1
|
Li LY, Imai A, Izumi H, Inoue R, Koshidaka Y, Takao K, Mori H, Yoshida T. Differential contribution of canonical and noncanonical NLGN3 pathways to early social development and memory performance. Mol Brain 2024; 17:16. [PMID: 38475840 PMCID: PMC10935922 DOI: 10.1186/s13041-024-01087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Neuroligin (NLGN) 3 is a postsynaptic cell adhesion protein organizing synapse formation through two different types of transsynaptic interactions, canonical interaction with neurexins (NRXNs) and a recently identified noncanonical interaction with protein tyrosine phosphatase (PTP) δ. Although, NLGN3 gene is known as a risk gene for neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID), the pathogenic contribution of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ pathways to these disorders remains elusive. In this study, we utilized Nlgn3 mutant mice selectively lacking the interaction with either NRXNs or PTPδ and investigated their social and memory performance. Neither Nlgn3 mutants showed any social cognitive deficiency in the social novelty recognition test. However, the Nlgn3 mutant mice lacking the PTPδ pathway exhibited significant decline in the social conditioned place preference (sCPP) at the juvenile stage, suggesting the involvement of the NLGN3-PTPδ pathway in the regulation of social motivation and reward. In terms of learning and memory, disrupting the canonical NRXN pathway attenuated contextual fear conditioning while disrupting the noncanonical NLGN3-PTPδ pathway enhanced it. Furthermore, disruption of the NLGN3-PTPδ pathway negatively affected the remote spatial reference memory in the Barnes maze test. These findings highlight the differential contributions of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ synaptogenic pathways to the regulation of higher order brain functions associated with ASD and ID.
Collapse
Affiliation(s)
- Lin-Yu Li
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Ayako Imai
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Ran Inoue
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Yumie Koshidaka
- Division of Experimental Animal Resource and Development, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Keizo Takao
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Division of Experimental Animal Resource and Development, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan.
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
2
|
Kurihara Y, Mitsunari K, Mukae N, Shoji H, Miyakawa T, Shirane M. PDZD8-deficient mice manifest behavioral abnormalities related to emotion, cognition, and adaptation due to dyslipidemia in the brain. Mol Brain 2023; 16:11. [PMID: 36658656 PMCID: PMC9854033 DOI: 10.1186/s13041-023-01002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Although dyslipidemia in the brain has been implicated in neurodegenerative disorders, the molecular mechanisms underlying its pathogenesis have been largely unclear. PDZD8 is a lipid transfer protein and mice deficient in PDZD8 (PDZD8-KO mice) manifest abnormal accumulation of cholesteryl esters (CEs) in the brain due to impaired lipophagy, the degradation system of lipid droplets. Here we show the detailed mechanism of PDZD8-dependent lipophagy. PDZD8 transports cholesterol to lipid droplets (LDs), and eventually promotes fusion of LDs and lysosomes. In addition, PDZD8-KO mice exhibit growth retardation, hyperactivity, reduced anxiety and fear, increased sensorimotor gating, and impaired cued fear conditioned memory and working memory. These results indicate that abnormal CE accumulation in the brain caused by PDZD8 deficiency affects emotion, cognition and adaptive behavior, and that PDZD8 plays an important role in the maintenance of brain function through lipid metabolism.
Collapse
Affiliation(s)
- Yuji Kurihara
- grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Japan
| | - Kotone Mitsunari
- grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Japan
| | - Nagi Mukae
- grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Japan
| | - Hirotaka Shoji
- grid.256115.40000 0004 1761 798XDivision of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi Japan
| | - Tsuyoshi Miyakawa
- grid.256115.40000 0004 1761 798XDivision of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi Japan
| | - Michiko Shirane
- grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Japan
| |
Collapse
|
3
|
Hagihara H, Shoji H, Kuroiwa M, Graef IA, Crabtree GR, Nishi A, Miyakawa T. Forebrain-specific conditional calcineurin deficiency induces dentate gyrus immaturity and hyper-dopaminergic signaling in mice. Mol Brain 2022; 15:94. [PMID: 36414974 PMCID: PMC9682671 DOI: 10.1186/s13041-022-00981-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022] Open
Abstract
Calcineurin (Cn), a phosphatase important for synaptic plasticity and neuronal development, has been implicated in the etiology and pathophysiology of neuropsychiatric disorders, including schizophrenia, intellectual disability, autism spectrum disorders, epilepsy, and Alzheimer's disease. Forebrain-specific conditional Cn knockout mice have been known to exhibit multiple behavioral phenotypes related to these disorders. In this study, we investigated whether Cn mutant mice show pseudo-immaturity of the dentate gyrus (iDG) in the hippocampus, which we have proposed as an endophenotype shared by these disorders. Expression of calbindin and GluA1, typical markers for mature DG granule cells (GCs), was decreased and that of doublecortin, calretinin, phospho-CREB, and dopamine D1 receptor (Drd1), markers for immature GC, was increased in Cn mutants. Phosphorylation of cAMP-dependent protein kinase (PKA) substrates (GluA1, ERK2, DARPP-32, PDE4) was increased and showed higher sensitivity to SKF81297, a Drd1-like agonist, in Cn mutants than in controls. While cAMP/PKA signaling is increased in the iDG of Cn mutants, chronic treatment with rolipram, a selective PDE4 inhibitor that increases intracellular cAMP, ameliorated the iDG phenotype significantly and nesting behavior deficits with nominal significance. Chronic rolipram administration also decreased the phosphorylation of CREB, but not the other four PKA substrates examined, in Cn mutants. These results suggest that Cn deficiency induces pseudo-immaturity of GCs and that cAMP signaling increases to compensate for this maturation abnormality. This study further supports the idea that iDG is an endophenotype shared by certain neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Mahomi Kuroiwa
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Isabella A. Graef
- Department of Pathology, Stanford University of Medicine, Stanford, CA 94305 USA
| | - Gerald R. Crabtree
- Department of Pathology, Stanford University of Medicine, Stanford, CA 94305 USA
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| |
Collapse
|
4
|
Hagihara H, Shoji H, Otabi H, Toyoda A, Katoh K, Namihira M, Miyakawa T. Protein lactylation induced by neural excitation. Cell Rep 2021; 37:109820. [PMID: 34644564 DOI: 10.1016/j.celrep.2021.109820] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Lactate has diverse roles in the brain at the molecular and behavioral levels under physiological and pathophysiological conditions. This study investigates whether lysine lactylation (Kla), a lactate-derived post-translational modification in macrophages, occurs in brain cells and if it does, whether Kla is induced by the stimuli that accompany changes in lactate levels. Here, we show that Kla in brain cells is regulated by neural excitation and social stress, with parallel changes in lactate levels. These stimuli increase Kla, which is associated with the expression of the neuronal activity marker c-Fos, as well as with decreased social behavior and increased anxiety-like behavior in the stress model. In addition, we identify 63 candidate lysine-lactylated proteins and find that stress preferentially increases histone H1 Kla. This study may open an avenue for the exploration of a role of neuronal activity-induced lactate mediated by protein lactylation in the brain.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hikari Otabi
- College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
| | - Atsushi Toyoda
- College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan; Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami, Ibaraki 300-0393, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Masakazu Namihira
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
5
|
Kawamura A, Katayama Y, Kakegawa W, Ino D, Nishiyama M, Yuzaki M, Nakayama KI. The autism-associated protein CHD8 is required for cerebellar development and motor function. Cell Rep 2021; 35:108932. [PMID: 33826902 DOI: 10.1016/j.celrep.2021.108932] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations in the gene encoding the chromatin remodeler chromodomain helicase DNA-binding protein 8 (CHD8) are a highly penetrant risk factor for autism spectrum disorder (ASD). Although cerebellar abnormalities have long been thought to be related to ASD pathogenesis, it has remained largely unknown whether dysfunction of CHD8 in the cerebellum contributes to ASD phenotypes. We here show that cerebellar granule neuron progenitor (GNP)-specific deletion of Chd8 in mice impairs the proliferation and differentiation of these cells as well as gives rise to cerebellar hypoplasia and a motor coordination defect, but not to ASD-like behavioral abnormalities. CHD8 is found to regulate the expression of neuronal genes in GNPs. It also binds preferentially to promoter regions and modulates local chromatin accessibility of transcriptionally active genes in these cells. Our results have thus uncovered a key role for CHD8 in cerebellar development, with important implications for understanding the contribution of this brain region to ASD pathogenesis.
Collapse
Affiliation(s)
- Atsuki Kawamura
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Daisuke Ino
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Masaaki Nishiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
6
|
Shoji H, Miyakawa T. Effects of test experience, closed-arm wall color, and illumination level on behavior and plasma corticosterone response in an elevated plus maze in male C57BL/6J mice: a challenge against conventional interpretation of the test. Mol Brain 2021; 14:34. [PMID: 33588907 PMCID: PMC7885464 DOI: 10.1186/s13041-020-00721-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/26/2020] [Indexed: 01/04/2023] Open
Abstract
The elevated plus maze test is a widely used test for assessing anxiety-like behavior and screening novel therapeutic agents in rodents. Previous studies have shown that a variety of internal factors and procedural variables can influence elevated plus maze behavior. Although some studies have suggested a link between behavior and plasma corticosterone levels, the relationships between them remain unclear. In this study, we investigated the effects of experience with a battery of behavioral tests, the wall color of the closed arms, and illumination level on the behavior and plasma corticosterone responses in the elevated plus maze in male C57BL/6J mice. Mice were either subjected to a series of behavioral tests, including assessments of general health and neurological function, a light/dark transition test, and an open field test, or left undisturbed until the start of the elevated plus maze test. The mice with and without test battery experience were allowed to freely explore the elevated plus maze. The other two independent groups of naïve mice were tested in mazes with closed arms with different wall colors (clear, transparent blue, white, and black) or different illumination levels (5, 100, and 800 lx). Immediately after the test, blood was collected to measure plasma corticosterone concentrations. Mice with test battery experience showed a lower percentage of open arm time and entries and, somewhat paradoxically, had lower plasma corticosterone levels than the mice with no test battery experience. Mice tested in the maze with closed arms with clear walls exhibited higher open arm exploration than mice tested in the maze with closed arms with black walls, while there were no significant differences in plasma corticosterone levels between the different wall color conditions. Illumination levels had no significant effects on any measure. Our results indicate that experience with other behavioral tests and different physical features of the maze affect elevated plus maze behaviors. Increased open arm time and entries are conventionally interpreted as decreased anxiety-like behavior, while other possible interpretations are considered: open arm exploration may reflect heightened anxiety and panic-like reaction to a novel situation under certain conditions. With the possibility of different interpretations, the present findings highlight the need to carefully consider the test conditions in designing experiments and drawing conclusions from the behavioral outcomes in the elevated plus maze test in C57BL/6J mice.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| |
Collapse
|
7
|
Kawai T, Takao K, Akter S, Abe M, Sakimura K, Miyakawa T, Okamura Y. Heterogeneity of microglial proton channel in different brain regions and its relationship with aging. J Neurochem 2021; 157:624-641. [PMID: 33404063 DOI: 10.1111/jnc.15292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/13/2022]
Abstract
The properties of microglia largely differ depending on aging as well as on brain regions. However, there are few studies that investigated the functional importance of such heterogeneous properties of microglia at the molecular level. Voltage-gated proton channel, Hv1/VSOP, could be one of the candidates which confers functional heterogeneity among microglia since it regulates brain oxidative stress in age-dependent manner. In this study, we found that Hv1/VSOP shows brain region-dependent heterogeneity of gene expression with the highest level in the striatum. We studied the importance of Hv1/VSOP in two different brain regions, the cerebral cortex and striatum, and examined their relationship with aging (using mice of different ages). In the cortex, we observed the age-dependent impact of Hv1/VSOP on oxidative stress, microglial morphology, and gene expression profile. On the other hand, we found that the age-dependent significance of Hv1/VSOP was less obvious in the striatum than the cortex. Finally, we performed a battery of behavioral experiments on Hv1/VSOP-deficient mice both at young and aged stages to examine the effect of aging on Hv1/VSOP function. Hv1/VSOP-deficient mice specifically showed a marked difference in behavior in light/dark transition test only at aged stages, indicating that anxiety state is altered in aged Hv1/VSOP mice. This study suggests that a combination of brain region heterogeneity and animal aging underscores the functional importance of Hv1/VSOP in microglia.
Collapse
Affiliation(s)
- Takafumi Kawai
- Integrative Physiology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Suita, Japan
| | - Keizo Takao
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan.,Life Science Research Center, University of Toyama, Toyama, Japan
| | - Sharmin Akter
- Integrative Physiology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Suita, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan.,Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Yasushi Okamura
- Integrative Physiology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Suita, Japan.,Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| |
Collapse
|
8
|
Kawamura A, Abe Y, Seki F, Katayama Y, Nishiyama M, Takata N, Tanaka KF, Okano H, Nakayama KI. Chd8 mutation in oligodendrocytes alters microstructure and functional connectivity in the mouse brain. Mol Brain 2020; 13:160. [PMID: 33228730 PMCID: PMC7686671 DOI: 10.1186/s13041-020-00699-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022] Open
Abstract
CHD8 encodes a chromatin-remodeling factor and is one of the most recurrently mutated genes in individuals with autism spectrum disorder (ASD). Although we have recently shown that mice heterozygous for Chd8 mutation manifest myelination defects and ASD-like behaviors, the detailed mechanisms underlying ASD pathogenesis have remained unclear. Here we performed diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rsfMRI) in oligodendrocyte lineage-specific Chd8 heterozygous mutant mice. DTI revealed that ablation of Chd8 specifically in oligodendrocytes of mice was associated with microstructural changes of specific brain regions including the cortex and striatum. The extent of these changes in white matter including the corpus callosum and fornix was correlated with total contact time in the reciprocal social interaction test. Analysis with rsfMRI revealed changes in functional brain connectivity in the mutant mice, and the extent of such changes in the cortex, hippocampus, and amygdala was also correlated with the change in social interaction. Our results thus suggest that changes in brain microstructure and functional connectivity induced by oligodendrocyte dysfunction might underlie altered social interaction in mice with oligodendrocyte-specific CHD8 haploinsufficiency.
Collapse
Affiliation(s)
- Atsuki Kawamura
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Yoshifumi Abe
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Fumiko Seki
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
- Live Imaging Center, Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Masaaki Nishiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Norio Takata
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|
9
|
Shirane M, Shoji H, Hashimoto Y, Katagiri H, Kobayashi S, Manabe T, Miyakawa T, Nakayama KI. Protrudin-deficient mice manifest depression-like behavior with abnormalities in activity, attention, and cued fear-conditioning. Mol Brain 2020; 13:146. [PMID: 33172474 PMCID: PMC7654181 DOI: 10.1186/s13041-020-00693-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
Protrudin is a protein that resides in the membrane of the endoplasmic reticulum and is highly expressed in the nervous system. Although mutations in the human protrudin gene (ZFYVE27, also known as SPG33) give rise to hereditary spastic paraplegia (HSP), the physiological role of the encoded protein has been largely unclear. We therefore generated mice deficient in protrudin and subjected them to a battery of behavioral tests designed to examine their intermediate phenotypes. The protrudin-deficient mice were found to have a reduced body size and to manifest pleiotropic behavioral abnormalities, including hyperactivity, depression-like behavior, and deficits in attention and fear-conditioning memory. They exhibited no signs of HSP, however, consistent with the notion that HSP-associated mutations of protrudin may elicit neural degeneration, not as a result of a loss of function, but rather as a result of a gain of toxic function. Overall, our results suggest that protrudin might play an indispensable role in normal neuronal development and behavior.
Collapse
Affiliation(s)
- Michiko Shirane
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan.
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Yutaka Hashimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Hiroyuki Katagiri
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shizuka Kobayashi
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan.
| |
Collapse
|
10
|
Nakajima R, Takao K, Hattori S, Shoji H, Komiyama NH, Grant SGN, Miyakawa T. Comprehensive behavioral analysis of heterozygous Syngap1 knockout mice. Neuropsychopharmacol Rep 2019; 39:223-237. [PMID: 31323176 PMCID: PMC7292322 DOI: 10.1002/npr2.12073] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/23/2022] Open
Abstract
AIMS Synaptic Ras GTPase-activating protein 1 (SYNGAP1) regulates synaptic plasticity through AMPA receptor trafficking. SYNGAP1 mutations have been found in human patients with intellectual disability (ID) and autism spectrum disorder (ASD). Almost every individual with SYNGAP1-related ID develops epilepsy, and approximately 50% have ASD. SYNGAP1-related ID is estimated to account for at least 1% of ID cases. In mouse models with Syngap1 mutations, strong cognitive and affective dysfunctions have been reported, yet some findings are inconsistent across studies. To further understand the behavioral significance of the SYNGAP1 gene, we assessed various domains of behavior in Syngap1 heterozygous mutant mice using a behavioral test battery. METHODS Male mice with a heterozygous mutation in the Syngap1 gene (Syngap1-/+ mice) created by Seth Grant's group were subjected to a battery of comprehensive behavioral tests, which examined general health, and neurological screens, rotarod, hot plate, open field, light/dark transition, elevated plus maze, social interaction, prepulse inhibition, Porsolt forced swim, tail suspension, gait analysis, T-maze, Y-maze, Barnes maze, contextual and cued fear conditioning, and home cage locomotor activity. To control for type I errors due to multiple-hypothesis testing, P-values below the false discovery rate calculated by the Benjamini-Hochberg method were considered as study-wide statistically significant. RESULTS Syngap1-/+ mice showed increased locomotor activity, decreased prepulse inhibition, and impaired working and reference spatial memory, consistent with preceding studies. Impairment of context fear memory and increased startle reflex in Syngap1 mutant mice could not be reproduced. Significant decreases in sensitivity to painful stimuli and impaired motor function were observed in Syngap1-/+ mice. Decreased anxiety-like behavior and depression-like behavior were noted, although increased locomotor activity is a potential confounding factor of these phenotypes. Increased home cage locomotor activity indicated hyperlocomotor activity not only in specific behavioral test conditions but also in familiar environments. CONCLUSION In Syngap1-/+ mice, we could reproduce most of the previously reported cognitive and emotional deficits. The decreased sensitivity to painful stimuli and impaired motor function that we found in Syngap1-/+ mice are consistent with the common characteristics of patients with SYNGAP-related ID. We further confirmed that the Syngap1 heterozygote mouse recapitulates the symptoms of ID and ASD patients.
Collapse
Affiliation(s)
- Ryuichi Nakajima
- Division of Systems Medical Science, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
| | - Keizo Takao
- Division of Animal Resources and Development, Life Science Research CenterUniversity of ToyamaToyamaJapan
- Section of Behavior Patterns, Center for Genetic Analysis of BehaviorNational Institute for Physiological SciencesOkazakiJapan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
| | - Noboru H. Komiyama
- Centre for Clinical Brain Sciences, The Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual DisabilitiesThe University of EdinburghEdinburghUK
| | - Seth G. N. Grant
- Genes to Cognition Program, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
- Section of Behavior Patterns, Center for Genetic Analysis of BehaviorNational Institute for Physiological SciencesOkazakiJapan
| |
Collapse
|
11
|
Hattori S, Okumura Y, Takao K, Yamaguchi Y, Miyakawa T. Open source code for behavior analysis in rodents. Neuropsychopharmacol Rep 2019; 39:67-69. [PMID: 30659767 PMCID: PMC7292282 DOI: 10.1002/npr2.12047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022] Open
Abstract
Aim We have conducted a series of behavioral tests, which cover a broad range of behavioral domains, on various strains of genetically engineered mice. For the behavioral screening, we have been using Image J plugins that we developed for most of the tests in the battery. Our behavioral analysis system with the plugins enables systematic and automated image analysis of behavior. The plugins are freely available on the “Mouse Phenotype Database” website (http://www.mouse-phenotype.org/software.html). Here, we release the source code of the plugins in a Git repository with the aim of promoting their use and expanding their functionality. Methods We published the source code of the Image J plugins for behavioral analysis at Git repository (https://github.com/neuroinformatics). The source code for light/dark transition, elevated plus maze, open filed, T‐maze, and fear conditioning tests was made publicly available in the repository. Conclusions The source code of the plugins for the behavioral tests as well as the pre‐compiled binaries can be freely obtained. The open source code could promote the development and modification of the plugins for additional behavioral indices in these tests and for other behavioral tests. We developed the Image J plugins for behavioral analysis, and the pre‐compiled plugins are freely available on the website of “Mouse Phenotype Database.” Here, we released the source code of the plugins in the Git repository.
![]()
Collapse
Affiliation(s)
- Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Yoshihiro Okumura
- Neuroinformatics Unit, Integrative Computational Brain Science Collaboration Center, RIKEN Center for Brain Science, Wako, Japan
| | - Keizo Takao
- Division of Animal Resources and Development, Life Science Research Center, University of Toyama, Toyama, Japan
| | - Yoko Yamaguchi
- Neuroinformatics Unit, Integrative Computational Brain Science Collaboration Center, RIKEN Center for Brain Science, Wako, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|