examine the potential confound that regeneration imposes as the community develops zebrafish models of neurodegeneration. We conclude that zebrafish combine several characters that make them a potent resource for testing hypotheses and discovering therapeutic targets in functional CNS regeneration. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
Affiliation(s)
- Valerie C Fleisch
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
37
|
Thummel R, Enright JM, Kassen SC, Montgomery JE, Bailey TJ, Hyde DR. Pax6a and Pax6b are required at different points in neuronal progenitor cell proliferation during zebrafish photoreceptor regeneration. Exp Eye Res 2010; 90:572-82. [PMID: 20152834 DOI: 10.1016/j.exer.2010.02.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 01/29/2010] [Accepted: 02/03/2010] [Indexed: 01/09/2023]
Abstract
The light-damaged zebrafish retina results in the death of photoreceptor cells and the subsequent regeneration of the missing rod and cone cells. Photoreceptor regeneration initiates with asymmetric Müller glial cell division to produce neuronal progenitor cells, which amplify, migrate to the outer nuclear layer (ONL), and differentiate into both classes of photoreceptor cells. In this study, we examined the role of the Pax6 protein in regeneration. In zebrafish, there are two Pax6 proteins, one encoded by the pax6a gene and the other encoded by the pax6b gene. We intravitreally injected and electroporated morpholinos that were complementary to either the pax6a or pax6b mRNA to knockdown the translation of the corresponding protein. Loss of Pax6b expression did not affect Müller glial cell division, but blocked the subsequent first cell division of the neuronal progenitors. In contrast, the paralogous Pax6a protein was required for later neuronal progenitor cell divisions, which maximized the number of neuronal progenitors. Without neuronal progenitor cell amplification, proliferation of resident ONL rod precursor cells, which can only regenerate rods, increased inversely proportional to the number of INL neuronal progenitor cells. This confirmed that Müller glial-derived neuronal progenitor cells are necessary to regenerate cones and that distinct mechanisms selectively regenerate rod and cone photoreceptors. This work also defines distinct roles for Pax6a and Pax6b in regulating neuronal progenitor cell proliferation in the adult zebrafish retina and increases our understanding of the molecular pathways required for photoreceptor cell regeneration.
Collapse
Affiliation(s)
- Ryan Thummel
- Department of Biological Sciences and the Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Craig SEL, Thummel R, Ahmed H, Vasta GR, Hyde DR, Hitchcock PF. The zebrafish galectin Drgal1-l2 is expressed by proliferating Müller glia and photoreceptor progenitors and regulates the regeneration of rod photoreceptors. Invest Ophthalmol Vis Sci 2010; 51:3244-52. [PMID: 20071673 DOI: 10.1167/iovs.09-4879] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE The purpose of this study was to identify secreted proteins in the retina of the adult zebrafish that are induced by the selective death of photoreceptors and to test experimentally the function of these proteins during the regeneration of photoreceptors. METHODS Induced selective death of photoreceptors in the retina of the adult zebrafish was combined with in situ hybridization and immunocytochemistry to identify the induced cellular expression of the secreted beta-galactoside binding protein Galectin 1-like 2 (Drgal1-L2). Electroporation of morpholino oligonucleotides was used to knock down protein synthesis, and regenerated photoreceptors were counted in control and experimental retinas after labeling with cell type-specific RNA probes. RESULTS Expression analysis and immunocytochemistry showed that Drgal1-L2 is induced de novo by photoreceptor death and is synthesized by microglia and proliferating Müller glia and their mitotic progeny. Knockdown of Drgal1-L2 expression in Müller glia results in reduced regeneration of rod photoreceptors without affecting injury-induced proliferation or the regeneration of cone photoreceptors. CONCLUSIONS Based on these data, the authors conclude that Drgal1-L2 is induced by photoreceptor cell death and secreted by stem cells and neuronal progenitors and that it regulates the regeneration of rod photoreceptors. Drgal1-L2 is the first secreted factor shown to regulate aspects of regenerative neurogenesis in the teleost retina.
Collapse
Affiliation(s)
- Sonya E L Craig
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | |
Collapse
|
39
|
Identification of the molecular signatures integral to regenerating photoreceptors in the retina of the zebra fish. J Ocul Biol Dis Infor 2008; 1:73-84. [PMID: 20072637 PMCID: PMC2802516 DOI: 10.1007/s12177-008-9011-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 08/26/2008] [Indexed: 11/30/2022] Open
Abstract
Investigating neuronal and photoreceptor regeneration in the retina of zebra fish has begun to yield insights into both the cellular and molecular means by which this lower vertebrate is able to repair its central nervous system. However, knowledge about the signaling molecules in the local microenvironment of a retinal injury and the transcriptional events they activate during neuronal death and regeneration is still lacking. To identify genes involved in photoreceptor regeneration, we combined light-induced photoreceptor lesions, laser-capture microdissection of the outer nuclear layer (ONL) and analysis of gene expression to characterize transcriptional changes for cells in the ONL as photoreceptors die and are regenerated. Using this approach, we were able to characterize aspects of the molecular signature of injured and dying photoreceptors, cone photoreceptor progenitors, and microglia within the ONL. We validated changes in gene expression and characterized the cellular expression for three novel, extracellular signaling molecules that we hypothesize are involved in regulating regenerative events in the retina.
Collapse
|
40
|
Abstract
Whereas adult neurogenesis appears to be a universal phenomenon in the vertebrate brain, enormous differences exist in neurogenic potential between "lower" and "higher" vertebrates. Studies in the gymnotiform fish Apteronotus leptorhynchus and in zebrafish have indicated that the relative number of new cells, as well as the number of neurogenic sites, are at least one, if not two, orders of magnitude larger in teleosts than in mammals. In teleosts, these neurogenic sites include brain regions homologous to the mammalian hippocampus and olfactory bulb, both of which have consistently exhibited neurogenesis in all species examined thus far. The source of the new cells in the teleostean brain are intrinsic stem cells that give rise to both glial cells and neurons. In several brain regions, the young cells migrate, guided by radial glial fibers, to specific target areas where they integrate into existing neural networks. Approximately half of the new cells survive for the rest of the fish's life, whereas the other half are eliminated through apoptotic cell death. A potential mechanism regulating development of the new cells is provided by somatic genomic alterations. The generation of new cells, together with elimination of damaged cells through apoptosis, also enables teleost fish rapid and efficient neuronal regeneration after brain injuries. Proteome analysis has identified a number of proteins potentially involved in the individual regenerative processes. Comparative analysis has suggested that differences between teleosts and mammals in the growth of muscles and sensory organs are key to explain the differences in adult neurogenesis that evolved during phylogenetic development of the two taxa.
Collapse
Affiliation(s)
- Günther K H Zupanc
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany.
| |
Collapse
|
41
|
Sherpa T, Fimbel SM, Mallory DE, Maaswinkel H, Spritzer SD, Sand JA, Li L, Hyde DR, Stenkamp DL. Ganglion cell regeneration following whole-retina destruction in zebrafish. Dev Neurobiol 2008; 68:166-81. [PMID: 18000816 DOI: 10.1002/dneu.20568] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The retinas of adult teleost fish can regenerate neurons following injury. The current study provides the first documentation of functional whole retina regeneration in the zebrafish, Danio rerio, following intraocular injection of the cytotoxin, ouabain. Loss and replacement of laminated retinal tissue was monitored by analysis of cell death and cell proliferation, and by analysis of retina-specific gene expression patterns. The spatiotemporal process of retinal ganglion cell (RGC) regeneration was followed through the use of selective markers, and was found to largely recapitulate the spatiotemporal process of embryonic ganglion cell neurogenesis, over a more protracted time frame. However, the re-expression of some ganglion cell markers was not observed. The growth and pathfinding of ganglion cell axons was evaluated by measurement of the optic nerve head (ONH), and the restoration of normal ONH size was found to correspond to the time of recovery of two visually-mediated behaviors. However, some abnormalities were noted, including overproduction of RGCs, and progressive and excessive growth of the ONH at longer recovery times. This model system for whole-retina regeneration has provided an informative view of the regenerative process.
Collapse
Affiliation(s)
- Tshering Sherpa
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hitchcock PF, Raymond PA. The teleost retina as a model for developmental and regeneration biology. Zebrafish 2008; 1:257-71. [PMID: 18248236 DOI: 10.1089/zeb.2004.1.257] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Retinal development in teleosts can broadly be divided into three epochs. The first is the specification of cellular domains in the larval forebrain that give rise to the retinal primordia and undergo early morphogenetic movements. The second is the neurogenic events within the retina proper-proliferation, cell fate determination, and pattern formation-that establish neuronal identities and form retinal laminae and cellular mosaics. The third, which is unique to teleosts and occurs in the functioning eye, is stretching of the retina and persistent neurogenesis that allows the growth of the retina to keep pace with the growth of the eye and other tissues. The first two events are rapid, complete by about 3 days postfertilization in the zebrafish embryo. The third is life-long and accounts for the bulk of retinal growth and the vast majority of adult retinal neurons. In addition, but clearly related to the retina's developmental history, lesions that kill retinal neurons elicit robust neuronal regeneration that originates from cells intrinsic to the retina. This paper reviews recent studies of retinal development in teleosts, focusing on those that shed light on the genetic and molecular regulation of retinal specification and morphogenesis in the embryo, retinal neurogenesis in larvae and adults, and injury-induced neuronal regeneration.
Collapse
Affiliation(s)
- Peter F Hitchcock
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, W. K. Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI 48105, USA.
| | | |
Collapse
|
43
|
Survival, excitability, and transfection of retinal neurons in an organotypic culture of mature zebrafish retina. Cell Tissue Res 2008; 332:195-209. [PMID: 18335243 DOI: 10.1007/s00441-008-0589-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
Over the last 20 years, the zebrafish has become an important model organism for research on retinal function and development. Many retinal diseases do not become apparent until the later stages of life. This means that it is important to be able to analyze (gene) function in the mature retina. To meet this need, we have established an organotypic culture system of mature wild-type zebrafish retinas in order to observe changes in retinal morphology. Furthermore, cell survival during culture has been monitored by determining apoptosis in the tissue. The viability and excitability of ganglion cells have been tested at various time points in vitro by patch-clamp recordings, and retinal functionality has been assessed by measuring light-triggered potentials at the ganglion cell site. Since neurogenesis is persistent in adult zebrafish retinas, we have also monitored proliferating cells during culture by tracking their bromodeoxyuridine uptake. Reverse genetic approaches for probing the function of adult zebrafish retinas are not yet available. We have therefore established a rapid and convenient protocol for delivering plasmid DNA or oligonucleotides by electroporation to the retinal tissue in vitro. The organotypic culture of adult zebrafish retinas presented here provides a reproducible and convenient method for investigating the function of drugs and genes in the retina under well-defined conditions in vitro.
Collapse
|
44
|
Morris AC, Scholz T, Fadool JM. Rod progenitor cells in the mature zebrafish retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 613:361-8. [PMID: 18188965 DOI: 10.1007/978-0-387-74904-4_42] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The zebrafish is an excellent model organism in which to study the retina's response to photoreceptor degeneration and/or acute injury. While much has been learned about the retinal stem and progenitor cells that mediate the damage response, several questions remain that cannot be addressed by acute models of injury. The development of genetic models, such as the XOPS-mCFP transgenic line, should further efforts to understand the nature of the signals that promote rod progenitor proliferation and differentiation following photoreceptor loss. This in turn may help to refine future approaches in higher vertebrates aimed at enhancing retinal progenitor cell activity for therapeutic purposes.
Collapse
Affiliation(s)
- Ann C Morris
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA.
| | | | | |
Collapse
|
45
|
Yurco P, Cameron DA. Cellular correlates of proneural and notch-delta gene expression in the regenerating zebrafish retina. Vis Neurosci 2007; 24:437-43. [PMID: 17822581 DOI: 10.1017/s0952523807070496] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2006] [Accepted: 05/08/2007] [Indexed: 11/05/2022]
Abstract
Fish can regenerate retinal neurons following ocular injury. Evidence is mounting that astrocytic glia function as inducible, regenerative stem cells in this process, but the underlying molecular events that enable neuronal regeneration are comparatively unclear. In the current study gene array, quantitative real-time PCR,in situhybridization, and immunohistochemical approaches were used to identify, in the damaged retina of adult zebrafish, correlations between transcriptional events and entry into the cell cycle by Müller cells, a type of astrocytic cell present in all vertebrate retinas that is a candidate ‘stem cell’ of regenerated neurons. A proneural gene (achaete-scute homolog 1a,ash1a) and neurogenic components of the Notch signaling pathway, includingnotch3anddeltaA, were implicated. An injury-induced, enhanced expression ofash1awas observed in Müller cells, which is hypothesized to contribute to the transition of these cells, or their cellular progeny, into anotch3-expressing, regenerative progenitor. A model of vertebrate retinal repair is suggested in which damage-induced expression of proneural genes, plus canonical Notch-Delta signaling, could contribute to retinal stem cell promotion and subsequent regenerative neurogenesis.
Collapse
Affiliation(s)
- Patrick Yurco
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
46
|
Kassen SC, Ramanan V, Montgomery JE, T Burket C, Liu CG, Vihtelic TS, Hyde DR. Time course analysis of gene expression during light-induced photoreceptor cell death and regeneration in albino zebrafish. Dev Neurobiol 2007; 67:1009-31. [PMID: 17565703 DOI: 10.1002/dneu.20362] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Constant intense light causes apoptosis of rod and cone photoreceptors in adult albino zebrafish. The photoreceptors subsequently regenerate from proliferating inner nuclear layer (INL) progenitor cells that migrate to the outer nuclear layer (ONL) and differentiate into rods and cones. To identify gene expression changes during this photoreceptor regeneration response, a microarray analysis was performed at five time points during the light treatment. The time course included an early time point during photoreceptor death (16 h), later time points during progenitor cell proliferation and migration (31, 51, and 68 h) and a 96 h time point, which likely corresponds to the initial photoreceptor differentiation. Mean expression values for each gene were calculated at each time point relative to the control (0 h light exposure) and statistical analysis by one-way ANOVA identified 4567 genes exhibiting significant changes in gene expression along the time course. The genes within this data set were clustered based on their temporal expression patterns and proposed functions. Quantitative real-time PCR validated the microarray expression profiles for selected genes, including stat3 whose expression increased markedly during the light exposure. Based on immunoblots, both total and activated Stat3 protein expression also increased during the light treatment. Immunolocalization of Stat3 on retinal tissue sections demonstrated increased expression in photoreceptors and Müller glia by 16 h of light exposure. Some of the Stat3-positive Müller cells expressed PCNA at 31 h, suggesting that Stat3 may play a role in signaling a subset of Müller cells to proliferate during the regeneration response.
Collapse
Affiliation(s)
- Sean C Kassen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Lindsey AE, Powers MK. Visual behavior of adult goldfish with regenerating retina. Vis Neurosci 2007; 24:247-55. [PMID: 17592671 DOI: 10.1017/s0952523806230207] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2006] [Accepted: 08/11/2006] [Indexed: 11/06/2022]
Abstract
To determine whether regenerating neural pathways can support visual behavior, adult goldfish (Carassius auratus) were injected intraocularly with ouabain and tested for the presence of reflexive visual behaviors (dorsal light reflex and optokinetic nystagmus) and the ability to respond to visual stimuli in a classical conditioning paradigm. All visual behaviors were absent or greatly diminished until 8 to 10 weeks, when retinal layering had returned. At 10 weeks post-ouabain, reflexive behaviors to supra-threshold stimuli were near normal; however the ability to detect supra-threshold stimuli in the conditioning paradigm did not recover until 13 weeks. Absolute dark-adapted threshold and light-adapted spectral sensitivity measured at 13 to 17 weeks were abnormal: Dark-adapted threshold was elevated by 1.5 log units and light-adapted spectral sensitivity was markedly narrower than normal. No responses to 50% contrast sinusoidal gratings could be obtained through ouabain-treated eyes using the classical conditioning technique, even though responses through the untreated eye remained. Results demonstrate that: (a) visually mediated behaviors return in goldfish with ouabain-treated retinas; (b) the time course of recovery of reflexive responses in luminance and spatial domains parallels return of ERG function and of tectal activity; and (c) visual function that is mediated by regenerating retina appears not to be as sensitive as vision via normally developed retinal pathways.
Collapse
Affiliation(s)
- Amy E Lindsey
- Department of Psychology and Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
48
|
Zupanc GKH, Zupanc MM. New neurons for the injured brain: mechanisms of neuronal regeneration in adult teleost fish. Regen Med 2007; 1:207-16. [PMID: 17465804 DOI: 10.2217/17460751.1.2.207] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In contrast to mammals, teleost fish exhibit an enormous potential to continuously produce new neurons in many areas of the adult brain, and to regenerate neural tissue after brain injury. The regenerative capability of the teleost fish brain is based upon a series of well-orchestrated individual processes, including: elimination of damaged cells by apoptosis, removal of cellular debris by the action of microglia/macrophages, proliferation of endogenous neural precursor cells, radial glia-mediated migration of their progeny to the site of the lesion, neuronal differentiation, promotion of cellular survival, and integration of the new neurons into existing neural circuits. Combination of a well-defined cerebellar lesion paradigm with differential proteome analysis has demonstrated that identification of the multitude of proteins mediating the regenerative potential of the adult fish brain is feasible in the foreseeable future. A molecular understanding of brain regeneration in fish could help investigators to define novel strategies to stimulate endogenous neural precursor cells in the mammalian brain to undergo neurogenesis, thus forming the basis of a neuronal replacement therapy for brain injury or neurodegenerative diseases.
Collapse
Affiliation(s)
- Günther K H Zupanc
- School of Engineering and Science, International University Bremen, Bremen, Germany.
| | | |
Collapse
|
49
|
Mensinger AF, Powers MK. Visual function in regenerating teleost retina following surgical lesioning. Vis Neurosci 2007; 24:299-307. [PMID: 17550640 DOI: 10.1017/s0952523807070265] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 03/09/2007] [Indexed: 11/06/2022]
Abstract
Regeneration of the teleost retina following surgical extirpation of 25% to 100% of the neural retina was investigated in goldfish (Carrasius auratus) and sunfish (Lepomis cyanellus). The retina will regenerate following removal of up to 95% of the neural retina, however complete extirpation prevented regeneration. Visual sensitivity was assessed by examining components of the electroretinogram (ERG) and the dorsal light reflex (DLR) during regeneration. B-wave amplitudes in the experimental eyes increased throughout the study and central connections were reestablished as indicated by the progressive improvement in the dorsal light reflex. The recovery of visual function was closely correlated with retinal regeneration. Visual recovery progressed more slowly than following complete cytotoxic destruction of the mature retina (Mensinger & Powers, 1999) because the surgery removed a large number of the pluripotent cell population and restricted the number and distribution of regenerating foci.
Collapse
Affiliation(s)
- Allen F Mensinger
- Vision Research Center and Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA.
| | | |
Collapse
|
50
|
Lau BWM, Tsao GSW, So KF, Yip HK. Expression of Telomerase Reverse Transcriptase in Adult Goldfish Retina. J Mol Neurosci 2007; 32:160-7. [PMID: 17873300 DOI: 10.1007/s12031-007-0031-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 11/30/1999] [Accepted: 03/09/2007] [Indexed: 10/23/2022]
Abstract
Telomerase, a specialized reverse transcriptase that maintains telomere during cell division, is commonly associated with cell proliferation. Increasing evidence suggests that telomerase may bear functions other than telomere elongation. We investigated whether telomerase is expressed in the continuously growing goldfish retina. Telomeric repeat amplification protocol (TRAP) assay reveals telomerase activity in goldfish retina. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot show that telomerase catalytic subunit (TERT) is expressed at both mRNA and protein levels. Localization of TERT by immunohistochemistry indicates prominent expression of TERT in the outer nuclear layer, the inner nuclear layer, and, in a small population of cells, in the ganglion cell layer. Coexpression of TERT with proliferative cell nuclear antigen (PCNA) immunoreactivity is found in rod progenitor cells. These results suggest the role of telomerase in vertebrate central nervous system (CNS) other than telomere maintenance, such as regulation of cell cycle progression and maintenance of retinal cell phenotypes.
Collapse
Affiliation(s)
- Benson W M Lau
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | |
Collapse
|