1
|
He R, Zhang H, Zhu H, Shi D, Yang W, Feng S, Zhang X, Fu Z. Direct Access to 3,4,6-Trisubstituted 2-Pyrones via Carbene Catalysis. J Org Chem 2024; 89:12822-12826. [PMID: 39163408 DOI: 10.1021/acs.joc.4c01429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
An N-heterocyclic carbene-catalyzed [4 + 2] annulation of β,γ-unsaturated α-keto esters and phenylacetate esters was developed for the direct and efficient construction of 2-pyrones. This approach provides a practical synthesis pathway for various 3,4,6-trisubstituted 2-pyrones in moderate to good yields and features broad substrate scope and good functional group tolerance. Moreover, the products can also be readily transformed to naphthalene and acylamide.
Collapse
Affiliation(s)
- Ruolan He
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Hailong Zhang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Haibin Zhu
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Dongping Shi
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Weiqi Yang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Siru Feng
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaoxiang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenqian Fu
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
2
|
Galla MS, Kale NB, Kumawat A, Bora D, Shankaraiah N. Rh(III)-catalysed C-H annulation of cis-stilbene acids with 2-diazo-1,3-diketones: facile access to 6,7-dihydrobenzofuran-4(5 H)-one and α-pyrone scaffolds. Org Biomol Chem 2024; 22:3933-3939. [PMID: 38666426 DOI: 10.1039/d4ob00151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An efficient Rh(III)-catalysed C-H functionalization, tandem annulation of cis-stilbene acids using 2-diazo-1,3-diketones was devised. This protocol solely afforded 6,7-dihydrobenzofuran-4(5H)-ones using alicyclic diazocarbonyls via decarbonylation and α-pyrones with aliphatic diazo compounds. The chameleonic nature of cis-stilbene acid was observed with various diazo compounds by altering the additives. This synthetic method furnished good atom-economy and wide functional group tolerance, and also explained the use of carboxylic acids as a directing group. In addition, a mechanistic investigation of the catalysed reaction using ESI-MS, and the fluorescence properties of α-pyrones were well explored.
Collapse
Affiliation(s)
- Mary Sravani Galla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Nandini B Kale
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Akshay Kumawat
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Darshana Bora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| |
Collapse
|
3
|
Zhang M, Chen B, Dai H, Sun J, Liu H, Han J. Discovery of antifungal secondary metabolites from an intestinal fungus Fusarium sp. J Antibiot (Tokyo) 2024; 77:193-198. [PMID: 38148392 DOI: 10.1038/s41429-023-00692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 12/28/2023]
Abstract
Intestinal fungi, which are important parts of the gut microbiota, have the ability to produce specialized metabolites that significantly contribute to maintaining the balance of the gut microbiota and promoting the health of the host organism. In the present study, two new glycosides, including fusintespyrone A (1) and cerevisterolside A (4), as well as ten known compounds were isolated from the intestinal fungus Fusarium sp. LE06. The structures of the new compounds were elucidated by a combination of spectroscopic methods, such as mass spectrometry (MS) and nuclear magnetic resonance (NMR), along with chemical reactions and calculations of NMR and ECD spectra. Compounds 1-3 showed significant growth inhibition against Aspergillus fumigatus, Fusarium oxysporum, and Verticillium dahliae with MIC values in the range of 1.56-6.25 μg ml-1.
Collapse
Affiliation(s)
- Mingkai Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Baosong Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jingzu Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hongwei Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
4
|
Xu M, Huang Z, Zhu W, Liu Y, Bai X, Zhang H. Fusarium-Derived Secondary Metabolites with Antimicrobial Effects. Molecules 2023; 28:molecules28083424. [PMID: 37110658 PMCID: PMC10142451 DOI: 10.3390/molecules28083424] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal microbes are important in the creation of new drugs, given their unique genetic and metabolic diversity. As one of the most commonly found fungi in nature, Fusarium spp. has been well regarded as a prolific source of secondary metabolites (SMs) with diverse chemical structures and a broad spectrum of biological properties. However, little information is available concerning their derived SMs with antimicrobial effects. By extensive literature search and data analysis, as many as 185 antimicrobial natural products as SMs had been discovered from Fusarium strains by the end of 2022. This review first provides a comprehensive analysis of these substances in terms of various antimicrobial effects, including antibacterial, antifungal, antiviral, and antiparasitic. Future prospects for the efficient discovery of new bioactive SMs from Fusarium strains are also proposed.
Collapse
Affiliation(s)
- Meijie Xu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ziwei Huang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wangjie Zhu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Liu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Charria-Girón E, Stchigel AM, Čmoková A, Kolařík M, Surup F, Marin-Felix Y. Amesia hispanica sp. nov., Producer of the Antifungal Class of Antibiotics Dactylfungins. J Fungi (Basel) 2023; 9:463. [PMID: 37108917 PMCID: PMC10141101 DOI: 10.3390/jof9040463] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During a study of the diversity of soilborne fungi from Spain, a strain belonging to the family Chaetomiaceae (Sordariales) was isolated. The multigene phylogenetic inference using five DNA loci showed that this strain represents an undescribed species of the genus Amesia, herein introduced as A. hispanica sp. nov. Investigation of its secondary metabolome led to the isolation of two new derivatives (2 and 3) of the known antifungal antibiotic dactylfungin A (1), together with the known compound cochliodinol (4). The planar structures of 1-4 were determined by ultrahigh performance liquid chromatography coupled with diode array detection and ion mobility tandem mass spectrometry (UHPLC-DAD-IM-MS/MS) and extensive 1D and 2D nuclear magnetic resonance (NMR) spectroscopy after isolation by HPLC. All isolated secondary metabolites were tested for their antimicrobial and cytotoxic activities. Dactylfungin A (1) showed selective and strong antifungal activity against some of the tested human pathogens (Aspergillus fumigatus and Cryptococcus neoformans). The additional hydroxyl group in 2 resulted in the loss of activity against C. neoformans but still retained the inhibition of As. fumigatus in a lower concentration than that of the respective control, without showing any cytotoxic effects. In contrast, 25″-dehydroxy-dactylfungin A (3) exhibited improved activity against yeasts (Schizosaccharomyces pombe and Rhodotorula glutinis) than 1 and 2, but resulted in the appearance of slight cytotoxicity. The present study exemplifies how even in a well-studied taxonomic group such as the Chaetomiaceae, the investigation of novel taxa still brings chemistry novelty, as demonstrated in this first report of this antibiotic class for chaetomiaceous and sordarialean taxa.
Collapse
Affiliation(s)
- Esteban Charria-Girón
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Alberto Miguel Stchigel
- Mycology Unit, Medical School, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Tarragona, Spain
| | - Adéla Čmoková
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Yasmina Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Phakeovilay J, Imaram W, Vuttipongchaikij S, Bunnak W, Lazarus CM, Wattana-Amorn P. C-Methylation controls the biosynthetic programming of alternapyrone. Org Biomol Chem 2022; 20:5050-5054. [PMID: 35695066 DOI: 10.1039/d2ob00947a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alternapyrone is a highly methylated polyene α-pyrone biosynthesised by a highly reducing polyketide synthase. Mutations of the catalytic dyad residues, H1578A/Q and E1604A, of the C-methyltransferase domain resulted in either significantly reduced or no production of alternapyrone, indicating the importance of C-methylation for alternapyrone biosynthesis.
Collapse
Affiliation(s)
- Jaiyfungkhong Phakeovilay
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, 10900, Thailand.
| | - Witcha Imaram
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Waraporn Bunnak
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Colin M Lazarus
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Pakorn Wattana-Amorn
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, 10900, Thailand. .,Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
7
|
Atanasoff-Kardjalieff AK, Studt L. Secondary Metabolite Gene Regulation in Mycotoxigenic Fusarium Species: A Focus on Chromatin. Toxins (Basel) 2022; 14:96. [PMID: 35202124 PMCID: PMC8880415 DOI: 10.3390/toxins14020096] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
Fusarium is a species-rich group of mycotoxigenic plant pathogens that ranks as one of the most economically important fungal genera in the world. During growth and infection, they are able to produce a vast spectrum of low-molecular-weight compounds, so-called secondary metabolites (SMs). SMs often comprise toxic compounds (i.e., mycotoxins) that contaminate precious food and feed sources and cause adverse health effects in humans and livestock. In this context, understanding the regulation of their biosynthesis is crucial for the development of cropping strategies that aim at minimizing mycotoxin contamination in the field. Nevertheless, currently, only a fraction of SMs have been identified, and even fewer are considered for regular monitoring by regulatory authorities. Limitations to exploit their full chemical potential arise from the fact that the genes involved in their biosynthesis are often silent under standard laboratory conditions and only induced upon specific stimuli mimicking natural conditions in which biosynthesis of the respective SM becomes advantageous for the producer. This implies a complex regulatory network. Several components of these gene networks have been studied in the past, thereby greatly advancing the understanding of SM gene regulation and mycotoxin biosynthesis in general. This review aims at summarizing the latest advances in SM research in these notorious plant pathogens with a focus on chromatin structure.
Collapse
Affiliation(s)
| | - Lena Studt
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln an der Donau, Austria;
| |
Collapse
|
8
|
Ahmad T, Rasheed T, Hussain M, Rizwan K. Emergence of 2-Pyrone and Its Derivatives, from Synthesis to Biological Perspective: An Overview and Current Status. Top Curr Chem (Cham) 2021; 379:38. [PMID: 34554344 DOI: 10.1007/s41061-021-00350-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
Pyrone moieties are present in natural products and can be synthesized by a diverse range of synthetic methods, resulting in the formation of various derivatives through chemical modifications. Many pyrone-based derivatives are commercially available and are biocompatible. They are building blocks of various intermediates in organic synthesis. They possess remarkable biological properties including antimicrobial, antiviral, cytotoxic, and antitumor activity. These characteristics have made them valuable for the development of drugs. We have summarized recent developments in the synthesis of 2-pyrone and its derivatives and their potential applications. With regard to synthetic approaches, the focus has been on metal-free and transition metal-catalyzed reactions.
Collapse
Affiliation(s)
- Tanveer Ahmad
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Majid Hussain
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| |
Collapse
|
9
|
Atanasoff-Kardjalieff AK, Lünne F, Kalinina S, Strauss J, Humpf HU, Studt L. Biosynthesis of Fusapyrone Depends on the H3K9 Methyltransferase, FmKmt1, in Fusarium mangiferae. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:671796. [PMID: 37744112 PMCID: PMC10512364 DOI: 10.3389/ffunb.2021.671796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/09/2021] [Indexed: 09/26/2023]
Abstract
The phytopathogenic fungus Fusarium mangiferae belongs to the Fusarium fujikuroi species complex (FFSC). Members of this group cause a wide spectrum of devastating diseases on diverse agricultural crops. F. mangiferae is the causal agent of the mango malformation disease (MMD) and as such detrimental for agriculture in the southern hemisphere. During plant infection, the fungus produces a plethora of bioactive secondary metabolites (SMs), which most often lead to severe adverse defects on plants health. Changes in chromatin structure achieved by posttranslational modifications (PTM) of histones play a key role in regulation of fungal SM biosynthesis. Posttranslational tri-methylation of histone 3 lysine 9 (H3K9me3) is considered a hallmark of heterochromatin and established by the SET-domain protein Kmt1. Here, we show that FmKmt1 is involved in H3K9me3 in F. mangiferae. Loss of FmKmt1 only slightly though significantly affected fungal hyphal growth and stress response and is required for wild type-like conidiation. While FmKmt1 is largely dispensable for the biosynthesis of most known SMs, removal of FmKMT1 resulted in an almost complete loss of fusapyrone and deoxyfusapyrone, γ-pyrones previously only known from Fusarium semitectum. Here, we identified the polyketide synthase (PKS) FmPKS40 to be involved in fusapyrone biosynthesis, delineate putative cluster borders by co-expression studies and provide insights into its regulation.
Collapse
Affiliation(s)
- Anna K. Atanasoff-Kardjalieff
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | - Friederike Lünne
- Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Svetlana Kalinina
- Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Lena Studt
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| |
Collapse
|
10
|
Crous P, Lombard L, Sandoval-Denis M, Seifert K, Schroers HJ, Chaverri P, Gené J, Guarro J, Hirooka Y, Bensch K, Kema G, Lamprecht S, Cai L, Rossman A, Stadler M, Summerbell R, Taylor J, Ploch S, Visagie C, Yilmaz N, Frisvad J, Abdel-Azeem A, Abdollahzadeh J, Abdolrasouli A, Akulov A, Alberts J, Araújo J, Ariyawansa H, Bakhshi M, Bendiksby M, Ben Hadj Amor A, Bezerra J, Boekhout T, Câmara M, Carbia M, Cardinali G, Castañeda-Ruiz R, Celis A, Chaturvedi V, Collemare J, Croll D, Damm U, Decock C, de Vries R, Ezekiel C, Fan X, Fernández N, Gaya E, González C, Gramaje D, Groenewald J, Grube M, Guevara-Suarez M, Gupta V, Guarnaccia V, Haddaji A, Hagen F, Haelewaters D, Hansen K, Hashimoto A, Hernández-Restrepo M, Houbraken J, Hubka V, Hyde K, Iturriaga T, Jeewon R, Johnston P, Jurjević Ž, Karalti İ, Korsten L, Kuramae E, Kušan I, Labuda R, Lawrence D, Lee H, Lechat C, Li H, Litovka Y, Maharachchikumbura S, Marin-Felix Y, Matio Kemkuignou B, Matočec N, McTaggart A, Mlčoch P, Mugnai L, Nakashima C, Nilsson R, Noumeur S, Pavlov I, Peralta M, Phillips A, Pitt J, Polizzi G, Quaedvlieg W, Rajeshkumar K, Restrepo S, Rhaiem A, Robert J, Robert V, Rodrigues A, Salgado-Salazar C, Samson R, Santos A, Shivas R, Souza-Motta C, Sun G, Swart W, Szoke S, Tan Y, Taylor J, Taylor P, Tiago P, Váczy K, van de Wiele N, van der Merwe N, Verkley G, Vieira W, Vizzini A, Weir B, Wijayawardene N, Xia J, Yáñez-Morales M, Yurkov A, Zamora J, Zare R, Zhang C, Thines M. Fusarium: more than a node or a foot-shaped basal cell. Stud Mycol 2021; 98:100116. [PMID: 34466168 PMCID: PMC8379525 DOI: 10.1016/j.simyco.2021.100116] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).
Collapse
Key Words
- Apiognomonia platani (Lév.) L. Lombard
- Atractium ciliatum Link
- Atractium pallidum Bonord.
- Calloria tremelloides (Grev.) L. Lombard
- Cephalosporium sacchari E.J. Butler
- Cosmosporella cavisperma (Corda) Sand.-Den., L. Lombard & Crous
- Cylindrodendrum orthosporum (Sacc. & P. Syd.) L. Lombard
- Dialonectria volutella (Ellis & Everh.) L. Lombard & Sand.-Den.
- Fusarium aeruginosum Delacr.
- Fusarium agaricorum Sarrazin
- Fusarium albidoviolaceum Dasz.
- Fusarium aleyrodis Petch
- Fusarium amentorum Lacroix
- Fusarium annuum Leonian
- Fusarium arcuatum Berk. & M.A. Curtis
- Fusarium aridum O.A. Pratt
- Fusarium armeniacum (G.A. Forbes et al.) L.W. Burgess & Summerell
- Fusarium arthrosporioides Sherb.
- Fusarium asparagi Delacr.
- Fusarium batatas Wollenw.
- Fusarium biforme Sherb.
- Fusarium buharicum Jacz. ex Babajan & Teterevn.-Babajan
- Fusarium cactacearum Pasin. & Buzz.-Trav.
- Fusarium cacti-maxonii Pasin. & Buzz.-Trav.
- Fusarium caudatum Wollenw.
- Fusarium cavispermum Corda
- Fusarium cepae Hanzawa
- Fusarium cesatii Rabenh.
- Fusarium citriforme Jamal.
- Fusarium citrinum Wollenw.
- Fusarium citrulli Taubenh.
- Fusarium clavatum Sherb.
- Fusarium coccinellum Kalchbr.
- Fusarium cromyophthoron Sideris
- Fusarium cucurbitae Taubenh.
- Fusarium cuneiforme Sherb.
- Fusarium delacroixii Sacc.
- Fusarium dimerum var. nectrioides Wollenw.
- Fusarium echinatum Sand.-Den. & G.J. Marais
- Fusarium epicoccum McAlpine
- Fusarium eucheliae Sartory, R. Sartory & J. Mey.
- Fusarium fissum Peyl
- Fusarium flocciferum Corda
- Fusarium gemmiperda Aderh.
- Fusarium genevense Dasz.
- Fusarium graminearum Schwabe
- Fusarium graminum Corda
- Fusarium heterosporioides Fautrey
- Fusarium heterosporum Nees & T. Nees
- Fusarium idahoanum O.A. Pratt
- Fusarium juruanum Henn.
- Fusarium lanceolatum O.A. Pratt
- Fusarium lateritium Nees
- Fusarium loncheceras Sideris
- Fusarium longipes Wollenw. & Reinking
- Fusarium lyarnte J.L. Walsh, Sangal., L.W. Burgess, E.C.Y. Liew & Summerell
- Fusarium malvacearum Taubenh.
- Fusarium martii f. phaseoli Burkh.
- Fusarium muentzii Delacr.
- Fusarium nigrum O.A. Pratt
- Fusarium oxysporum var. asclerotium Sherb.
- Fusarium palczewskii Jacz.
- Fusarium palustre W.H. Elmer & Marra
- Fusarium polymorphum Matr.
- Fusarium poolense Taubenh.
- Fusarium prieskaense G.J. Marais & Sand.-Den.
- Fusarium prunorum McAlpine
- Fusarium pusillum Wollenw.
- Fusarium putrefaciens Osterw.
- Fusarium redolens Wollenw.
- Fusarium reticulatum Mont.
- Fusarium rhizochromatistes Sideris
- Fusarium rhizophilum Corda
- Fusarium rhodellum McAlpine
- Fusarium roesleri Thüm.
- Fusarium rostratum Appel & Wollenw.
- Fusarium rubiginosum Appel & Wollenw.
- Fusarium rubrum Parav.
- Fusarium samoense Gehrm.
- Fusarium scirpi Lambotte & Fautrey
- Fusarium secalis Jacz.
- Fusarium spinaciae Hungerf.
- Fusarium sporotrichioides Sherb.
- Fusarium stercoris Fuckel
- Fusarium stilboides Wollenw.
- Fusarium stillatum De Not. ex Sacc.
- Fusarium sublunatum Reinking
- Fusarium succisae Schröt. ex Sacc.
- Fusarium tabacivorum Delacr.
- Fusarium trichothecioides Wollenw.
- Fusarium tritici Liebman
- Fusarium tuberivorum Wilcox & G.K. Link
- Fusarium tumidum var. humi Reinking
- Fusarium ustilaginis Kellerm. & Swingle
- Fusarium viticola Thüm.
- Fusarium werrikimbe J.L. Walsh, L.W. Burgess, E.C.Y. Liew & B.A. Summerell
- Fusarium willkommii Lindau
- Fusarium xylarioides Steyaert
- Fusarium zygopetali Delacr.
- Fusicolla meniscoidea L. Lombard & Sand.-Den.
- Fusicolla quarantenae J.D.P. Bezerra, Sand.-Den., Crous & Souza-Motta
- Fusicolla sporellula Sand.-Den. & L. Lombard
- Fusisporium andropogonis Cooke ex Thüm.
- Fusisporium anthophilum A. Braun
- Fusisporium arundinis Corda
- Fusisporium avenaceum Fr.
- Fusisporium clypeaster Corda
- Fusisporium culmorum Wm.G. Sm.
- Fusisporium didymum Harting
- Fusisporium elasticae Thüm.
- Fusisporium episphaericum Cooke & Ellis
- Fusisporium flavidum Bonord.
- Fusisporium hordei Wm.G. Sm.
- Fusisporium incarnatum Roberge ex Desm.
- Fusisporium lolii Wm.G. Sm.
- Fusisporium pandani Corda
- Gibberella phyllostachydicola W. Yamam.
- Hymenella aurea (Corda) L. Lombard
- Hymenella spermogoniopsis (Jul. Müll.) L. Lombard & Sand.-Den.
- Luteonectria Sand.-Den., L. Lombard, Schroers & Rossman
- Luteonectria albida (Rossman) Sand.-Den. & L. Lombard
- Luteonectria nematophila (Nirenberg & Hagedorn) Sand.-Den. & L. Lombard
- Macroconia bulbipes Crous & Sand.-Den.
- Macroconia phlogioides Sand.-Den. & Crous
- Menispora penicillata Harz
- Multi-gene phylogeny
- Mycotoxins
- Nectriaceae
- Neocosmospora
- Neocosmospora epipeda Quaedvl. & Sand.-Den.
- Neocosmospora floridana (T. Aoki et al.) L. Lombard & Sand.-Den.
- Neocosmospora merkxiana Quaedvl. & Sand.-Den.
- Neocosmospora neerlandica Crous & Sand.-Den.
- Neocosmospora nelsonii Crous & Sand.-Den.
- Neocosmospora obliquiseptata (T. Aoki et al.) L. Lombard & Sand.-Den.
- Neocosmospora pseudopisi Sand.-Den. & L. Lombard
- Neocosmospora rekana (Lynn & Marinc.) L. Lombard & Sand.-Den.
- Neocosmospora tuaranensis (T. Aoki et al.) L. Lombard & Sand.-Den.
- Nothofusarium Crous, Sand.-Den. & L. Lombard
- Nothofusarium devonianum L. Lombard, Crous & Sand.-Den.
- Novel taxa
- Pathogen
- Scolecofusarium L. Lombard, Sand.-Den. & Crous
- Scolecofusarium ciliatum (Link) L. Lombard, Sand.-Den. & Crous
- Selenosporium equiseti Corda
- Selenosporium hippocastani Corda
- Selenosporium sarcochroum Desm
- Selenosporium urticearum Corda.
- Setofusarium (Nirenberg & Samuels) Crous & Sand.-Den.
- Setofusarium setosum (Samuels & Nirenberg) Sand.-Den. & Crous.
- Sphaeria sanguinea var. cicatricum Berk.
- Sporotrichum poae Peck.
- Stylonectria corniculata Gräfenhan, Crous & Sand.-Den.
- Stylonectria hetmanica Akulov, Crous & Sand.-Den.
- Taxonomy
Collapse
Affiliation(s)
- P.W. Crous
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - L. Lombard
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - K.A. Seifert
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - H.-J. Schroers
- Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000, Ljubljana, Slovenia
| | - P. Chaverri
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
- Escuela de Biología and Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San Pedro, Costa Rica
| | - J. Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut i Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43201, Reus, Spain
| | - J. Guarro
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut i Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43201, Reus, Spain
| | - Y. Hirooka
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, 184-8584, Japan
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - G.H.J. Kema
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - S.C. Lamprecht
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, Western Cape, South Africa
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - A.Y. Rossman
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, 97330, USA
| | - M. Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - J.W. Taylor
- Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA, 94720-3102, USA
| | - S. Ploch
- Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - A.M. Abdel-Azeem
- Systematic Mycology Lab., Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - J. Abdollahzadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - A. Abdolrasouli
- Department of Medical Microbiology, King's College Hospital, London, UK
- Department of Infectious Diseases, Imperial College London, London, UK
| | - A. Akulov
- Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022, Kharkiv, Ukraine
| | - J.F. Alberts
- Department of Food Science and Technology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, 7535, South Africa
| | - J.P.M. Araújo
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - H.A. Ariyawansa
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - M. Bakhshi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
| | - M. Bendiksby
- Natural History Museum, University of Oslo, Norway
- Department of Natural History, NTNU University Museum, Trondheim, Norway
| | - A. Ben Hadj Amor
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - J.D.P. Bezerra
- Setor de Micologia/Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Rua 235 - s/n – Setor Universitário - CEP: 74605-050, Universidade Federal de Goiás/Federal University of Goiás, Goiânia, Brazil
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - M.P.S. Câmara
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, 52171-900, PE, Brazil
| | - M. Carbia
- Departamento de Parasitología y Micología, Instituto de Higiene, Facultad de Medicina – Universidad de la República, Av. A. Navarro 3051, Montevideo, Uruguay
| | - G. Cardinali
- Department of Pharmaceutical Science, University of Perugia, Via Borgo 20 Giugno, 74 Perugia, Italy
| | - R.F. Castañeda-Ruiz
- Instituto de Investigaciones Fundamentales en Agricultura Tropical Alejandro de Humboldt (INIFAT), Académico Titular de la Academia de Ciencias de, Cuba
| | - A. Celis
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, 111711, Colombia
| | - V. Chaturvedi
- Mycology Laboratory, New York State Department of Health Wadsworth Center, Albany, NY, USA
| | - J. Collemare
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - D. Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, CH-2000, Neuchatel, Switzerland
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806, Görlitz, Germany
| | - C.A. Decock
- Mycothèque de l'Université catholique de Louvain (MUCL, BCCMTM), Earth and Life Institute – ELIM – Mycology, Université catholique de Louvain, Croix du Sud 2 bte L7.05.06, B-1348, Louvain-la-Neuve, Belgium
| | - R.P. de Vries
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - C.N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - X.L. Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - N.B. Fernández
- Laboratorio de Micología Clínica, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - E. Gaya
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - C.D. González
- Laboratorio de Salud de Bosques y Ecosistemas, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, casilla 567, Valdivia, Chile
| | - D. Gramaje
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC)-University of La Rioja-Government of La Rioja, Logroño, 26007, Spain
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - M. Grube
- Institut für Biologie, Karl-Franzens-Universität Graz, Holteigasse 6, 8010, Graz, Austria
| | - M. Guevara-Suarez
- Applied genomics research group, Universidad de los Andes, Cr 1 # 18 a 12, Bogotá, Colombia
| | - V.K. Gupta
- Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - V. Guarnaccia
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Torino, Largo P. Braccini 2, 10095, Grugliasco, TO, Italy
| | | | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - D. Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, 35 K.L. Ledeganckstraat, 9000, Ghent, Belgium
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - K. Hansen
- Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05, Stockholm, Sweden
| | - A. Hashimoto
- Microbe Division/Japan Collection of Microorganisms RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | | | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - V. Hubka
- Department of Botany, Charles University in Prague, Prague, Czech Republic
| | - K.D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chaing Rai, 57100, Thailand
| | - T. Iturriaga
- Cornell University, 334 Plant Science Building, Ithaca, NY, 14850, USA
| | - R. Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - P.R. Johnston
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142, New Zealand
| | - Ž. Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ, 08077, USA
| | - İ. Karalti
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Yeditepe University, Turkey
| | - L. Korsten
- Department of Plant and Soil Sciences, University of Pretoria, P. Bag X20 Hatfield, Pretoria, 0002, South Africa
| | - E.E. Kuramae
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
- Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - I. Kušan
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - R. Labuda
- University of Veterinary Medicine, Vienna (VetMed), Institute of Food Safety, Food Technology and Veterinary Public Health, Veterinaerplatz 1, 1210 Vienna and BiMM – Bioactive Microbial Metabolites group, 3430 Tulln a.d. Donau, Austria
| | - D.P. Lawrence
- University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - H.B. Lee
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Yongbong-Dong 300, Buk-Gu, Gwangju, 61186, South Korea
| | - C. Lechat
- Ascofrance, 64 route de Chizé, 79360, Villiers-en-Bois, France
| | - H.Y. Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Y.A. Litovka
- V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russia
- Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russia
| | - S.S.N. Maharachchikumbura
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Y. Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - B. Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - N. Matočec
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - A.R. McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, G.P.O. Box 267, Brisbane, 4001, Australia
| | - P. Mlčoch
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - L. Mugnai
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology section, University of Florence, P.le delle Cascine 28, 50144, Firenze, Italy
| | - C. Nakashima
- Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - R.H. Nilsson
- Gothenburg Global Biodiversity Center at the Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden
| | - S.R. Noumeur
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, Batna, 05000, Algeria
| | - I.N. Pavlov
- V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russia
- Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russia
| | - M.P. Peralta
- Laboratorio de Micodiversidad y Micoprospección, PROIMI-CONICET, Av. Belgrano y Pje. Caseros, Argentina
| | - A.J.L. Phillips
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016, Lisbon, Portugal
| | - J.I. Pitt
- Microbial Screening Technologies, 28 Percival Rd, Smithfield, NSW, 2164, Australia
| | - G. Polizzi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - W. Quaedvlieg
- Phytopathology, Van Zanten Breeding B.V., Lavendelweg 15, 1435 EW, Rijsenhout, the Netherlands
| | - K.C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Group, Agharkar Research Institute, Pune, Maharashtra, 411 004, India
| | - S. Restrepo
- Laboratory of Mycology and Phytopathology – (LAMFU), Department of Chemical and Food Engineering, Universidad de los Andes, Cr 1 # 18 a 12, Bogotá, Colombia
| | - A. Rhaiem
- Plant Pathology and Population Genetics, Laboratory of Microorganisms, National Gene Bank, Tunisia
| | | | - V. Robert
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - C. Salgado-Salazar
- USDA-ARS Mycology & Nematology Genetic Diversity & Biology Laboratory, Bldg. 010A, Rm. 212, BARC-West, 10300 Baltimore Ave, Beltsville, MD, 20705, USA
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - A.C.S. Santos
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociências, Cidade Universitária, Av. Prof. Moraes Rego, s/n, Recife, PE, CEP: 50670-901, Brazil
| | - R.G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba, 4350, Queensland, Australia
| | - C.M. Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociências, Cidade Universitária, Av. Prof. Moraes Rego, s/n, Recife, PE, CEP: 50670-901, Brazil
| | - G.Y. Sun
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - W.J. Swart
- Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | | | - Y.P. Tan
- Centre for Crop Health, University of Southern Queensland, Toowoomba, 4350, Queensland, Australia
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, Queensland, 4102, Australia
| | - J.E. Taylor
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, United Kingdom
| | - P.W.J. Taylor
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - P.V. Tiago
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociências, Cidade Universitária, Av. Prof. Moraes Rego, s/n, Recife, PE, CEP: 50670-901, Brazil
| | - K.Z. Váczy
- Food and Wine Research Institute, Eszterházy Károly University, 6 Leányka Street, H-3300, Eger, Hungary
| | | | - N.A. van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - G.J.M. Verkley
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - W.A.S. Vieira
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, 52171-900, PE, Brazil
| | - A. Vizzini
- Department of Life Sciences and Systems Biology, University of Torino and Institute for Sustainable Plant Protection (IPSP-SS Turin), C.N.R, Viale P.A. Mattioli, 25, I-10125, Torino, Italy
| | - B.S. Weir
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142, New Zealand
| | - N.N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - J.W. Xia
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
| | - M.J. Yáñez-Morales
- Fitosanidad, Colegio de Postgraduados-Campus Montecillo, Montecillo-Texcoco, 56230 Edo. de Mexico, Mexico
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - J.C. Zamora
- Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36, Uppsala, Sweden
| | - R. Zare
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
| | - C.L. Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
- Goethe-University Frankfurt am Main, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue Str. 13, D-60438, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| |
Collapse
|
11
|
|
12
|
Kamali M. SnCl2⋅2H2O catalyzed one-pot three components synthesis of pyrano[4,3-b]chromenes and chromeno[4,3-b]chromenes. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1858108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Li M, Yu R, Bai X, Wang H, Zhang H. Fusarium: a treasure trove of bioactive secondary metabolites. Nat Prod Rep 2020; 37:1568-1588. [PMID: 32785347 DOI: 10.1039/d0np00038h] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering up to December 2019Fusarium, one of the most common fungal genera, has received considerable attention because of its biosynthetic exuberance, the result of many unique gene clusters involved in the production of secondary metabolites. This review provides the first comprehensive analysis of the secondary metabolites unique to the genus Fusarium, describing their occurrence, bioactivity, and genome features.
Collapse
Affiliation(s)
- Mingzhu Li
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | | | | | | | | |
Collapse
|
14
|
Manoharan G, Sairam T, Thangamani R, Ramakrishnan D, K Tiwari M, Lee JK, Marimuthu J. Identification and characterization of type III polyketide synthase genes from culturable endophytes of ethnomedicinal plants. Enzyme Microb Technol 2019; 131:109396. [PMID: 31615679 DOI: 10.1016/j.enzmictec.2019.109396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 11/27/2022]
Abstract
Endophytic fungi provide benefits to host plants by producing a diverse class of secondary metabolites (natural products). Arrays of polyketide natural products are synthesized by specific classes of polyketide synthases (PKS I, II and III) in host organisms. In the present study, we attempt to screen and identify type III PKSs in culturable fungal endophytes isolated from the ethno medicinal plants including Arbus precatorius, Bacopa monnieri,Citrus aurantifolia and Datura metel to detect the genetic potential of endophytic fungi in producing bioactive compounds. A total of seventeen endophytic fungal strains belonging to eight genera were identified using fungal morphology and rDNA-ITS phylogenetic analyses. A CODEHOP-PCR based strategy was followed to design degenerate primers for the screening of type III PKS genes from fungal endophytes. We had successfully amplified partial PKS genes from eight endophytes. The amplified PKS sequences showed 60-99% identity to already characterized/putative PKS genes. From the partial sequence of FiPKS from Fusarium incarnatum BMER1, a full-length gene was amplified, cloned and characterized. FiPKScDNA was cloned and expressed in E. coli Lemo21 (DE3) and the purified protein was shown to produce pyrones and resorcinols using acyl-CoA thioesters as substrates. FiPKS showed the highest catalytic efficiency of 7.6 × 104 s-1 M-1 with stearoyl CoA as a starter unit. This study reports the identification and characterization of type III PKS from endophytes of medicinal plants by CODEHOP PCR.
Collapse
Affiliation(s)
- Gomathi Manoharan
- PSG Centre for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, 641004, India
| | - Thiagarajan Sairam
- PSG Centre for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, 641004, India
| | - Rajesh Thangamani
- Biotechnology Division, CSIR- National Engineering and Environmental Research Institute, CMC, Chennai 600113, India
| | - Dhivya Ramakrishnan
- PSG Centre for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, 641004, India
| | - Manish K Tiwari
- Department of Chemistry, University of Copenhagen, Universitesparken 5, DK-2100, Copenhagen, Denmark
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeya Marimuthu
- PSG Centre for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, 641004, India.
| |
Collapse
|
15
|
Fungal Metabolite Antagonists of Plant Pests and Human Pathogens: Structure-Activity Relationship Studies. Molecules 2018; 23:molecules23040834. [PMID: 29621148 PMCID: PMC6017029 DOI: 10.3390/molecules23040834] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/18/2022] Open
Abstract
Fungi are able to produce many bioactive secondary metabolites that belong to different classes of natural compounds. Some of these compounds have been selected for their antagonism against pests and human pathogens and structure-activity relationship (SAR) studies have been performed to better understand which structural features are essential for the biological activity. In some cases, these studies allowed for the obtaining of hemisynthetic derivatives with increased selectivity and stability in respect to the natural products as well as reduced toxicity in view of their potential practical applications. This review deals with the SAR studies performed on fungal metabolites with potential fungicidal, bactericidal, insecticidal, and herbicidal activities from 1990 to the present (beginning of 2018).
Collapse
|
16
|
Bhat ZS, Rather MA, Maqbool M, Lah HU, Yousuf SK, Ahmad Z. α-pyrones: Small molecules with versatile structural diversity reflected in multiple pharmacological activities-an update. Biomed Pharmacother 2017; 91:265-277. [PMID: 28460229 DOI: 10.1016/j.biopha.2017.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/18/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
Abstract
The investigations in the chemistry and biology of α-pyrone (2-pyrone) are of vital importance as they constitute an essential pharmacophore in many naturally occurring and biologically active synthetic agents. They are a promising class of biorenewable platform chemicals that provide access to an array of chemical products and intermediates. Literature survey reveals that a simple change in the substitution pattern on the 2-pyrone ring system often leads to diverse biological activities. In this review, we present a brief overview of 2-pyrone pharmacophore followed by highlighting their pharmacological properties and potential applicability till date. Particular attention is focused on the distinctive chemotherapeutic activities of 2-pyrones as anti-HIV, anti-TB and anti-cancer agents followed by their potential role against neurodegeneration, hypercholesterolemia, microbial infections, chronic obstructive lung disease, inflammation, antinociception and immunomodulation. Since 2005, when 2-pyrones came in limelight, their detailed pharmacological activities have been well documented. This review has mainly been prepared on the basis of original reports published in recent two decades with an aim to attract the attention of researchers towards this versatile scaffold for future endeavors that may lead to the development of potential drug candidates against above diseases.
Collapse
Affiliation(s)
- Zubair Shanib Bhat
- Clinical Microbiology and PK/PD Division, Council of scientific and industrial research (CSIR) -Indian Institute of Integrative Medicine (IIIM), Sanatnagar, Srinagar, 190005, India; Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Integrative Medicine (CSIR), Sanatnagar Srinagar, Jammu and Kashmir 190005, India
| | - Muzafar Ahmad Rather
- Clinical Microbiology and PK/PD Division, Council of scientific and industrial research (CSIR) -Indian Institute of Integrative Medicine (IIIM), Sanatnagar, Srinagar, 190005, India
| | - Mubashir Maqbool
- Clinical Microbiology and PK/PD Division, Council of scientific and industrial research (CSIR) -Indian Institute of Integrative Medicine (IIIM), Sanatnagar, Srinagar, 190005, India
| | - Hafiz Ul Lah
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, 190005, India
| | - Syed Khalid Yousuf
- Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Integrative Medicine (CSIR), Sanatnagar Srinagar, Jammu and Kashmir 190005, India; Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, 190005, India
| | - Zahoor Ahmad
- Clinical Microbiology and PK/PD Division, Council of scientific and industrial research (CSIR) -Indian Institute of Integrative Medicine (IIIM), Sanatnagar, Srinagar, 190005, India; Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Integrative Medicine (CSIR), Sanatnagar Srinagar, Jammu and Kashmir 190005, India.
| |
Collapse
|
17
|
Janevska S, Arndt B, Niehaus EM, Burkhardt I, Rösler SM, Brock NL, Humpf HU, Dickschat JS, Tudzynski B. Gibepyrone Biosynthesis in the Rice Pathogen Fusarium fujikuroi Is Facilitated by a Small Polyketide Synthase Gene Cluster. J Biol Chem 2016; 291:27403-27420. [PMID: 27856636 PMCID: PMC5207165 DOI: 10.1074/jbc.m116.753053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/14/2016] [Indexed: 11/06/2022] Open
Abstract
The 2H-pyran-2-one gibepyrone A and its oxidized derivatives gibepyrones B-F have been isolated from the rice pathogenic fungus Fusarium fujikuroi already more than 20 years ago. However, these products have not been linked to the respective biosynthetic genes, and therefore, their biosynthesis has not yet been analyzed on a molecular level. Feeding experiments with isotopically labeled precursors clearly supported a polyketide origin for the formal monoterpenoid gibepyrone A, whereas the terpenoid pathway could be excluded. Targeted gene deletion verified that the F. fujikuroi polyketide synthase PKS13, designated Gpy1, is responsible for gibepyrone A biosynthesis. Next to Gpy1, the ATP-binding cassette transporter Gpy2 is encoded by the gibepyrone gene cluster. Gpy2 was shown to have only a minor impact on the actual efflux of gibepyrone A out of the cell. Instead, we obtained evidence that Gpy2 is involved in gene regulation as it represses GPY1 gene expression. Thus, GPY1 was up-regulated and gibepyrone A production was enhanced both extra- and intracellularly in Δgpy2 mutants. Furthermore, expression of GPY genes is strictly repressed by members of the fungus-specific velvet complex, Vel1, Vel2, and Lae1, whereas Sge1, a major regulator of secondary metabolism in F. fujikuroi, affects gibepyrone biosynthesis in a positive manner. The gibepyrone A derivatives gibepyrones B and D were shown to be produced by cluster-independent P450 monooxygenases, probably to protect the fungus from the toxic product. In contrast, the formation of gibepyrones E and F from gibepyrone A is a spontaneous process and independent of enzymatic activity.
Collapse
Affiliation(s)
- Slavica Janevska
- From the Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, D-48143 Münster
| | - Birgit Arndt
- the Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, D-48149 Münster, and
| | - Eva-Maria Niehaus
- From the Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, D-48143 Münster
| | - Immo Burkhardt
- the Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | - Sarah M Rösler
- From the Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, D-48143 Münster
- the Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, D-48149 Münster, and
| | - Nelson L Brock
- the Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | - Hans-Ulrich Humpf
- the Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, D-48149 Münster, and
| | - Jeroen S Dickschat
- the Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | - Bettina Tudzynski
- From the Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, D-48143 Münster,
| |
Collapse
|
18
|
Abstract
The α-pyrone moiety is a structural feature found in a huge variety of biologically active metabolites. In recent times new insights into additional biosynthetic mechanisms, yielding in such six-membered unsaturated ester ring residues have been obtained. The purpose of this mini-review is to give a brief overview of α-pyrones and the mechanisms forming the basis of their natural synthesis. Especially the chain interconnecting enzymes, showing homology to ketosynthases which catalyze Claisen-like condensation reactions, will be presented.
Collapse
Affiliation(s)
- Till F Schäberle
- Institute for Pharmaceutical Biology, University of Bonn, Nußallee 6, 53115 Bonn, Germany
| |
Collapse
|
19
|
Suciati, Garson MJ. Isolation of the Tetrapeptide Apicidins G, H and I from the Fungus Fusarium semitectum. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study reports the isolation and characterization of three new tetrapeptides, apicidins G (1), H (2) and I (3), along with the known apicidin (4), apicidin A (5), apicidin C (6), diketopiperazine 7, equisetin (8) and 7-hydroxy-2-(2-hydroxypropyl)-5-methylchromone (9). The structures of the new compounds were deduced by 2D NMR spectroscopic and MS data.
Collapse
Affiliation(s)
- Suciati
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
- Faculty of Pharmacy, Airlangga University, Surabaya, East Java 60286, Indonesia
| | - Mary J. Garson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
20
|
Suyama TL, Gerwick WH, McPhail KL. Survey of marine natural product structure revisions: a synergy of spectroscopy and chemical synthesis. Bioorg Med Chem 2011; 19:6675-701. [PMID: 21715178 PMCID: PMC3205310 DOI: 10.1016/j.bmc.2011.06.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/09/2011] [Accepted: 06/02/2011] [Indexed: 11/16/2022]
Abstract
The structural assignment of new natural product molecules supports research in a multitude of disciplines that may lead to new therapeutic agents and or new understanding of disease biology. However, reports of numerous structural revisions, even of recently elucidated natural products, inspired the present survey of techniques used in structural misassignments and subsequent revisions in the context of constitutional or configurational errors. Given the comparatively recent development of marine natural products chemistry, coincident with modern spectroscopy, it is of interest to consider the relative roles of spectroscopy and chemical synthesis in the structure elucidation and revision of those marine natural products that were initially misassigned. Thus, a tabulated review of all marine natural product structural revisions from 2005 to 2010 is organized according to structural motif revised. Misassignments of constitution are more frequent than perhaps anticipated by reliance on HMBC and other advanced NMR experiments, especially when considering the full complement of all natural products. However, these techniques also feature prominently in structural revisions, specifically of marine natural products. Nevertheless, as is the case for revision of relative and absolute configuration, total synthesis is a proven partner for marine, as well as terrestrial, natural products structure elucidation. It also becomes apparent that considerable 'detective work' remains in structure elucidation, in spite of the spectacular advances in spectroscopic techniques.
Collapse
Affiliation(s)
- Takashi L. Suyama
- Department of Pharmaceutical Sciences, 203 Pharmacy Building, Oregon State University, Corvallis OR 97331, U.S.A
| | - William H. Gerwick
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla CA 92093-0212, U.S.A
| | - Kerry L. McPhail
- Department of Pharmaceutical Sciences, 203 Pharmacy Building, Oregon State University, Corvallis OR 97331, U.S.A
| |
Collapse
|
21
|
|
22
|
|
23
|
Sepcic K, Zalar P, Gunde-Cimerman N. Low water activity induces the production of bioactive metabolites in halophilic and halotolerant fungi. Mar Drugs 2010; 9:43-58. [PMID: 21339946 PMCID: PMC3039469 DOI: 10.3390/md9010043] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/15/2010] [Accepted: 12/22/2010] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice), for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes, and therefore the production of bioactive metabolites was tested under both standard growth conditions for mesophilic microorganisms, and at high NaCl and sugar concentrations and low growth temperatures. The results indicate that selected halotolerant and halophilic species synthesize specific bioactive metabolites under conditions that represent stress for non-adapted species. Furthermore, adaptation at the level of the chemical nature of the solute lowering the water activity of the medium was observed. Increased salt concentrations resulted in higher hemolytic activity, particularly within species dominating the salterns. The appearance of antibacterial potential under stress conditions was seen in the similar pattern of fungal species as for hemolysis. The active extracts exclusively affected the growth of the Gram-positive bacterium tested, Bacillus subtilis. None of the extracts tested showed inhibition of acetylcholinesterase activity.
Collapse
Affiliation(s)
- Kristina Sepcic
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
24
|
Balde ES, Andolfi A, Bruyère C, Cimmino A, Lamoral-Theys D, Vurro M, Damme MV, Altomare C, Mathieu V, Kiss R, Evidente A. Investigations of fungal secondary metabolites with potential anticancer activity. JOURNAL OF NATURAL PRODUCTS 2010; 73:969-71. [PMID: 20415482 DOI: 10.1021/np900731p] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fourteen metabolites, isolated from phytopathogenic and toxigenic fungi, were evaluated for their in vitro antigrowth activity for six distinct cancer cell lines, using the MTT colorimetric assay. Bislongiquinolide (1) and dihydrotrichodimerol (5), which belong to the bisorbicillinoid structural class, displayed significant growth inhibitory activity against the six cancer cell lines studied, while the remaining compounds displayed weak or no activity. The data show that 1 and 5 have similar growth inhibitory activities with respect to those cancer cell lines that display certain levels of resistance to pro-apoptotic stimuli or those that are sensitive to apoptosis. Quantitative videomicroscopy analysis revealed that 1 and 5 exert their antiproliferative effect through cytostatic and not cytotoxic activity. The preliminary results from the current study have stimulated further structure-activity investigations with respect to the growth inhibitory activity of compounds belonging to the bisorbicillinoid group.
Collapse
Affiliation(s)
- ElHadj Saidou Balde
- Laboratoire de Toxicologie and Laboratoire de Chimie Analytique, Toxicologie et Chimie Physique Appliquee, Institut de Pharmacie, Universite Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Novel neofusapyrones isolated from Verticillium dahliae as potent antifungal substances. Bioorg Med Chem Lett 2010; 20:709-12. [DOI: 10.1016/j.bmcl.2009.11.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 10/23/2009] [Accepted: 11/13/2009] [Indexed: 11/23/2022]
|
26
|
|
27
|
Bräse S, Encinas A, Keck J, Nising CF. Chemistry and Biology of Mycotoxins and Related Fungal Metabolites. Chem Rev 2009; 109:3903-90. [DOI: 10.1021/cr050001f] [Citation(s) in RCA: 411] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefan Bräse
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Arantxa Encinas
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Julia Keck
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Carl F. Nising
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| |
Collapse
|
28
|
Evidente A, Ricciardiello G, Andolfi A, Sabatini MA, Ganassi S, Altomare C, Favilla M, Melck D. Citrantifidiene and citrantifidiol: bioactive metabolites produced by Trichoderma citrinoviride with potential antifeedant activity toward aphids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:3569-3573. [PMID: 18435538 DOI: 10.1021/jf073541h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two novel metabolites with potential antifeedant activity were isolated from cultures of the fungus Trichoderma citrinoviride strain ITEM 4484 grown in solid-state fermentation on sterile rice kernels. The producing strain was identified at species level by sequence analysis of the internal transcribed spacer regions ITS-1 and ITS-2 of the nuclear rDNA and a fragment of the translation elongation factor gene TEF-1alpha. Fractionation by column chromatography and TLC of the culture organic extract, followed by feeding preference tests on the aphid pest Schizaphis graminum (Rondani), allowed the purification of 5.8 and 8.9 mg/kg of culture of two bioactive metabolites, which were named citrantifidiene and citrantifidiol ( 1 and 2). Citrantifidiene and citrantifidiol, whose structures were determined by spectroscopic methods (NMR and MS) are a symmetrical disubstituted hexa-1,3-dienyl ester of acetic acid and a tetrasubstituted cyclohexane-1,3-diol, respectively. The pure metabolites influenced the feeding preference of S. graminum restraining individuals from feeding on wheat leaves dipped in 5% aqueous methanol solution containing 0.57 mg/mL of citrantifidiene or 0.91 mg/mL of citrantifidiol.
Collapse
Affiliation(s)
- Antonio Evidente
- Dipartimento di Scienze del Suolo, della Pianta, dell'Ambiente e delle Produzioni Animali, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Inhibition of species of the Aspergillus section Nigri and ochratoxin a production in grapes by fusapyrone. Appl Environ Microbiol 2008; 74:2248-53. [PMID: 18263739 DOI: 10.1128/aem.01998-07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusapyrone (FP), an antifungal natural compound, was tested against the three main ochratoxigenic species of the Aspergillus section Nigri. The MICs at 24 h were 6.0, 11.6, and 9.9 mug/ml for Aspergillus carbonarius, Aspergillus tubingensis, and Aspergillus niger, respectively. Strong inhibition of growth and morphological changes were still observed at half the MIC after 7 days. The application of a 100 mug/ml FP solution in a laboratory assay on artificially inoculated grapes resulted in a significant reduction (up to 6 orders of magnitude) of A. carbonarius CFU counts. Dramatic reductions of the ochratoxin A (OTA) content, compared to the content of the positive control (average amount of OTA, 112.5 ng/g of grape; three experiments), were obtained with the application of either 100 or 50 mug/ml of FP (0.6 or 5.1 ng/g of grape, respectively).
Collapse
|
30
|
Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2008; 25:35-94. [PMID: 18250897 DOI: 10.1039/b701534h] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review covers the literature published in 2006 for marine natural products, with 758 citations (534 for the period January to December 2006) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, cnidaria, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (779 for 2006), together with their relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Hiramatsu F, Miyajima T, Murayama T, Takahashi K, Koseki T, Shiono Y. Isolation and Structure Elucidation of Neofusapyrone from a Marine-derived Fusarium species, and Structural Revision of Fusapyrone and Deoxyfusapyrone. J Antibiot (Tokyo) 2006; 59:704-9. [PMID: 17256469 DOI: 10.1038/ja.2006.94] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three polyketides containing a pyrone ring, neofusapyrone, fusapyrone, and deoxyfusapyrone, were isolated from the marine-derived fungus Fusarium sp. FH-146. Their structures were determined by extensive ID- and 2D-NMR and MS spectral analyses. Fusapyrone and deoxyfusapyrone were originally reported as a-pyrone derivatives; however, the revised structures indicate that they are gamma-pyrone derivatives. These three compounds exhibited antimicrobial activities.
Collapse
Affiliation(s)
- Fuminori Hiramatsu
- Department of Bioresource Engineering, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan
| | | | | | | | | | | |
Collapse
|
33
|
McGlacken GP, Fairlamb IJS. 2-Pyrone natural products and mimetics: isolation, characterisation and biological activity. Nat Prod Rep 2005; 22:369-85. [PMID: 16010346 DOI: 10.1039/b416651p] [Citation(s) in RCA: 274] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The review summarises natural products containing the 2-pyrone moiety. An emphasis has been placed upon the biological activity associated with 2-pyrones, particularly with respect to potential therapeutic or anti-microbial agents. Where appropriate, non-natural 2-pyrone analogues are discussed, particularly those derived from natural product lead compounds.
Collapse
Affiliation(s)
- Gerard P McGlacken
- Department of Chemistry, University of York, Heslington, York, UK YO10 5DD
| | | |
Collapse
|
34
|
Tekavec TN, Arif AM, Louie J. Regioselectivity in nickel(0) catalyzed cycloadditions of carbon dioxide with diynes. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.06.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Altomare C, Pengue R, Favilla M, Evidente A, Visconti A. Structure-activity relationships of derivatives of fusapyrone, an antifungal metabolite of Fusarium semitectum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:2997-3001. [PMID: 15137845 DOI: 10.1021/jf035233z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fusapyrone (1) and deoxyfusapyrone (2) are two 3-substituted-4-hydroxy-6-alkyl-2-pyrones isolated from Fusarium semitectum that have considerable antifungal activity against molds. Because of their low zootoxicity and selective action they are potentially utilizable along with biocontrol yeasts for control of postharvest crop diseases. Seven derivatives of 1 (3 and 5-10) and one derivative of 2 (4) were obtained by chemical modifications of the glycosyl residue, the 2-pyrone ring, the aliphatic chain, or a combination thereof, and a structure-activity correlation study was carried out with regard to their zootoxicity and antifungal activity. Derivatives 7-10, as well as 1, were slightly zootoxic in Artemia salina (brine shrimp) bioassays, whereas pentaacetylation of 1 into 3, 5, and 6 resulted in a strong increase in toxicity. Compound 4, the tetraacetyl derivative of 2, was as toxic as 2. Because the structural changes of 1 that resulted in an increase of biological activity in A. salina bioassay were those that affected mainly the water solubility of the molecule, it appears that toxicity is related to hydrophobicity. Compounds 1 and 2 showed strong antifungal activity toward Botrytis cinerea, Aspergillus parasiticus, and Penicilliun brevi-compactum (minimum inhibitory concentration at 24 h = 0.78-6.25 microg/mL). Among derivatives 3-10, only compounds 7, 9, and 10 retained some activity, limited to B. cinerea and at high concentration (25-50 microg/mL). None of the compounds 1-10 inhibited the growth of the biocontrol yeasts Pichia guilliermondii and Rhodotorula glutinis at the highest concentration tested (50 microg/mL).
Collapse
Affiliation(s)
- Claudio Altomare
- Istituto di Scienze delle Produzioni Alimentari, CNR, 70125 Bari, Italy.
| | | | | | | | | |
Collapse
|
36
|
Kanai A, Kamino T, Kuramochi K, Kobayashi S. Synthetic studies directed toward the assembly of the C-glycoside fragment of the telomerase inhibitor D8646-2-6. Org Lett 2003; 5:2837-9. [PMID: 12889887 DOI: 10.1021/ol034873k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] Construction and characterization of the C-glycosidic moiety of telomerase inhibitor D8646-2-6 (1) are described. This is the first example of the C-glycosylation using electron-poor aromatics, 4-hydroxypyrone, as a glycosyl acceptor. The glycosylation reaction and base-promoted isomerization affords desired beta-C-glycoside in a 61% overall yield.
Collapse
Affiliation(s)
- Akira Kanai
- Frontier Research Center for Genomic Drug Discovery and Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Nodashi, Chiba 278-8510, Japan
| | | | | | | |
Collapse
|
37
|
Organ MG, Wang J. The synthesis of deoxyfusapyrone. 2. Preparation of the bis-trisubstituted olefin fragment and its attachment to the pyrone moiety. J Org Chem 2003; 68:5568-74. [PMID: 12839448 DOI: 10.1021/jo034371k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A convergent and modular synthesis has been devised to construct the eight diastereoisomers of deoxyfusapyrone (1). In this paper the synthesis of the complex polyene chain is reported as is its connection to the pyrone moiety that is in the middle of the structure of the final target molecule. This route has been fully worked out for one of the isomers and will now be applied in a parallel synthesis format to make all the stereoisomers of 1.
Collapse
Affiliation(s)
- Michael G Organ
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.
| | | |
Collapse
|
38
|
Abstract
An effective synthesis of the C1-C10 component of deoxyfusapyrone has been achieved that will allow for the synthesis of both the (R) and (S) form of the C-8 chiral center starting from optically pure (+)- and (-)-3,3-dimethyl-2-hydroxy-gammalactone (pantolactone).
Collapse
Affiliation(s)
- Michael G Organ
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.
| | | |
Collapse
|
39
|
Altomare C, Perrone G, Zonno MC, Evidente A, Pengue R, Fanti F, Polonelli L. Biological characterization of fusapyrone and deoxyfusapyrone, two bioactive secondary metabolites of Fusarium semitectum. JOURNAL OF NATURAL PRODUCTS 2000; 63:1131-1135. [PMID: 10978211 DOI: 10.1021/np000023r] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fusapyrone (1) and deoxyfusapyrone (2), two alpha-pyrones originally isolated from rice cultures of Fusarium semitectum, were tested in several biological assays. Compounds 1 and 2 showed considerable antifungal activity against several plant pathogenic and/or mycotoxigenic filamentous fungi, although they were inactive toward yeasts isolated from plants and the Gram-positive bacterium Bacillus megaterium in disk diffusion assays. Compound 1 was consistently more active than 2. Among the tested fungi, Fusarium species were the least sensitive to the two pyrones, while Alternaria alternata, Ascochyta rabiei, Aspergillusflavus, Botrytis cinerea, Cladosporium cucumerinum, Phoma tracheiphila, and Penicillium verrucosum were the most sensitive. Compounds 1 and 2 also showed good inhibitory activity toward agents of human mycoses. Aspergilli were the most sensitive, while some species-specific variability was found among the Candida spp. In an Artemia salina larvae bioassay, 1 was not toxic at the highest concentration tested (500 microM), whereas the LC(50) of 2 was 37.1 microM (21.8 microg/mL). Neither 1 nor 2 was phytotoxic in a panel of assays that monitored plant-cell toxicity, as well as wilt-, chlorosis-, and necrosis-inducing activity. Moreover, 2 stimulated the root elongation of tomato seedlings at doses of 10 and 100 microM. In consideration of the biological activities evidenced in this study, 1 and 2 appear to be potential candidates for biotechnological applications, as well as good models for studies on mechanism(s) of action and structure-activity relationships.
Collapse
Affiliation(s)
- C Altomare
- Istituto Tossine e Micotossine da Parassiti Vegetali, CNR, 70125 Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Evidente A, Amalfitano C, Pengue R, Altomare C. High performance liquid chromatography for the analysis of fusapyrone and deoxyfusapyrone, two antifungal alpha-pyrones from Fusarium semitectum. NATURAL TOXINS 2000; 7:133-7. [PMID: 10797640 DOI: 10.1002/(sici)1522-7189(199907/08)7:4<133::aid-nt60>3.0.co;2-i] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A simple, very sensitive and rapid HPLC method was developed for the simultaneous quantitative analysis of both fusapyrone (FP) and deoxyfusapyrone (DFP), the two antifungal 3-substituted-4-hydroxy-6-alkyl-2-pyrones isolated from rice culture of Fusarium semitectum, in crude extracts. Such method was optimized on C-18 reverse phase column, using the isolated metabolites as standards, with a sequence of linear elution steps with a MeOH-H(2)O mixture and using an ultraviolet detector fixed at 285 nm, where both alpha-pyrones showed a characteristic absorption maximum. This method was used to quantify the bioactive metabolites in crude organic extracts from two F. semitectum strains. The recovery of FP and DFP was measured in a crude extract from a poor metabolite producer F. semitectum strain. The recovery values ranged from 84% to 99% for FP and from 99% to 101% for DFP, indicating that the method was close to quantitative recovery. Furthermore, an efficient medium pressure column chromatography and TLC combined method was developed for the isolation and purification of FP and DFP from fungal culture extracts.
Collapse
Affiliation(s)
- A Evidente
- Dipartimento di Scienze Chimico-Agrarie, Università di Napoli Federico II, Portici, Italy
| | | | | | | |
Collapse
|