1
|
Armijo-Weingart L, Gallo G. It takes a village to raise a branch: Cellular mechanisms of the initiation of axon collateral branches. Mol Cell Neurosci 2017; 84:36-47. [PMID: 28359843 DOI: 10.1016/j.mcn.2017.03.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/03/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
The formation of axon collateral branches from the pre-existing shafts of axons is an important aspect of neurodevelopment and the response of the nervous system to injury. This article provides an overview of the role of the cytoskeleton and signaling mechanisms in the formation of axon collateral branches. Both the actin filament and microtubule components of the cytoskeleton are required for the formation of axon branches. Recent work has begun to shed light on how these two elements of the cytoskeleton are integrated by proteins that functionally or physically link the cytoskeleton. While a number of signaling pathways have been determined as having a role in the formation of axon branches, the complexity of the downstream mechanisms and links to specific signaling pathways remain to be fully determined. The regulation of intra-axonal protein synthesis and organelle function are also emerging as components of signal-induced axon branching. Although much has been learned in the last couple of decades about the mechanistic basis of axon branching we can look forward to continue elucidating this complex biological phenomenon with the aim of understanding how multiple signaling pathways, cytoskeletal regulators and organelles are coordinated locally along the axon to give rise to a branch.
Collapse
Affiliation(s)
- Lorena Armijo-Weingart
- Shriners Pediatric Research Center, Temple University, Department of Anatomy and Cell Biology, 3500 North Broad St, Philadelphia, PA 19140, United States
| | - Gianluca Gallo
- Shriners Pediatric Research Center, Temple University, Department of Anatomy and Cell Biology, 3500 North Broad St, Philadelphia, PA 19140, United States.
| |
Collapse
|
2
|
Greif KF, Asabere N, Lutz GJ, Gallo G. Synaptotagmin-1 promotes the formation of axonal filopodia and branches along the developing axons of forebrain neurons. Dev Neurobiol 2012; 73:27-44. [PMID: 22589224 DOI: 10.1002/dneu.22033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 04/29/2012] [Accepted: 05/08/2012] [Indexed: 01/01/2023]
Abstract
Synaptotagmin-1 (syt1) is a Ca(2+)-binding protein that functions in regulation of synaptic vesicle exocytosis at the synapse. Syt1 is expressed in many types of neurons well before synaptogenesis begins both in vivo and in vitro. To determine if expression of syt1 has a functional role in neuronal development before synapse formation, we examined the effects of syt1 overexpression and knockdown on the growth and branching of the axons of cultured primary embryonic day 8 chicken forebrain neurons. In vivo these neurons express syt1, and most have not yet extended axons. We present evidence that syt1 plays a role in regulating axon branching, while not regulating overall axon length. To study the effects of overexpression of syt1, we used adenovirus-mediated infection to introduce a syt1-YFP construct, or control GFP construct, into neurons. Syt1 levels were reduced using RNA interference. Overexpression of syt1 increased the formation of axonal filopodia and branches. Conversely, knockdown of syt1 decreased the number of axonal filopodia and branches. Time-lapse analysis of filopodial dynamics in syt1-overexpressing cells demonstrated that elevation of syt1 levels increased both the frequency of filopodial initiation and their lifespan. Taken together these data indicate that syt1 regulates the formation of axonal filopodia and branches before engaging in its conventional functions at the synapse.
Collapse
Affiliation(s)
- Karen F Greif
- Department of Biology, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, USA.
| | | | | | | |
Collapse
|
3
|
Reilly JE, Hanson HH, Phillips GR. Persistence of excitatory shaft synapses adjacent to newly emerged dendritic protrusions. Mol Cell Neurosci 2011; 48:129-36. [PMID: 21784157 DOI: 10.1016/j.mcn.2011.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 11/30/2022] Open
Abstract
In the early postnatal hippocampus, the first synapses to appear on excitatory pyramidal neurons are formed directly on dendritic shafts. Very few dendritic spines are present at this time. By adulthood, however, the overwhelming majority of synapses are located at the tips of dendritic spines. Several models have been proposed to account for the transition from mostly shaft to mostly spinous synapses but none has been demonstrated conclusively. To investigate the cellular mechanism underlying the shaft-to-spinous synapse transition, we designed live imaging experiments to directly observe the dynamics of shaft and spinous synapses on developing dendrites. Immunofluorescent synaptic labeling of GFP-filled neurons showed that the shaft-to-spinous synapse transition in dissociated culture mirrors that in vivo. Along with electron microscopy, the fluorescent labeling also showed that veritable shaft synapses are abundant in dissociated culture and that shaft synapses are frequently adjacent to spines or other dendritic protrusions, a configuration previously observed in vivo by others. We used live long-term time lapse confocal microscopy of GFP-filled dendrites and VAMP2-DsRed-labeled boutons to record the fate of shaft synapses and associated dendritic protrusions and boutons with images taken hourly for up to 31 continuous hours. Inspection of the time lapse imaging series revealed that shaft synapses can persist adjacent to either existing or newly grown dendritic protrusions. Alternatively, a shaft synapse bouton can redistribute to contact an adjacent dendritic protrusion. However, we never observed shaft synapses transforming themselves into spines or any type of dendritic protrusions. We conclude that repeated iterations of dendritic protrusion or spine outgrowth adjacent to shaft synapses is very likely to be a critical component of the shaft-to-spinous synapse transition during CNS development.
Collapse
Affiliation(s)
- James E Reilly
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L Levy Place, Box 1065, New York, NY 10029, USA
| | | | | |
Collapse
|
4
|
Effects of disrupting calcium homeostasis on neuronal maturation: early inhibition and later recovery. Cell Mol Neurobiol 2008; 28:389-409. [PMID: 18196452 DOI: 10.1007/s10571-007-9255-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 12/14/2007] [Indexed: 10/22/2022]
Abstract
It has become increasingly clear that agents that disrupt calcium homeostasis may also be toxic to developing neurons. Using isolated primary neurons, we sought to understand the neurotoxicity of agents such as MK801 (which blocks ligand-gated calcium entry), BAPTA (which chelates intracellular calcium), and thapsigargin (TG; which inhibits the endoplasmic reticulum Ca(2+)-ATPase pump). Thus, E18 rat cortical neurons were grown for 1 day in vitro (DIV) and then exposed to vehicle (0.1% DMSO), MK801 (0.01-20 microM), BAPTA (0.1-20 microM), or TG (0.001-1 microM) for 24 h. We found that all three agents could profoundly influence early neuronal maturation (growth cone expansion, neurite length, neurite complexity), with the order of potency being MK801 < BAPTA < TG. We next asked if cultures exposed to these agents were able to re-establish their developmental program once the agent was removed. When we examined network maturity at 4 and 7 DIV, the order of recovery was MK801 > BAPTA > TG. Thus, mechanistically distinct ways of disrupting calcium homeostasis differentially influenced both short-term and long-term neuronal maturation. These observations suggest that agents that act by altering intracellular calcium and are used in obstetrics or neonatology may be quite harmful to the still-developing human brain.
Collapse
|
5
|
Xing B, Ashleigh Long A, Harrison DA, Cooper RL. Developmental consequences of neuromuscular junctions with reduced presynaptic calcium channel function. Synapse 2005; 57:132-47. [PMID: 15945059 DOI: 10.1002/syn.20165] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evoked neurotransmitter release at the Drosophila neuromuscular junction (NMJ) is regulated by the amount of calcium influx at the presynaptic nerve terminal, as for most chemical synapses. Calcium entry occurs via voltage-gated calcium channels. The temperature-sensitive Drosophila mutant, cac(TS2), has a reduced amount of calcium entry during evoked stimulation. We have used this mutation to examine homeostatic regulatory mechanisms during development of the NMJ on muscle 6 within the developing larva. The amplitude of the excitatory postsynaptic potentials are reduced for both the Ib and Is motor neurons in 3rd instar larvae which have been raised at 33 degrees C from the 1st instar stage. Larvae raised at 25 degrees C and larvae pulsed at 33 degrees C from the late 2nd instar for various lengths of time show a reduced synaptic efficacy as a 3rd instar. The results indicate that the nerve terminal cannot fully compensate physiologically in the regulation of synaptic transmission during larval life for a reduced amount of evoked calcium entry. Morphological comparisons of Ib and Is terminals in relation to length and numbers of varicosities are significantly reduced in cac(TS2), which also suggests a lack in homeostatic ability. These findings are relevant since many deficits in synaptic transmission in various systems are compensated for either physiologically or structural over development, but not in this case for reduced calcium entry during evoked transmission.
Collapse
Affiliation(s)
- Bin Xing
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| | | | | | | |
Collapse
|
6
|
Hoshino M, Tatsumi H, Nakashima T, Sokabe M. In vitro reconstitution of signal transmission from a hair cell to the growth cone of a chick vestibular ganglion cell. Neuroscience 2003; 120:993-1003. [PMID: 12927205 DOI: 10.1016/s0306-4522(03)00224-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Signal transmission from a chick hair cell to the growth cone of a vestibular ganglion cell was examined by placing an acutely dissociated hair cell on the growth cone of a cultured vestibular ganglion cell. Electrical stimuli were applied to the hair cell while monitoring the intracellular Ca(2+) concentration ([Ca(2+)](i)) at the growth cone or recording whole-cell currents from the vestibular ganglion cell. Electrical stimulation of the hair cell induced [Ca(2+)](i) increases at the growth cone and inward currents in the vestibular ganglion cell. The [Ca(2+)](i) increase was blocked by 6-cyano-7-nitroquinoxaline (CNQX) (10 microM) but not by 2-amino-5-phosphonovaleric acid (APV; 50 microM). Glutamate (100 nM-300 microM) applied to the vestibular ganglion cell by the Y-tube method induced inward currents which were also antagonized by CNQX, but not by APV. These results indicate that the electrical stimulation of a hair cell induced glutamate or glutamate like agent release from the hair cell, which activated non-N-methyl-D-aspartate receptors at the growth cone of the vestibular ganglion cell, followed by action potentials and [Ca(2+)](i) elevation in the vestibular ganglion cell. This is the first demonstration of in vitro reconstitution of functional signal transmission from a hair cell to a vestibular ganglion cell.
Collapse
MESH Headings
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Animals
- Animals, Newborn
- Calcium/metabolism
- Cells, Cultured
- Chick Embryo
- Dose-Response Relationship, Drug
- Electric Stimulation
- Evoked Potentials/drug effects
- Evoked Potentials/physiology
- Excitatory Amino Acid Antagonists/pharmacology
- Fura-2/analogs & derivatives
- Fura-2/metabolism
- Ganglia, Sensory/cytology
- Ganglia, Sensory/drug effects
- Ganglia, Sensory/metabolism
- Ganglia, Sensory/physiology
- Glutamic Acid/pharmacology
- Growth Cones/drug effects
- Growth Cones/metabolism
- Growth Cones/physiology
- Hair Cells, Vestibular/drug effects
- Hair Cells, Vestibular/metabolism
- Hair Cells, Vestibular/physiology
- Hippocampus/cytology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Immunohistochemistry
- In Vitro Techniques
- Neural Conduction/drug effects
- Patch-Clamp Techniques
- Rats
- Rats, Wistar
- Receptors, AMPA/metabolism
- Signal Transduction/physiology
- Time Factors
- Valine/analogs & derivatives
- Valine/pharmacology
- Vestibule, Labyrinth/cytology
- Vestibule, Labyrinth/drug effects
- Vestibule, Labyrinth/metabolism
- Vestibule, Labyrinth/physiology
Collapse
Affiliation(s)
- M Hoshino
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | | | | | | |
Collapse
|
7
|
Molnár Z, Kurotani T, Higashi S, Yamamoto N, Toyama K. Development of functional thalamocortical synapses studied with current source-density analysis in whole forebrain slices in the rat. Brain Res Bull 2003; 60:355-71. [PMID: 12781324 DOI: 10.1016/s0361-9230(03)00061-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We analysed the laminar distribution of transmembrane currents from embryonic (E) day 17 until adulthood after selective thalamic stimulation in slices of rat forebrain to study the development of functional thalamocortical and cortico-cortical connections. At E18 to birth a short-latency current sink was observed in the subplate and layer 6, which was decreased, but not fully abolished in a cobalt containing solution or after the application of glutamate receptor blockers (APV and DNQX). This indicated that embryonic thalamic axons were capable of conducting action potentials to the cortex and some of them had already formed functional synapses there. Between birth and P3, when thalamic axons were completing their upward growth, a sink gradually appeared more superficially in the dense cortical plate and synchronously, a current source aroused in layer 5. Both sinks and sources completely disappeared after blocking synaptic transmission. The adult-like distribution of CSDs became apparent after P7. The component in layer 6 cannot be blocked completely after this age suggesting antidromic activation. This study demonstrated that cells of the lowest layers of the cortex received functional thalamic input before birth and that thalamocortical axons formed synapses with more superficial cells as they grew into the cortical plate.
Collapse
Affiliation(s)
- Zoltán Molnár
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, OX1 3QX, Oxford, UK.
| | | | | | | | | |
Collapse
|
8
|
Abstract
Here we describe the techniques developed to image Ca2+ signals in motile nerve growth cones both in culture and in the developing Xenopus spinal cord. We have used these methods to identify two spatially and temporally distinct classes of Ca2+ transients in growth cones. Imaging Ca2+ in morphologically complex migratory cells allows for analysis and correlation of discrete signals with a wide variety of cellular behaviors. For example, we find that localized Ca2+ changes at the tips of individual filopodia correlate with reduced filopodial motility. Further, rapid fixation after Ca2+ imaging made it possible to determine that transients occur at integrin receptor clusters that may generate and in turn be regulated by these local signals. We describe the use of caged-Ca2+ to locally impose Ca2+ transients in individual filopodia and find this treatment sufficient to repel neurite outgrowth. Calcium signals across broad spatial and temporal dimensions are universal regulators of numerous complex and varied cellular functions. The imaging methods we describe here begin to view growth cones over a range of spatial resolutions and temporal frequencies necessary to detect different types of Ca2+ transients, however it is clear that not all dimensions have been examined. In particular, imaging cells more rapidly and at higher magnification may one day allow us to detect more elemental events such as single-channel openings, as has been achieved in nonneuronal cells. We also describe techniques used to examine Ca2+ signals in growth cones migrating within the spinal cord. These types of studies are ultimately necessary to confirm the relevance of in vitro findings. Although designed for the Xenopus spinal cord, the methods we outline should be applicable to other tissues and organisms. Finally, we use caged Ca2+ as a tool to reproduce very precise changes in cytosolic Ca2+ levels. This is a powerful means to test the function of different types of Ca2+ transients and assess the downstream regulators of those signals. These types of manipulations can also be used with other types of caged compounds, many of which are commercially available (Molecular Probes) or readily synthesized.
Collapse
Affiliation(s)
- Timothy M Gómez
- Department of Anatomy, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
9
|
Meberg PJ, Ono S, Minamide LS, Takahashi M, Bamburg JR. Actin depolymerizing factor and cofilin phosphorylation dynamics: response to signals that regulate neurite extension. CELL MOTILITY AND THE CYTOSKELETON 2000; 39:172-90. [PMID: 9484959 DOI: 10.1002/(sici)1097-0169(1998)39:2<172::aid-cm8>3.0.co;2-8] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The actin assembly-regulating activity of actin depolymerizing factor (ADF)/ cofilin is inhibited by phosphorylation. Studies were undertaken to characterize the signaling pathways and phosphatases involved in activating phosphorylated ADF (pADF), emphasizing signals related to neuronal process extension. Western blots using antibodies to ADF and cofilin, as well as an ADF/cofilin phosphoepitope-specific antibody characterized in this paper, were used to measure changes in the phosphorylation state and phosphate turnover of ADF/cofilin in response to inhibitors and agents known to influence growth cone motility. Increases in both [Ca2+]i and cAMP levels induced rapid pADF dephosphorylation in HT4 and cortical neurons. Calcium-dependent dephosphorylation depended on the activation of protein phosphatase 2B (PP2B), while cAMP-dependent dephosphorylation was likely through activation of PP1. Growth factors such as NGF and insulin also induced rapid pADF/pcofilin dephosphorylation, with NGF-stimulated dephosphorylation in PC12 cells correlated with the translocation of ADF/cofilin to ruffling membranes. Of special interest was the finding that the rate of phosphate turnover on both pADF and pcofilin could be enhanced by growth factors without changing net pADF levels, demonstrating that growth factors can activate bifurcating pathways that promote both phosphorylation and dephosphorylation of ADF/cofilin. All experimental results indicated that dynamics of phosphorylation on ADF and cofilin are coordinately regulated. Signals that decreased pADF levels are associated with increased process extension, while agents that increased pADF levels, such as lysophosphatidic acid, inhibit process extension. These data indicate that dephosphorylation/activation of pADF is a significant response to the activation of signal pathways that regulate actin dynamics and alter cell morphology and neuronal outgrowth.
Collapse
Affiliation(s)
- P J Meberg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523-1870, USA
| | | | | | | | | |
Collapse
|
10
|
Ruthel G, Banker G. Actin-dependent anterograde movement of growth-cone-like structures along growing hippocampal axons: a novel form of axonal transport? CELL MOTILITY AND THE CYTOSKELETON 2000; 40:160-73. [PMID: 9634213 DOI: 10.1002/(sici)1097-0169(1998)40:2<160::aid-cm5>3.0.co;2-j] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In time-lapse video recordings of hippocampal neurons in culture, we have identified previously uncharacterized structures, nicknamed "waves," that exhibit lamellipodial activity closely resembling that of growth cones, but which periodically emerge at the base of axons and travel distally at an average rate of 3 microm/min. In electron micrographs of identified waves, the cortical region of the axon appears expanded to either side, forming lamellipodia like those at growth cones. No other gross differences were noted in the ultrastructural features of the axon shaft at the site of a wave. Immunocytochemistry revealed that waves contain a marked concentration of F-actin, GAP-43, cortactin, and ezrin or a related protein, constituents that are also concentrated in growth cones. Treatment with the actin-disrupting agent cytochalasin B caused a reversible collapse of lamellipodia and cessation of the forward movement of individual waves along the axon, indicating that their anterograde transport is dependent on intact actin filaments. Treatment with the microtubule-depolymerizing agent nocodazole led to a rapid disorganization of wave structure and a subsequent suppression of wave activity that may reflect a role of microtubules in actin organization. The results suggest that actin and other cytoskeletal components concentrated in growth cones may be transported together as growth-cone-like structures from the cell body to the axon tip via an actin-dependent mechanism.
Collapse
Affiliation(s)
- G Ruthel
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, USA.
| | | |
Collapse
|
11
|
Abstract
Neurotrophins play major roles in the developing nervous system in controlling neuronal differentiation, neurite outgrowth, guidance and branching, synapse formation and maturation, and neuronal survival or death. There is increasing evidence that nervous system construction takes place in the presence of dc electric fields, which fluctuate dynamically in space and time during embryonic development. These have their origins in the neural tube itself, as well as in surrounding skin and gut. Early disruption of these endogenous electric fields causes failure of the nervous system to form, or else it forms aberrantly. Nerve growth, guidance, and branching are controlled tightly during pathway construction and in vitro dc electric fields have profound effects on each of these behaviours. We have used cultured neurones to ask whether neurotrophins and dc electric fields might interact in shaping neuronal growth, given their coexistence in vivo. Electric field-directed nerve growth generally was enhanced by the simultaneous presentation of several neurotrophins to the growth cone. Under certain circumstances, more nerves turned cathodally, they turned faster, further, and in lower field strengths. Intriguingly, other combinations of dc electric field and neurotrophins (low field strength and neurotrophin 3 (NT-3) switched the direction of growth cone turning. Additionally, cathodally directed nerve growth was faster and directed branching was much more common when electric fields and neurotrophins interacted with neuronal growth cones. Given such profound changes in growth cone behaviour in vitro, neurotrophins and endogenous electric fields are likely to interact in vivo.
Collapse
Affiliation(s)
- C D McCaig
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Scotland.
| | | | | |
Collapse
|
12
|
Abstract
Major technical advances in the imaging of live cells have led to a recent flurry of studies demonstrating how dendrites remodel dynamically during development. Taken together with our current understanding of axonal development, these studies help provide a more unified picture of how neural circuits might be formed altered or maintained throughout life.
Collapse
Affiliation(s)
- W T Wong
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | |
Collapse
|
13
|
Van Wagenen S, Cheng S, Rehder V. Stimulation-induced changes in filopodial dynamics determine the action radius of growth cones in the snail Helisoma trivolvis. CELL MOTILITY AND THE CYTOSKELETON 1999; 44:248-62. [PMID: 10602254 DOI: 10.1002/(sici)1097-0169(199912)44:4<248::aid-cm3>3.0.co;2-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Filopodia on neuronal growth cones constantly extend and retract, thereby functioning as both sensory probes and structural devices during neuronal pathfinding. To better understand filopodial dynamics and their regulation by encounters with molecules in the environment, we investigated filopodial dynamics of identified B5 neurons from the buccal ganglion of the snail Helisoma trivolvis before and after treatment with nitric oxide (NO). We have previously demonstrated that treatment with several NO-donors caused a transient, cGMP-mediated elevation in [Ca(2+)](i), which was causally related to an increase in filopodial length and a reduction in the number of filopodia on growth cones. We demonstrate here that these effects were the result of distinct changes in filopodial dynamics. The NO-donor SIN-1 induced a general increase in filopodial motility. Filopodial elongation after treatment with SIN-1 resulted from a significant increase in the rate at which filopodia extended, as well as a significant increase in the time filopodia spent elongating. The reduction in filopodial number was caused by a significant decrease in the frequency with which new filopodia were inserted into the growth cone. With the exception of the back where filopodia appeared less motile, filopodial dynamics appeared to be mostly independent of the location on the growth cone. These results suggest that NO can regulate filopodial dynamics on migrating growth cones and might function as a messenger to adjust the action radius of a growth cone during pathfinding.
Collapse
Affiliation(s)
- S Van Wagenen
- Biology Department, Georgia State University, Atlanta
| | | | | |
Collapse
|
14
|
Abstract
Growth cone filopodia function both as structural and sensory devices during neuronal pathfinding and their presence is important for correct growth cone navigation. It is assumed that a growth cone can adjust the area of the environment it can explore by regulating the length and number of its filopodial sensors, and in several cell types, these parameters are controlled by the intracellular calcium concentration ([Ca(2+)](i)). In the present report, we address the question whether [Ca(2+)](i) is a general regulator of growth cone filopodia, or whether different cell types utilize different second-messenger systems for this purpose. We show that increasing [Ca(2+)](i) in growth cones of chick dorsal root ganglion (DRG) neurons does not affect average filopodial length in this cell type, suggesting that this parameter is not controlled by [Ca(2+)](i) in chick DRG neurons. Further, we demonstrate that the second-messenger protein kinase C (PKC) is involved in the regulation of filopodial length in chick DRG neurons. Activation of PKC with the phorbol ester, phorbol myristate-13-acetate (PMA), caused filopodial shortening, whereas inhibition of PKC with either bisindolylmaleimide I or calphostin C caused a significant elongation of filopodia. Although the pathway through which PKC mediates its effect on growth cone filopodia in chick DRG neurons remains to be identified, our results indicate that filopodial regulation by [Ca(2+)](i), though clearly important in several other neuronal cell types in vitro, appears to be less important in chick DRG neurons. Rather, we find that in chick DRG neurons, filopodial parameters are controlled by PKC.
Collapse
Affiliation(s)
- J Bonsall
- Biology Department, Center for Neural Communication and Computation, Georgia State University, University Plaza, 402 Kell Hall, Atlanta, GA 30303, USA
| | | |
Collapse
|
15
|
Davenport RW, Thies E, Cohen ML. Neuronal growth cone collapse triggers lateral extensions along trailing axons. Nat Neurosci 1999; 2:254-9. [PMID: 10195218 DOI: 10.1038/6360] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Axonal outgrowth is generally thought to be controlled by direct interaction of the lead growth cone with guidance cues, and, in trailing axons, by fasciculation with pioneer fibers. Responses of axons and growth cones were examined as cultured retinal ganglion cell (RGC) axons encountered repellent cues. Either contact with cells expressing ephrins or mechanical probing increased the probability of lead growth cone retraction. Lateral extension of filopodia and lamellipodia hundreds of microns behind the lead growth cone was correlated with its collapse. Transmission electron microscopy showed that some of the lateral extensions originate from the pioneer axon, whereas others represent growth cones of defasciculating trailing axons.
Collapse
Affiliation(s)
- R W Davenport
- Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480, USA.
| | | | | |
Collapse
|
16
|
Matheson SF, Levine RB. Steroid hormone enhancement of neurite outgrowth in identified insect motor neurons involves specific effects on growth cone form and function. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(199901)38:1<27::aid-neu3>3.0.co;2-u] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Interstitial branches develop from active regions of the axon demarcated by the primary growth cone during pausing behaviors. J Neurosci 1998. [PMID: 9742160 DOI: 10.1523/jneurosci.18-19-07930.1998] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interstitial branches arise from the axon shaft, sometimes at great distances behind the primary growth cone. After a waiting period that can last for days after extension of the primary growth cone past the target, branches elongate toward their targets. Delayed interstitial branching is an important but little understood mechanism for target innervation in the developing CNS of vertebrates. One possible mechanism of collateral branch formation is that the axon shaft responds to target-derived signals independent of the primary growth cone. Another possibility is that the primary growth cone recognizes the target and demarcates specific regions of the axon for future branching. To address whether behaviors of the primary growth cone and development of interstitial branches are related, we performed high-resolution time-lapse imaging on dissociated sensorimotor cortical neurons that branch interstitially in vivo. Imaging of entire cortical neurons for periods of days revealed that the primary growth cone pauses in regions in which axon branches later develop. Pausing behaviors involve repeated cycles of collapse, retraction, and extension during which growth cones enlarge and reorganize. Remnants of reorganized growth cones are left behind on the axon shaft as active filopodial or lamellar protrusions, and axon branches subsequently emerge from these active regions of the axon shaft. In this study we propose a new model to account for target innervation in vivo by interstitial branching. Our model suggests that delayed interstitial branching results directly from target recognition by the primary growth cone.
Collapse
|
18
|
Abstract
The sprouting of axon collateral branches is important in the establishment and refinement of neuronal connections during both development and regeneration. Collateral branches are initiated by the appearance of localized filopodial activity along quiescent axonal shafts. We report here that sensory neuron axonal shafts rapidly sprout filopodia at sites of contact with nerve growth factor-coated polystyrene beads. Some sprouts can extend up to at least 60 micro(m) through multiple bead contacts. Axonal filopodial sprouts often contained microtubules and exhibited a debundling of axonal microtubules at the site of bead-axon contact. Cytochalasin treatment abolished the filopodial sprouting, but not the accumulation of actin filaments at sites of bead-axon contact. The axonal sprouting response is mediated by the trkA receptor and likely acts through a phosphoinositide-3 kinase-dependent pathway, in a manner independent of intracellular Ca2+ fluctuations. These findings implicate neurotrophins as local cues that directly stimulate the formation of collateral axon branches.
Collapse
|
19
|
Abstract
The fan-shaped array of filopodia is the first site of contact of a neuronal growth cone with molecules encountered during neuronal pathfinding. Filopodia are highly dynamic structures, and the "action radius" of a growth cone is strongly determined by the length and number of its filopodia. Since interactions of filopodia with instructive cues in the vicinity of the growth cone can have effects on growth cone morphology within minutes, it has to be assumed that a large part of the signaling underlying such morphological changes resides locally within the growth cone proper. In this study, we tested the hypothesis that two important growth cone parameters-namely, the length and number of its filopodia-are regulated autonomously in the growth cone. We previously demonstrated in identified neurons from the snail Helisoma trivolvis that filopodial length and number are regulated by intracellular calcium. Here, we investigated filopodial dynamics and their regulation by the second-messenger calcium in growth cones which were physically isolated from their parent neuron by neurite transection. Our results show that isolated growth cones have longer but fewer filopodia than growth cones attached to their parent cell. These isolated growth cones, however, are fully capable of undergoing calcium-induced cytoskeletal changes, suggesting that the machinery necessary to perform changes in filopodial length and number is fully intrinsic to the growth cone proper.
Collapse
Affiliation(s)
- V Rehder
- Biology Department, Georgia State University, Atlanta 30303, USA
| | | |
Collapse
|
20
|
Goshima Y, Kawakami T, Hori H, Sugiyama Y, Takasawa S, Hashimoto Y, Kagoshima-Maezono M, Takenaka T, Misu Y, Strittmatter SM. A novel action of collapsin: collapsin-1 increases antero- and retrograde axoplasmic transport independently of growth cone collapse. JOURNAL OF NEUROBIOLOGY 1997; 33:316-28. [PMID: 9298768 DOI: 10.1002/(sici)1097-4695(199709)33:3<316::aid-neu9>3.0.co;2-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chick collapsin-1, a member of the semaphorin family, has been implicated in axonal pathfinding as a repulsive guidance cue. Collapsin-1 induces growth cone collapse via a pathway which may include CRMP-62 and heterotrimeric G proteins. CRMP-62 protein is related to UNC-33, a nematode neuronal protein required for appropriately directed axonal extension. Mutations in unc-33 affect neural microtubules, the basic cytoskeletal elements for axoplasmic transport. Using computer-assisted video-enhanced differential interference contrast microscopy, we now demonstrate that collapsin-1 potently promotes axoplasmic transport. Collapsin-1 doubles the number of antero- and retrograde-transported organelles but not their velocity. Collapsin-1 decreases the number of stationary organelles, suggesting that the fraction of time during which a particle is moving is increased. Collapsin-1-stimulated transport occurs by a mechanism distinct from that causing growth cone collapse. Pertussis toxin (PTX) but not its B oligomer blocks collapsin-induced growth cone collapse. The holotoxin does not affect collapsin-stimulated axoplasmic transport. Mastoparan and a myelin protein NI-35 induce PTX-sensitive growth cone collapse but do not stimulate axoplasmic transport. These results provide evidence that collapsin has a unique property to activate axonal vesicular transport systems. There are at least two distinct pathways through which collapsin exerts its actions in developing neurons.
Collapse
Affiliation(s)
- Y Goshima
- Department of Pharmacology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Garrison DW, Foreman RD. Classification of dorsal horn neurons based on somatic receptive fields in cats with intact and transected spinal cords: neural plasticity. Brain Res 1997; 762:228-30. [PMID: 9262179 DOI: 10.1016/s0006-8993(97)00486-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Classification of dorsal horn neurons based on cell activity responses to somatic receptive fields stimulation, was compared between anesthetized cats with transected or intact cords. Results showed a significant (P < or = 0.001) difference. In animals with transected cords, dorsal horn neurons responded with less specificity to noxious and innocuous stimulation. The results are consistent with the proposition that loss of supraspinal influences plays a significant role in determining response characteristics of dorsal horn neurons.
Collapse
Affiliation(s)
- D W Garrison
- Department of Allied Health Education, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA.
| | | |
Collapse
|
22
|
Abstract
GABA (gamma-aminobutyrate) is the most prevalent inhibitory transmitter in the mature hypothalamus. In contrast, in the developing hypothalamus, GABA may exert depolarizing actions leading to neuronal excitation. To determine whether GABA is present in hypothalamic neurons early in development, and whether there is a preferential expression in axonal growth cones, immunogold and peroxidase studies were used with light and whole mount transmission electron microscopy. At embryonic day 15, a stage of development at the beginning of hypothalamic neurogenesis, histological sections showed GABA immunoreactivity in fibers and weakly stained perikarya. Hypothalamic neurons (13%) cultured at embryonic day 15 were immunoreactive after 1 day in vitro. The percentage of neurons stained, and the intensity of staining increased during the next few days to 39% at 4 days in vitro. Neuritic growth cones, including lamellipodia and long filopodia, showed strong immunoreactivity before synaptogenesis. By using neuronal whole mounts studied with transmission electron microscopy and GABA silver-enhanced immunogold staining, a quantitative comparison of growth cones after a day and a half in culture revealed that the growth cone of the longest process, the putative axon, had a greater level of immunogold labeling than that of the shorter processes, the putative dendrites. This finding is one of the earliest biochemical differences between putative axons and dendrites. Astrocytes in the same cultures showed no immunolabeling. These results indicate that GABA is present very early in the development of hypothalamic neurons and is in a position to be released.
Collapse
Affiliation(s)
- A N van den Pol
- Section of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
23
|
Localized and transient elevations of intracellular Ca2+ induce the dedifferentiation of axonal segments into growth cones. J Neurosci 1997. [PMID: 9133380 DOI: 10.1523/jneurosci.17-10-03568.1997] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The formation of a growth cone at the tip of a severed axon is a key step in its successful regeneration. This process involves major structural and functional alterations in the formerly differentiated axonal segment. Here we examined the hypothesis that the large, localized, and transient elevation in the free intracellular calcium concentration ([Ca2+]i) that follows axotomy provides a signal sufficient to trigger the dedifferentiation of the axonal segment into a growth cone. Ratiometric fluorescence microscopy and electron microscopy were used to study the relations among spatiotemporal changes in [Ca2+]i, growth cone formation, and ultrastructural alterations in axotomized and intact Aplysia californica neurons in culture. We report that, in neurons primed to grow, a growth cone forms within 10 min of axotomy near the tip of the transected axon. The nascent growth cone extends initially from a region in which peak intracellular Ca2+ concentrations of 300-500 microM are recorded after axotomy. Similar [Ca2+]i transients, produced in intact axons by focal applications of ionomycin, induce the formation of ectopic growth cones and subsequent neuritogenesis. Electron microscopy analysis reveals that the ultrastructural alterations associated with axotomy and ionomycin-induced growth cone formation are practically identical. In both cases, growth cones extend from regions in which sharp transitions are observed between axoplasm with major ultrastructural alterations and axoplasm in which the ultrastructure is unaltered. These findings suggest that transient elevations of [Ca2+]i to 300-500 microM, such as those caused by mechanical injury, may be sufficient to induce the transformation of differentiated axonal segments into growth cones.
Collapse
|
24
|
Abstract
Cytoplasmic calcium plays a key role in neurite growth. In contrast to previous work suggesting that gamma aminobutyrate's (GABA) role in regulating growth cone calcium is primarily to antagonize the effects of glutamate, we report that GABA can act in an excitatory manner on developing hypothalamic neurites, independently raising calcium in growing neurites and their growth cones. Time-lapse digital video and confocal laser microscopy with the calcium-sensitive dyes fluo-3 and fura-2 were used to study the influence of GABA on neurite calcium levels. GABA (10 microM) evoked a calcium rise in both bicarbonate- and Hepes-based buffers. The calcium rise was greatly reduced after chloride transport was blocked. GABA raised calcium by stimulating the cell body, resulting in an increase in calcium throughout the neuronal cell body and dendritic arbor. GABA also acted locally, stimulating a neuritic calcium rise only in a single dendrite or growth cone. In some neurites and growth cones during early development, GABA generated a greater calcium rise than did glutamate. Bicuculline, a GABAA receptor antagonist, reduced calcium levels in neurites of young synaptically coupled neurons, indicating that ongoing synaptic release of GABA raised neuritic calcium. These data suggest that during early development, GABA may play a significant role in regulating process growth and modulating the formation of early connections in the hypothalamus. Our data support the hypothesis that GABA receptors are functionally active and may play a calcium regulating role similar to that of glutamate in neuronal development. This is particularly true in early development, as later in development GABA's role becomes more inhibitory, and glutamate plays the primary excitatory role.
Collapse
Affiliation(s)
- K Obrietan
- Section of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|