1
|
Farah CA, Naqib F, Weatherill DB, Pack CC, Sossin WS. Synapse formation changes the rules for desensitization of PKC translocation in Aplysia. Eur J Neurosci 2014; 41:328-40. [PMID: 25401305 DOI: 10.1111/ejn.12794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 10/15/2014] [Accepted: 10/23/2014] [Indexed: 11/29/2022]
Abstract
Protein kinase Cs (PKCs) are activated by translocating from the cytoplasm to the membrane. We have previously shown that serotonin-mediated translocation of PKC to the plasma membrane in Aplysia sensory neurons was subject to desensitization, a decrease in the ability of serotonin to induce translocation after previous application of serotonin. In Aplysia, changes in the strength of the sensory-motor neuron synapse are important for behavioral sensitization and PKC regulates a number of important aspects of this form of synaptic plasticity. We have previously suggested that the desensitization of PKC translocation in Aplysia sensory neurons may partially explain the differences between spaced and massed training, as spaced applications of serotonin, a cellular analog of spaced training, cause greater desensitization of PKC translocation than one massed application of serotonin, a cellular analog of massed training. Our previous studies were performed in isolated sensory neurons. In the present study, we monitored translocation of fluorescently-tagged PKC to the plasma membrane in living sensory neurons that were co-cultured with motor neurons to allow for synapse formation. We show that desensitization now becomes similar during spaced and massed applications of serotonin. We had previously modeled the signaling pathways that govern desensitization in isolated sensory neurons. We now modify this mathematical model to account for the changes observed in desensitization dynamics following synapse formation. Our study shows that synapse formation leads to significant changes in the molecular signaling networks that underlie desensitization of PKC translocation.
Collapse
Affiliation(s)
- Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
2
|
Lyles V, Zhao Y, Martin KC. Synapse formation and mRNA localization in cultured Aplysia neurons. Neuron 2006; 49:349-56. [PMID: 16446139 DOI: 10.1016/j.neuron.2005.12.029] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 10/26/2005] [Accepted: 12/27/2005] [Indexed: 10/25/2022]
Abstract
mRNA localization and regulated translation provide a means of spatially restricting gene expression within neurons during axon guidance and long-term synaptic plasticity. Here we show that synapse formation specifically alters the localization of the mRNA encoding sensorin, a peptide neurotransmitter with neurotrophin-like properties. In isolated Aplysia sensory neurons, which do not form chemical synapses, sensorin mRNA is diffusely distributed throughout distal neurites. Upon contact with a target motor neuron, sensorin mRNA rapidly concentrates at synapses. This redistribution only occurs in the presence of a target motor neuron and parallels the distribution of sensorin protein. Reduction of sensorin mRNA, but not protein, with dsRNA inhibits synapse formation. Our results indicate that synapse formation can alter mRNA localization within individual neurons. They further suggest that translation of a specific localized mRNA, encoding the neuropeptide sensorin, is required for synapse formation between sensory and motor neurons.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Aplysia/cytology
- Blotting, Western/methods
- Cells, Cultured
- Coculture Techniques/methods
- Dactinomycin/pharmacology
- Diagnostic Imaging/methods
- Electric Stimulation/methods
- Electrophysiologic Techniques, Cardiac/methods
- Excitatory Postsynaptic Potentials/physiology
- Gene Expression Regulation/physiology
- Green Fluorescent Proteins/metabolism
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Microinjections/methods
- Motor Neurons/metabolism
- Motor Neurons/physiology
- Neurites/drug effects
- Neurites/metabolism
- Neurons/cytology
- Neurons/drug effects
- Neurons/physiology
- Neurons/radiation effects
- Neurons, Afferent/classification
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Neurons, Afferent/radiation effects
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Potassium Chloride/pharmacology
- Protein Synthesis Inhibitors/pharmacology
- RNA, Double-Stranded/pharmacology
- RNA, Messenger/metabolism
- Synapses/physiology
Collapse
Affiliation(s)
- Vlasta Lyles
- Interdepartmental Program in Neuroscience, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
3
|
Hu JY, Goldman J, Wu F, Schacher S. Target-dependent release of a presynaptic neuropeptide regulates the formation and maturation of specific synapses in Aplysia. J Neurosci 2005; 24:9933-43. [PMID: 15525778 PMCID: PMC6730238 DOI: 10.1523/jneurosci.3329-04.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The correct wiring of neurons is critical for the normal functioning of the nervous system. Sensory neurons of Aplysia form synapses with specific postsynaptic targets. Interaction with appropriate target cells in culture induces a significant increase in axon growth, the number of sensory neuron varicosities with release sites contacting the target, and regulates the expression and distribution of mRNAs encoding presynaptic proteins such as syntaxin and the sensory neuron-specific neuropeptide sensorin. Synapse stabilization is accompanied by the maintenance of presynaptic varicosities and target-dependent regulation of mRNA distributions. We report here that specific targets induce the release of sensorin from sensory neurons, which then regulates synaptic efficacy, axonal growth associated with synapse formation, the maintenance of synaptic contacts, and the specific distribution of mRNAs. Bath application of an antisensorin antibody during the early phase of synapse formation blocked the expected increase in synaptic strength, the growth and formation of new presynaptic varicosities, and the target-dependent regulation of mRNA distribution. In contrast, bath application of sensorin accelerated the increase in synaptic strength and enhanced the formation of new varicosities and target-dependent regulation of mRNA distribution in sensory neurons. As synapses stabilize, sensorin secretion declines but is required for the maintenance of synaptic efficacy, presynaptic varicosities, and mRNA distributions. These results suggest that a retrograde target signal regulates the secretion and actions of a presynaptic neuropeptide critical for the formation and maintenance of specific synapses.
Collapse
Affiliation(s)
- Jiang-Yuan Hu
- Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York 10032, USA
| | | | | | | |
Collapse
|
4
|
Vogt AK, Brewer GJ, Decker T, Böcker-Meffert S, Jacobsen V, Kreiter M, Knoll W, Offenhäusser A. Independence of synaptic specificity from neuritic guidance. Neuroscience 2005; 134:783-90. [PMID: 16009499 DOI: 10.1016/j.neuroscience.2005.04.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 04/13/2005] [Accepted: 04/16/2005] [Indexed: 10/25/2022]
Abstract
Neuronal circuits are interconnected with a high degree of specificity. While axonal guidance has been demonstrated to be crucial for the choice of the correct target region, its role in specificity at the level of individual cells remains unclear. Specificity of synapse formation may either result from precise guidance of axonal outgrowth onto the target or depend on a molecular "match" between pre- and postsynapse. To distinguish between these possibilities, an in vitro system was used in which neuritic outgrowth of rat cortical neurons is accurately guided along the narrow pathways of a surface micropattern. The micropattern consisted of a blend of extracellular matrix molecules applied to a cell repellent background of polystyrene by microcontact printing. The system reproduces guidance by attractant and repellent surface cues while no other signals that may influence synapse formation, like gradients of trophic factors or accumulations of signaling molecules, are provided. While the number of contact points between neighboring cells was strongly reduced on patterned substrates due to the geometrical restrictions, frequency of synapse formation was not different from homogeneous cultures. Thus it was unaffected by stringent guidance onto the target cell or by the number of cell-cell contacts. Moreover, a statistically significant enrichment of reciprocal contacts between mixed pairs of excitatory and inhibitory neurons over probabilistic predictions was found, which has similarly been shown by others in dissociated neuronal cultures. Our results indicate that precise axonal guidance is insufficient for target-specific synapse formation and suggest that instead recognition between individual cells is required.
Collapse
Affiliation(s)
- A K Vogt
- Max-Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Several factors regulate export of mRNAs from neuronal cell bodies. Using in situ hybridization and RT-PCR, we examined how target interaction influences the distribution of mRNAs expressed in sensory neurons (SNs) of Aplysia maintained in cell culture. Interaction with a synaptic target has two effects on the distribution of mRNA encoding an SN-specific peptide, sensorin: the target affects the accumulation of sensorin mRNA at the axon hillock and the stability of sensorin mRNA exported to distal sites. Synapse formation with motor neuron L7 results in the accumulation of high levels of sensorin mRNA in the axon hillock of the SN and in SN neurites contacting L7. SNs cultured alone or in contact with motor neuron L11, with which no synapses form, show a more uniform distribution of sensorin mRNA in the cytoplasm of the SN cell body, with little expression in neurites. Contact with L7 or L11 had little or no effect on the distribution of two other mRNAs in the cytoplasm of SN cell bodies. Sensorin mRNA exported to SN neurites after 1 d in culture is more stable when the SN contacts L7 compared with SN neurites that contact L11. After removal of the SN cell body, the amounts of sensorin mRNA already exported to the neurites are greater when neurites contact L7 compared with neurites in contact with L11. The results indicate that target interaction and synapse formation regulate both the accumulations of specific mRNAs destined for export and their stability at distant sites.
Collapse
|
6
|
Expression and branch-specific export of mRNA are regulated by synapse formation and interaction with specific postsynaptic targets. J Neurosci 1999. [PMID: 10414963 DOI: 10.1523/jneurosci.19-15-06338.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanosensory neurons (SNs) of Aplysia form synapses in culture with some targets (L7), but not others (L11), even when a SN is plated with both targets. We examined whether branch-specific net export of mRNA encoding synapse-specific molecules might contribute to branch-specific synapse formation. Single-cell RT-PCR was used to assay levels of mRNA encoding the SN-specific neuropeptide (sensorin A) and other transcripts in cell bodies and neuritic processes of SNs cultured alone or with synaptic targets. Some mRNAs are exported to neurites, but not others. Sensorin A mRNA is detected only in SN cell bodies and neurites, and expression levels correlate with the strength of the synaptic connections formed with L7 after 4 d in culture. After 4 d, more sensorin A transcripts are detected in SN neurites contacting L7 than in SN neurites contacting L11. The differential expression at 4 d is found even when a single SN contacts both targets simultaneously. By contrast, no significant difference in expression is detected in SN neurites contacting L7 versus L11 after 1 d of coculture. The results suggest that interaction and synapse formation with a specific target lead to a time-dependent change in the branch-specific accumulation of sensorin A mRNA in SNs. Because local protein synthesis at synaptic sites might contribute to synaptic function or plasticity, the results suggest that branch-specific targeting of mRNA encoding synapse-related molecules may contribute to the formation of specific synapses.
Collapse
|
7
|
The secretion of classical and peptide cotransmitters from a single presynaptic neuron involves a synaptobrevin-like molecule. J Neurosci 1999. [PMID: 9065494 DOI: 10.1523/jneurosci.17-07-02338.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is not yet understood how the molecular mechanisms controlling the release of neuropeptides differ from those controlling the release of classical transmitters, mainly because there are few peptidergic synapses in which the environment at the presynaptic release sites can be manipulated. Using Aplysia californica neuron B2, which synthesizes both peptide and classical transmitters, we have established two synaptic types. When B2 is cocultured with a sensory neuron, a peptidergic synapse is formed. In contrast, when B2 is cocultured with neuron B6, a classical synapse is formed. In contrast to a common assumption, single action potentials can release both types of transmitters. The secretion of peptide and classical transmitters by B2 is inhibited by the presynaptic injection of tetanus toxin, but not by an inactive mutant. Thus a synaptobrevin-like molecule is involved in the secretion of these two types of transmitters.
Collapse
|
8
|
Klaassen LJ, Janse C, van der Roest M. Multiple synaptic connections of a single neuron change differentially with age. Neurobiol Aging 1998; 19:341-9. [PMID: 9733167 DOI: 10.1016/s0197-4580(98)00065-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The efficacy of chemical synaptic connections of a single identified interneuron with different types of follower neurons was studied throughout the adult life of the pond snail Lymnaea stagnalis. Simultaneous intracellular recordings were made from the interneuron RPeD1 and its follower neurons in isolated CNS preparations from animals of different age groups (3-18 months of age). The presence of postsynaptic responses to RPeD1 action potentials was tested. With increasing age, the number of A-group neurons that was found with a response to evoked RPeD1 action potentials decreased, yet the number of HIJK-group neurons responding to RPeD1 input increased. The number of G-group neurons and the number of individual neurons VD2/3 and VD4 with RPeD1 input did not differ significantly between age groups. However, there was variability in the presence of responses in these individual neurons. Thus, synaptic connections of the single interneuron RPeD1 change differentially throughout the adult life of L. stagnalis. Within the A-group we found indications that changes in RPeD1 input apply to the entire A-group. In the A-group neurons changes in several electrical properties could not account for the observed age-related changes in the number of neurons responding to RPeD1 action potentials.
Collapse
Affiliation(s)
- L J Klaassen
- Graduate School Neurosciences Amsterdam, Research Institute Neurosciences Vrije Universiteit Amsterdam, Faculty of Biology, The Netherlands
| | | | | |
Collapse
|
9
|
In vitro synaptogenesis between the somata of identified Lymnaea neurons requires protein synthesis but not extrinsic growth factors or substrate adhesion molecules. J Neurosci 1997. [PMID: 9315904 DOI: 10.1523/jneurosci.17-20-07839.1997] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nerve growth factors, substrate and cell adhesion molecules, and protein synthesis are considered necessary for most developmental programs, including cell proliferation, migration, differentiation, axogenesis, pathfinding, and synaptic plasticity. Their direct involvement in synapse formation, however, has not yet been fully determined. The neurite outgrowth that precedes synaptogenesis is contingent on protein synthesis, the availability of externally supplied growth factors, and substrate adhesion molecules. It is therefore difficult to ascertain whether these factors are also needed for synapse formation. To examine this issue directly we reconstructed synapses between the cell somata of identified Lymnaea neurons. We show that when paired in the presence of brain conditioned medium (CM), mutual inhibitory chemical synapses between neurons right pedal dorsal 1 (RPeD1) and visceral dorsal 4 (VD4) formed in a soma-soma configuration (86%; n = 50). These synapses were reliable and target cell specific and were similar to those seen in the intact brain. To test whether synapse formation between RPeD1 and VD4 required de novo protein synthesis, the cells were paired in the presence of anisomycin (a nonspecific protein synthesis blocker). Chronic anisomycin treatment (18 hr) after cell pairing completely blocked synaptogenesis between RPeD1 and VD4 (n = 24); however, it did not affect neuronal excitability or responsiveness to exogenously applied transmitters (n = 7), nor did chronic anisomycin treatment affect synaptic transmission between pairs of cells that had formed synapses (n = 5). To test the growth and substrate dependence of synapse formation, RPeD1 and VD4 were paired in the absence of CM [defined medium; (n = 22)] on either plain plastic culture dishes (n = 10) or glass coverslips (n = 10). Neither CM nor any exogenous substrate was required for synapse formation. In summary, our data provide direct evidence that synaptogenesis in this system requires specific, cell contact-induced, de novo protein synthesis but does not depend on extrinsic growth factors or substrate adhesion molecules.
Collapse
|
10
|
Site-specific and sensory neuron-dependent increases in postsynaptic glutamate sensitivity accompany serotonin-induced long-term facilitation at Aplysia sensorimotor synapses. J Neurosci 1997. [PMID: 9185535 DOI: 10.1523/jneurosci.17-13-04976.1997] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term changes in the efficacy of Aplysia sensory neuron (SN) connections accompany behavioral training or applications with 5-HT. The changes evoked by training or 5-HT include formation of new SN varicosities and transmitter release sites. Because new synapse formation requires proper alignment of presynaptic structures with postsynaptic zones containing a high density of transmitter receptors, we examined whether changes in postsynaptic sensitivity to the presumed SN transmitter (glutamate) were correlated with formation and distribution of new SN varicosities in contact with motor cell L7 in cell culture. The formation of stable SN connections after 4 d in culture did not significantly change overall responses to focal applications of glutamate. However, specific sites along L7's axon apposed to SN varicosities expressed larger responses to glutamate compared with adjacent sites with few SN varicosities. After treatments with 5-HT that evoked long-term changes in both the structure and the function of SN-L7 synaptic interaction, glutamate responses increased selectively at sites along the surface of L7's axon with preexisting or new SN varicosities. Increases in postsynaptic response to glutamate 24 hr after 5-HT treatment required interaction with an SN. These results suggest that new synapse formation between neurons, either with regeneration or after external stimuli that evoke increases in synaptic efficacy, involves site-specific changes in expression of functional neurotransmitter receptors on the postsynaptic cell that is regulated by interaction with the presynaptic neuron.
Collapse
|
11
|
Spencer GE, Lukowiak K, Syed NI. Dopamine regulation of neurite outgrowth from identified Lymnaea neurons in culture. Cell Mol Neurobiol 1996; 16:577-89. [PMID: 8956010 DOI: 10.1007/bf02152058] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1. An identified dopaminergic interneuron (RPeD1) of the snail Lymnaea stagnalis, makes specific synaptic connections with a number of target (VI and VJ) but not non-target (VF and RPB) neurons in vivo. When cultured in vitro with both target and non-target cells, RPeD1 re-establishes synapses with target cells only. 2. To test whether exogenous dopamine exerts effects on the neurite outgrowth of both target and non-target neurons respectively, these cells were cultured in conditioned media (CM) in the presence of dopamine (10(-5) M). The growth of the non-target cells was severely restricted and retarded in the presence of dopamine. These data suggest that dopamine may regulate neurite outgrowth of non-target cells in culture. 3. The growth regulatory effects of dopamine on the non-target cells were blocked in the presence of a dopamine receptor antagonist (R(+) SCH-23390, 10(-4) M). These results indicate that dopamine-induced growth regulation of the non-target cells is mediated via dopamine receptors on these cells. 4. In the absence of conditioned media, dopamine was not sufficient to exert growth promoting effects on either target or non-target cells. 5. Taken together, our data show that dopamine differentially regulates growth of identified Lymnaea neurons in culture. Dopamine alone, however, is not sufficient to initiate and support neurite outgrowth from these cells. Rather, it functions to suppress the neurite outgrowth of the non-target cells, initiated by the conditioned media.
Collapse
Affiliation(s)
- G E Spencer
- Department of Anatomy and Physiology, Respiratory and Neuroscience Research Group, Faculty of Medicine, Calgary, Alberta, Canada
| | | | | |
Collapse
|
12
|
Blagburn JM, Sosa MA, Blanco RE. Specificity of identified central synapses in the embryonic cockroach: appropriate connections form before the onset of spontaneous afferent activity. J Comp Neurol 1996; 373:511-28. [PMID: 8889942 DOI: 10.1002/(sici)1096-9861(19960930)373:4<511::aid-cne4>3.0.co;2-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanisms by which neurons recognize the appropriate postsynaptic cells remain largely unknown. A useful approach to this problem is to use a system with a few identifiable neurons that form highly specific synaptic connections. We studied the development of synapses between two identified cercal sensory afferents and two giant interneurons (GIs) in the embryonic cockroach Periplaneta americana. By 46% of embryonic development, the axons of the filiform hair sensory neurons have entered the terminal ganglionic neuropil and grow alongside the GI primary dendrites, although they do not form synapses. From 50% of development, the GI dendrites grow outward from the center of the neuropil to contact the presynaptic axons and their branches. The sensory neurons begin to spike at 52% of development, and, from 55% of development, these action potentials evoked excitatory postsynaptic potentials in the GIs. Synaptic contacts were first seen at this time. The pattern of synaptic connections was highly specific from the outset. G12 had strong input from the medial (M) afferent and had almost negligible input from the lateral (L) afferent, whereas G13 had input from both. This specificity was present before bursts of spontaneous activity began in the sensory neurons at 59% of development. G12 filopodia selectively formed synaptic contacts with the M axon rather than the L axon. The few contacts made by G12 with the L axon had a normal morphology but fewer presynaptic densities. Filopodial insertions were not involved in selective synapse formation. In this system, highly specific synaptic recognition appears to be activity independent.
Collapse
Affiliation(s)
- J M Blagburn
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan 00901.
| | | | | |
Collapse
|
13
|
Cellular mechanisms governing synapse formation: lessons from identified neurons in culture. INVERTEBRATE NEUROSCIENCE 1996. [DOI: 10.1007/bf02336656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
|
15
|
Lin DM, Fetter RD, Kopczynski C, Grenningloh G, Goodman CS. Genetic analysis of Fasciclin II in Drosophila: defasciculation, refasciculation, and altered fasciculation. Neuron 1994; 13:1055-69. [PMID: 7946345 DOI: 10.1016/0896-6273(94)90045-0] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Drosophila neural cell adhesion molecule Fasciclin II (Fas II) is expressed dynamically on a subset of embryonic CNS axons, many of which selectively fasciculate in the vMP2, MP1, and FN3 pathways. Here we show complementary fasII loss-of-function and gain-of-function phenotypes. Loss-of-function fasII mutations lead to the complete or partial defasciculation of all three pathways. Gain-of-function conditions, using a specific control element to direct increased levels of Fas II on the axons in these three pathways, rescue the loss-of-function phenotype. Moreover, the gain-of-function can alter fasciculation by abnormally fusing pathways together, in one case apparently by preventing normal defasciculation. These results define an in vivo function for Fas II as a neuronal recognition molecule that controls one mechanism of growth cone guidance-selective axon fasciculation--and genetically separates this function from other aspects of outgrowth and directional guidance.
Collapse
Affiliation(s)
- D M Lin
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
16
|
Abstract
The morphology, electrophysiology, and synaptic inputs of a ventrally located neuronal network from the CNS of the pond snail Lymnaea stagnalis was investigated. Three large, previously identified neurons [55] known as right parietal ventral one, two, and three (RPV1,2,&3) were found to be electrically coupled to one another. Coupling between either RPV1&2 or RPV1&3 was weak while coupling between RPV2&3 was strong. Consistent bursting activity was observed in neuron RPV1 while neurons RPV2&3 were either silent or fired tonically. When isolated in vitro, similar patterns of activity could be elicited in neurons RPV1-3. Lucifer yellow staining revealed that these cells send axons through nerves innervating musculature involved in locomotion, whole-body withdrawal, and cardio-respiratory function. Neurons RPV1-3 were found to be inhibited by an identified interneuron, visceral dorsal four, known to be directly involved in cardio-respiratory behavior [43]. Furthermore, neurons RPV1-3 were also inhibited by a wide-acting synaptic input, known as Input three [9], which is associated with respiratory pattern generation [43]. An interneuron, identified as right pedal dorsal eleven (RPeD11), which coordinates locomotory and withdrawal behavior [44], was found to excite neuron RPV1. When neurons RPeD11 and RPV1 were isolated in vitro and allowed to extend neurites, they formed a synaptic connection similar to that observed in the isolated brain. In vitro work on these neurons may make them an attractive model to study synapse formation and bursting activity.
Collapse
Affiliation(s)
- N S Magoski
- Department of Anatomy, Faculty of Medicine, University of Calgary, Alta., Canada
| | | | | |
Collapse
|