1
|
Wojcieszak J, Kuczyńska K, Leszczyńska A, Naraziński E, Cichalewska-Studzińska M. Access to high-fat diet results in increased sensitivity to the psychostimulant effects of MDPV in mice. Pharmacol Rep 2025:10.1007/s43440-025-00701-0. [PMID: 39869285 DOI: 10.1007/s43440-025-00701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND The current study investigated the effects of high-fat diet on acute response to 3,4-methylenedioxypyrovalerone (MDPV) in mice. MDPV is a beta-cathinone derivative endowed with psychostimulant activity. Similarly to recreational substances, consumption of palatable food stimulates the mesolimbic dopaminergic system, resulting in neuroadaptive changes. METHODS Adolescent C57BL/6N mice were fed either control diet (CD), 10% of kcal from fat, or high-fat diet (HFD), 60% of kcal from fat. After eight weeks, one group of HFD-fed mice had their diet changed to CD for an additional two weeks. Fasting glucose levels and glucose tolerance were measured to detect impairment in glucose metabolism. Subsequently, the mice were treated with either MDPV (1 mg/kg) or saline, and their locomotor activity was measured. Using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), the expression of dopamine receptor D1 (Drd1), dopamine receptor D2 (Drd2), and FBJ osteosarcoma oncogene B (FosB) genes was measured in the striatum of mice. RESULTS Feeding with HFD caused obesity and glucose intolerance in mice. Restriction of fat reduced body mass and reversed impairment of glucose metabolism. HFD-fed mice responded to MDPV with higher potency than CD-fed counterparts, with an increased incidence of stereotypies. A change of diet partially reversed this effect. Downregulation of Drd2 was observed in the mice that switched from HFD to CD, whereas treatment with MDPV caused upregulation of FosB only in the CD-fed mice. CONCLUSIONS Current results suggest that obesity may increase sensitivity to psychostimulant effects of MDPV and elevate the risk of addiction as mice fed with HFD responded to acute treatment with MDPV with higher potency and showed tolerance of FosB induction in response to the drug.
Collapse
Affiliation(s)
- Jakub Wojcieszak
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, Łódź, 90-151, Poland.
| | - Katarzyna Kuczyńska
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, Łódź, 90-151, Poland
| | - Adrianna Leszczyńska
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, Łódź, 90-151, Poland
| | - Eryk Naraziński
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, Łódź, 90-151, Poland
| | | |
Collapse
|
2
|
Huwart SJP, Fayt C, Gangarossa G, Luquet S, Cani PD, Everard A. TLR4-dependent neuroinflammation mediates LPS-driven food-reward alterations during high-fat exposure. J Neuroinflammation 2024; 21:305. [PMID: 39580436 PMCID: PMC11585241 DOI: 10.1186/s12974-024-03297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Obesity has become a global pandemic, marked by significant shifts in both the homeostatic and hedonic/reward aspects of food consumption. While the precise causes are still under investigation, recent studies have identified the role of gut microbes in dysregulating the reward system within the context of obesity. Unravelling these gut-brain connections is crucial for developing effective interventions against eating and metabolic disorders, particularly in the context of obesity. This study explores the causal role of LPS, as a key relay of microbiota component-induced neuroinflammation in the dysregulation of the reward system following exposure to high-fat diet (HFD). METHODS Through a series of behavioural paradigms related to food-reward events and the use of pharmacological agents targeting the dopamine circuit, we investigated the mechanisms associated with the development of reward dysregulation during HFD-feeding in male mice. A Toll-like receptor 4 (TLR4) full knockout model and intraventricular lipopolysaccharide (LPS) diffusion at low doses, which mimics the obesity-associated neuroinflammatory phenotype, were used to investigate the causal roles of gut microbiota-derived components in neuroinflammation and reward dysregulation. RESULTS Our study revealed that short term exposure to HFD (24 h) tended to affect food-seeking behaviour, and this effect became significant after 1 week of HFD. Moreover, we found that deletion of TLR4 induced a partial protection against HFD-induced neuroinflammation and reward dysregulation. Finally, chronic brain diffusion of LPS recapitulated, at least in part, HFD-induced molecular and behavioural dysfunctions within the reward system. CONCLUSIONS These findings highlight a link between the neuroinflammatory processes triggered by the gut microbiota components LPS and the dysregulation of the reward system during HFD-induced obesity through the TLR4 pathway, thus paving the way for future therapeutic approaches.
Collapse
Affiliation(s)
- Sabrina J P Huwart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, Brussels, B-1200, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium
| | - Clémence Fayt
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, Brussels, B-1200, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, F-75013, France
- Institut Universitaire de France (IUF), Paris, France
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, F-75013, France
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, Brussels, B-1200, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, Brussels, B-1200, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium.
| |
Collapse
|
3
|
Hagarty-Waite KA, Emmons HA, Fordahl SC, Erikson KM. The Influence of Strain and Sex on High Fat Diet-Associated Alterations of Dopamine Neurochemistry in Mice. Nutrients 2024; 16:3301. [PMID: 39408267 PMCID: PMC11479034 DOI: 10.3390/nu16193301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Objective: The objective of this study was to determine the influence of sex and strain on striatal and nucleus accumbens dopamine neurochemistry and dopamine-related behavior due to a high-saturated-fat diet (HFD). Methods: Male and female C57B6/J (B6J) and Balb/cJ (Balb/c) mice were randomly assigned to a control-fat diet (CFD) containing 10% kcal fat/g or a mineral-matched HFD containing 60% kcal fat/g for 12 weeks. Results: Intraperitoneal glucose tolerance testing (IPGTT) and elevated plus maze experiments (EPM) confirmed that an HFD produced marked blunting of glucose clearance and increased anxiety-like behavior, respectively, in male and female B6J mice. Electrically evoked dopamine release in the striatum and reuptake in the nucleus accumbens (NAc), as measured by ex vivo fast scan cyclic voltammetry, was reduced for HFD-fed B6J females. Impairment in glucose metabolism explained HFD-induced changes in dopamine neurochemistry for B6J males and, to a lesser extent, Balb/c males. The relative expressions of protein markers associated with the activation of microglia, ionized calcium binding adaptor molecule (Iba1) and cluster of differentiation molecule 11b (CD11b) in the striatum were increased due to an HFD for B6J males but were unchanged or decreased amongst HFD-fed Balb/c mice. Conclusions: Our findings demonstrate that strain and sex influence the insulin- and microglia-dependent mechanisms of alterations to dopamine neurochemistry and associated behavior due to an HFD.
Collapse
Affiliation(s)
| | | | | | - Keith M. Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (K.A.H.-W.); (H.A.E.); (S.C.F.)
| |
Collapse
|
4
|
Emmons HA, Fordahl SC. Moderate-intensity aerobic exercise enhanced dopamine signaling in diet-induced obese female mice without preventing body weight gain. Neuroscience 2024; 555:1-10. [PMID: 39032807 PMCID: PMC11344652 DOI: 10.1016/j.neuroscience.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Obesity continues to rise in prevalence and financial burden despite strong evidence linking it to an increased risk of developing several chronic diseases. Dopamine response and receptor density are shown to decrease under conditions of obesity. However, it is unclear if this could be a potential mechanism for treatment without drugs that have a potential for abuse. Therefore, the aim of this study was to investigate whether moderate-intensity exercise could reduce body weight gain and the associated decreases in dopamine signaling observed with high-fat diet-induced adiposity. We hypothesized that exercise would attenuate body weight gain and diet-induced inflammation in high-fat (HF)-fed mice, resulting in dopamine signaling (release and reuptake rate) comparable to sedentary, low-fat (LF)-fed counterparts. This hypothesis was tested using a mouse model of diet-induced obesity (DIO) and fast-scan cyclic voltammetry to measure evoked dopamine release and reuptake rates. Although the exercise protocol employed in this study was not sufficient to prevent significant body weight gain, there was an enhancement of dopamine signaling observed in female mice fed a HF diet that underwent treadmill running. Additionally, aerobic treadmill exercise enhanced the sensitivity to amphetamine (AMPH) in this same group of exercised, HF-fed females. The estrous cycle might influence the ability of exercise to enhance dopamine signaling in females, an effect not observed in male groups. Further research into females by estrous cycle phase, in addition to determining the optimal intensity and duration of aerobic exercise, are logical next steps.
Collapse
Affiliation(s)
| | - Steve C Fordahl
- UNC Greensboro, Department of Nutrition, Greensboro NC, USA.
| |
Collapse
|
5
|
Schoukroun F, Befort K, Bourdy R. The rostromedial tegmental nucleus gates fat overconsumption through ventral tegmental area output in male rats. Neuropsychopharmacology 2024; 49:1569-1579. [PMID: 38570645 PMCID: PMC11319719 DOI: 10.1038/s41386-024-01855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Excessive consumption of palatable foods that are rich in fats and sugars has contributed to the increasing prevalence of obesity worldwide. Similar to addictive drugs, such foods activate the brain's reward circuit, involving mesolimbic dopaminergic projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) and the prefrontal cortex. Neuroadaptations occurring in this circuit are hypothesized to contribute to uncontrolled consumption of such foods, a common feature of most of eating disorders and obesity. The rostromedial tegmental nucleus (RMTg), also named tail of the VTA (tVTA), is an inhibitory structure projecting to the VTA and the lateral hypothalamus (LH), two key brain regions in food intake regulation. Prior research has demonstrated that the RMTg responds to addictive drugs and influences their impact on mesolimbic activity and reward-related behaviors. However, the role of the RMTg in food intake regulation remains largely unexplored. The present study aimed to investigate the role of the RMTg and its projections to the VTA and the LH in regulating food intake in rats. To do so, we examined eating patterns of rats with either bilateral excitotoxic lesions of the RMTg or specific lesions of RMTg-VTA and RMTg-LH pathways. Rats were exposed to a 6-week 'free choice high-fat and high-sugar' diet, followed by a 4-week palatable food forced abstinence and a 24 h re-access period. Our results indicate that an RMTg-VTA pathway lesion increases fat consumption following 6 weeks of diet and at time of re-access. The RMTg-LH pathway lesion produces a milder effect with a decrease in global calorie intake. These findings suggest that the RMTg influences palatable food consumption and relapse through its projections to the VTA.
Collapse
Affiliation(s)
- Florian Schoukroun
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, UMR7364, CNRS, 12 Rue Goethe, 67000, Strasbourg, France
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, UMR7364, CNRS, 12 Rue Goethe, 67000, Strasbourg, France.
| | - Romain Bourdy
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, UMR7364, CNRS, 12 Rue Goethe, 67000, Strasbourg, France.
| |
Collapse
|
6
|
Sahin K, Sahin E, Orhan C, Er B, Akoglan B, Ozercan IH, Sahin N, Komorowski JR. The impact of magnesium biotinate and arginine silicate complexes on metabolic dysfunctions, antioxidant activity, inflammation, and neuromodulation in high-fat diet-fed rats. Clin Exp Med 2024; 24:176. [PMID: 39105860 PMCID: PMC11303438 DOI: 10.1007/s10238-024-01434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024]
Abstract
Biotin and arginine play crucial roles in lipid metabolism and may offer promising interventions against obesity. This study examined the combined effect of magnesium biotinate (MgB) and inositol-stabilized arginine silicate complex (ASI) on obesity-related oxidative imbalance, inflammation, lipid metabolism and neuromodulation in rats on a high-fat diet (HFD). Forty rats were divided into five groups: (a) control: rats were fed a standard diet containing 12% of energy from fat; (b) HFD: rats were fed the HFD with 42% of energy from fat; (c) HFD + MgB: rats were fed the HFD and given 0.31 mg/kg body weight (BW) MgB, (d) HFD + ASI: rats were fed the HFD and were given 12.91 mg/kg BW ASI), and (e) HFD + MgB + ASI: rats were fed the HFD and given 0.31 mg/kg BW MgB and 12.91 mg/kg BW ASI). The combined administration of MgB and ASI reduced the levels of serum cholesterol, free fatty acid (FFA), and malondialdehyde (MDA), as well as liver inflammatory cytokines, sterol regulatory element-binding protein 1-c (SREBP-1c), and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) proteins (P < 0.001) compared to HFD rats without supplementation. Moreover, this combination increased the activities of antioxidant enzymes (P < 0.05) and boosted the brain-derived neurotrophic factor (BDNF), serotonin, dopamine (P < 0.001), as well as liver insulin receptor substrate 1 (IRS-1) and peroxisome proliferator-activated receptor gamma (PPAR-γ) (P < 0.001). These findings suggest that combining MgB and ASI could deter liver fat accumulation and enhance lipid metabolism in HFD-fed rats by modulating various metabolic pathways and neuromodulators related to energy metabolism. This combination demonstrates potential in addressing obesity and its related metabolic dysfunctions.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey.
| | - Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Besir Er
- Department of Biology, Faculty of Science, Firat University, 23119, Elazig, Turkey
| | - Bayram Akoglan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | | | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | | |
Collapse
|
7
|
Heijkoop R, Lalanza JF, Solanas M, Álvarez-Monell A, Subias-Gusils A, Escorihuela RM, Snoeren EMS. Changes in reward-induced neural activity upon Cafeteria Diet consumption. Physiol Behav 2024; 276:114478. [PMID: 38307359 DOI: 10.1016/j.physbeh.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Excessive consumption of highly palatable foods rich in sugar and fat, often referred to as "junk" or "fast" foods, plays a central role in the development of obesity. The highly palatable characteristics of these foods activate hedonic and motivational mechanisms to promote food-seeking behavior and overeating, which is largely regulated by the brain reward system. Excessive junk food consumption can alter the functioning of this reward system, but exact mechanisms of these changes are still largely unknown. This study investigated whether long-term junk food consumption, in the form of Cafeteria (CAF) diet, can alter the reward system in adult, female Long-Evans rats, and whether different regimes of CAF diet influence the extent of these changes. To this end, rats were exposed to a 6-week diet with either standard chow, or ad libitum daily access to CAF diet, 30 % restricted but daily access to CAF diet, or one-day-a-week (intermittent) ad libitum access to CAF diet, after which c-Fos expression in the Nucleus Accumbens (NAc), Prefrontal Cortex (PFC), and Ventral Tegmental Area (VTA) following consumption of a CAF reward of choice was examined. We found that all CAF diet regimes decreased c-Fos expression in the NAc-shell when presented with a CAF reward, while no changes in c-Fos expression upon the different diet regimes were found in the PFC, and possibly the VTA. Our data suggests that long-term junk food exposure can affect the brain reward system, resulting in an attenuated activity of the NAc-shell.
Collapse
Affiliation(s)
- R Heijkoop
- Department of Psychology, UiT The Arctic University of Norway, Norway
| | - J F Lalanza
- Department of Psychology, UiT The Arctic University of Norway, Norway
| | - M Solanas
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Medical Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - A Álvarez-Monell
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Medical Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - A Subias-Gusils
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Unitat de Psicologia Mèdica, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Spain
| | - R M Escorihuela
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Unitat de Psicologia Mèdica, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Spain
| | - E M S Snoeren
- Department of Psychology, UiT The Arctic University of Norway, Norway.
| |
Collapse
|
8
|
Ang MY, Takeuchi F, Kato N. Deciphering the genetic landscape of obesity: a data-driven approach to identifying plausible causal genes and therapeutic targets. J Hum Genet 2023; 68:823-833. [PMID: 37620670 PMCID: PMC10678330 DOI: 10.1038/s10038-023-01189-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVES Genome-wide association studies (GWAS) have successfully revealed numerous susceptibility loci for obesity. However, identifying the causal genes, pathways, and tissues/cell types responsible for these associations remains a challenge, and standardized analysis workflows are lacking. Additionally, due to limited treatment options for obesity, there is a need for the development of new pharmacological therapies. This study aimed to address these issues by performing step-wise utilization of knowledgebase for gene prioritization and assessing the potential relevance of key obesity genes as therapeutic targets. METHODS AND RESULTS First, we generated a list of 28,787 obesity-associated SNPs from the publicly available GWAS dataset (approximately 800,000 individuals in the GIANT meta-analysis). Then, we prioritized 1372 genes with significant in silico evidence against genomic and transcriptomic data, including transcriptionally regulated genes in the brain from transcriptome-wide association studies. In further narrowing down the gene list, we selected key genes, which we found to be useful for the discovery of potential drug seeds as demonstrated in lipid GWAS separately. We thus identified 74 key genes for obesity, which are highly interconnected and enriched in several biological processes that contribute to obesity, including energy expenditure and homeostasis. Of 74 key genes, 37 had not been reported for the pathophysiology of obesity. Finally, by drug-gene interaction analysis, we detected 23 (of 74) key genes that are potential targets for 78 approved and marketed drugs. CONCLUSIONS Our results provide valuable insights into new treatment options for obesity through a data-driven approach that integrates multiple up-to-date knowledgebases.
Collapse
Affiliation(s)
- Mia Yang Ang
- Department of Clinical Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Gene Diagnostics and Therapeutics, Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norihiro Kato
- Department of Clinical Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Gene Diagnostics and Therapeutics, Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Fructuoso M, Fernández-Blanco Á, Gallego-Román A, Sierra C, de Lagrán MM, Lorenzon N, De Toma I, Langohr K, Martín-García E, Maldonado R, Dairou J, Janel N, Dierssen M. Exploring the link between hedonic overeating and prefrontal cortex dysfunction in the Ts65Dn trisomic mouse model. Cell Mol Life Sci 2023; 80:370. [PMID: 37989807 PMCID: PMC11072570 DOI: 10.1007/s00018-023-05009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/23/2023]
Abstract
Individuals with Down syndrome (DS) have a higher prevalence of obesity compared to the general population. Conventionally, this has been attributed to endocrine issues and lack of exercise. However, deficits in neural reward responses and dopaminergic disturbances in DS may be contributing factors. To investigate this, we focused on a mouse model (Ts65Dn) bearing some triplicated genes homologous to trisomy 21. Through detailed meal pattern analysis in male Ts65Dn mice, we observed an increased preference for energy-dense food, pointing towards a potential "hedonic" overeating behavior. Moreover, trisomic mice exhibited higher scores in compulsivity and inflexibility tests when limited access to energy-dense food and quinine hydrochloride adulteration were introduced, compared to euploid controls. Interestingly, when we activated prelimbic-to-nucleus accumbens projections in Ts65Dn male mice using a chemogenetic approach, impulsive and compulsive behaviors significantly decreased, shedding light on a promising intervention avenue. Our findings uncover a novel mechanism behind the vulnerability to overeating and offer potential new pathways for tackling obesity through innovative interventions.
Collapse
Affiliation(s)
- Marta Fructuoso
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Ana Gallego-Román
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cèsar Sierra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - María Martínez de Lagrán
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Nicola Lorenzon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Ilario De Toma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Klaus Langohr
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), 08003, Barcelona, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya/ BARCELONATECH, Barcelona, Spain
| | - Elena Martín-García
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), 08003, Barcelona, Spain
- Departament de Psicobiologia i Metodologia de Les Ciències de la Salut, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologique, UMR 8601, CNRS, Université de Paris, 75013, Paris, France
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), 08003, Barcelona, Spain
| | - Julien Dairou
- Departament de Psicobiologia i Metodologia de Les Ciències de la Salut, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologique, UMR 8601, CNRS, Université de Paris, 75013, Paris, France
| | - Nathalie Janel
- BFA, UMR 8251, CNRS, Université de Paris, 75013, Paris, France
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), 08003, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
10
|
Huerta-Canseco C, Caba M, Camacho-Morales A. Obesity-mediated Lipoinflammation Modulates Food Reward Responses. Neuroscience 2023; 529:37-53. [PMID: 37591331 DOI: 10.1016/j.neuroscience.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Accumulation of white adipose tissue (WAT) during obesity is associated with the development of chronic low-grade inflammation, a biological process known as lipoinflammation. Systemic and central lipoinflammation accumulates pro-inflammatory cytokines including IL-6, IL-1β and TNF-α in plasma and also in brain, disrupting neurometabolism and cognitive behavior. Obesity-mediated lipoinflammation has been reported in brain regions of the mesocorticolimbic reward circuit leading to alterations in the perception and consumption of ultra-processed foods. While still under investigation, lipoinflammation targets two major outcomes of the mesocorticolimbic circuit during food reward: perception and motivation ("Wanting") and the pleasurable feeling of feeding ("Liking"). This review will provide experimental and clinical evidence supporting the contribution of obesity- or overnutrition-related lipoinflammation affecting the mesocorticolimbic reward circuit and enhancing food reward responses. We will also address neuroanatomical targets of inflammatory profiles that modulate food reward responses during obesity and describe potential cellular and molecular mechanisms of overnutrition linked to addiction-like behavior favored by brain lipoinflammation.
Collapse
Affiliation(s)
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico; Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico.
| |
Collapse
|
11
|
Passeri A, Municchi D, Cavalieri G, Babicola L, Ventura R, Di Segni M. Linking drug and food addiction: an overview of the shared neural circuits and behavioral phenotype. Front Behav Neurosci 2023; 17:1240748. [PMID: 37767338 PMCID: PMC10520727 DOI: 10.3389/fnbeh.2023.1240748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Despite a lack of agreement on its definition and inclusion as a specific diagnosable disturbance, the food addiction construct is supported by several neurobiological and behavioral clinical and preclinical findings. Recognizing food addiction is critical to understanding how and why it manifests. In this overview, we focused on those as follows: 1. the hyperpalatable food effects in food addiction development; 2. specific brain regions involved in both food and drug addiction; and 3. animal models highlighting commonalities between substance use disorders and food addiction. Although results collected through animal studies emerged from protocols differing in several ways, they clearly highlight commonalities in behavioral manifestations and neurobiological alterations between substance use disorders and food addiction characteristics. To develop improved food addiction models, this heterogeneity should be acknowledged and embraced so that research can systematically investigate the role of specific variables in the development of the different behavioral features of addiction-like behavior in preclinical models.
Collapse
Affiliation(s)
- Alice Passeri
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Diana Municchi
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Giulia Cavalieri
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | | | - Rossella Ventura
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| |
Collapse
|
12
|
Kang J, Park M, Oh CM, Kim T. High-fat diet-induced dopaminergic dysregulation induces REM sleep fragmentation and ADHD-like behaviors. Psychiatry Res 2023; 327:115412. [PMID: 37607442 DOI: 10.1016/j.psychres.2023.115412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Consumption of a high-fat diet (HFD) has been associated with reduced wakefulness and various behavioral deficits, including anxiety, depression, and anhedonia. The dopaminergic system, which plays a crucial role in sleep and ADHD, is known to be vulnerable to chronic HFD. However, the association between HFD-induced behavioral and molecular changes remains unclear. Therefore, we investigated the effects of a HFD on the dopaminergic system and its association with behavioral deficits in male mice. The mice were divided into normal diet and HFD groups and were analyzed for sleep patterns, behavior tests, and transcription levels of dopamine-related genes in the brain. The HFD group showed decreased wakefulness, increased REM sleep with fragmented patterns, decreased time spent in the center zone of the open field test, shorter immobile time in the tail suspension test, impaired visuospatial memory, and reduced sucrose preference. Additionally, the HFD group had decreased mRNA levels of D1R, COMT, and DAT in the nucleus accumbens, which negatively correlated with REM sleep proportion and REM sleep bout count. The results suggest that HFD-induced behavioral deficits were resemblance to ADHD-like behavioral phenotypes and disturbs REM sleep by dysregulating the dopaminergic system.
Collapse
Affiliation(s)
- Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Mincheol Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
13
|
Wieting J, Jahn K, Eberlein CK, Bleich S, Frieling H, Deest M. Hypomethylation of the dopamine transporter (DAT) gene promoter is associated with hyperphagia-related behavior in Prader-Willi syndrome: a case-control study. Behav Brain Res 2023; 450:114494. [PMID: 37182741 DOI: 10.1016/j.bbr.2023.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Prader-Willi syndrome (PWS), a neurodevelopmental disorder based on the loss of paternally derived but maternally imprinted genes on chromosome 15q11-13, is typically associated with hyperphagia-related behavior leading to massive obesity. Recently, there has been increasing evidence for dysregulated expression patterns of genes outside the PWS locus that influence the behavioral phenotype and for alterations in the dopaminergic system associated with weight regulation in PWS. In this study, we investigated the epigenetic regulation of the promoter regions of the dopamine transporter (DAT) and dopamine receptor D2 (DRD2) genes and their association with hyperphagia-related behavior in PWS. Methylation of the DAT and DRD2 promoter regions was examined by DNA bisulfite sequencing in 32 individuals with PWS and compared with a control group matched for sex, age, and body mass index (BMI). Hyperphagia-related behavior was assessed using the Hyperphagia Questionnaire for Clinical Trials (HQ-CT). Analysis by linear mixed models revealed a significant effect of factor group on mean DAT promoter methylation rate with decreased mean methylation in PWS (7.3 ± 0.4%) compared to controls (18.8 ± 0.6%), p < 0.001. In the PWS group, we further identified effects of HQ-CT score and BMI on DAT promoter methylation. Although also statistically significantly different (8.4 ± 0.2 in PWS, 10.5 ± 0.3 in controls, p < 0.001), DRD2 promoter methylation visually appeared to be evenly distributed between groups, raising concerns regarding a biological effect. Here, we provide evidence for altered epigenetic regulation of the DAT gene in PWS, which is associated with PWS-typical hyperphagia-related behaviors.
Collapse
Affiliation(s)
- Jelte Wieting
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Kirsten Jahn
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christian K Eberlein
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stefan Bleich
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Helge Frieling
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Maximilian Deest
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
14
|
Jantsch J, Rodrigues FDS, Fraga GDF, Eller S, Silveira AK, Moreira JCF, Giovernardi M, Guedes RP. Calorie restriction mitigates metabolic, behavioral and neurochemical effects of cafeteria diet in aged male rats. J Nutr Biochem 2023:109371. [PMID: 37169228 DOI: 10.1016/j.jnutbio.2023.109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Besides metabolic dysfunctions, elderly individuals with obesity are at special risk of developing cognitive decline and psychiatric disturbances. Restricted calorie consumption could be an efficient strategy to improve metabolic function after obesity. However, its effects on anxiety-like behaviors in aged rats submitted to an obesogenic diet are unknown. For this purpose, 42 Wistar rats (18-months old) were divided into four groups: Control (CT), calorie restriction (CR), cafeteria diet (CAF), and CAF+CR (CAF/CR). CT, CR, and CAF groups received the diets for 8 weeks. CAF/CR group was submitted to the CAF menu for 7 weeks and then switched to a standard diet on a CR regimen, receiving 30% lower calories than consumed by the CT, for another 5 weeks. CAF's menu consisted of ultra-processed foods such as cookies, chocolate, sausage, and bologna. Body weight, visceral adiposity, and biochemical blood analysis were evaluated for obesity diagnosis. The profile of gut microbiota was investigated, along with circulating levels of LPS. Neurochemical parameters, such as neurotransmitter levels, were dosed. Anxiety-like behaviors were accessed using open field (OF) and elevated plus maze (EPM) tests. As expected, CR reduced weight gain and improved glucose homeostasis. Gut microbiome disturbance was found in CAF-fed animals accompanied by increased levels of LPS. However, CR after CAF mitigated several harmful responses. The obesogenic diet triggered anxiety-like manifestations in the OF and EPM tests that were not evidenced in the CAF/CR group. These findings indicate that CR can be a promising strategy for the neurological effects of obesity in aged rats.
Collapse
Affiliation(s)
- Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Gabriel de Farias Fraga
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Alexandre Kleber Silveira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| | - José Cláudio Fonseca Moreira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| | - Márcia Giovernardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil.
| |
Collapse
|
15
|
de Wouters d'Oplinter A, Verce M, Huwart SJP, Lessard-Lord J, Depommier C, Van Hul M, Desjardins Y, Cani PD, Everard A. Obese-associated gut microbes and derived phenolic metabolite as mediators of excessive motivation for food reward. MICROBIOME 2023; 11:94. [PMID: 37106463 PMCID: PMC10142783 DOI: 10.1186/s40168-023-01526-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Excessive hedonic consumption is one of the main drivers for weight gain. Identifying contributors of this dysregulation would help to tackle obesity. The gut microbiome is altered during obesity and regulates host metabolism including food intake. RESULTS By using fecal material transplantation (FMT) from lean or obese mice into recipient mice, we demonstrated that gut microbes play a role in the regulation of food reward (i.e., wanting and learning processes associated with hedonic food intake) and could be responsible for excessive motivation to obtain sucrose pellets and alterations in dopaminergic and opioid markers in reward-related brain areas. Through untargeted metabolomic approach, we identified the 3-(3'-hydroxyphenyl)propanoic acid (33HPP) as highly positively correlated with the motivation. By administrating 33HPP in mice, we revealed its effects on food reward. CONCLUSIONS Our data suggest that targeting the gut microbiota and its metabolites would be an interesting therapeutic strategy for compulsive eating, preventing inappropriate hedonic food intake. Video Abstract.
Collapse
Affiliation(s)
- Alice de Wouters d'Oplinter
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Marko Verce
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Sabrina J P Huwart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Clara Depommier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
16
|
Hartmann H, Janssen LK, Herzog N, Morys F, Fängström D, Fallon SJ, Horstmann A. Self-reported intake of high-fat and high-sugar diet is not associated with cognitive stability and flexibility in healthy men. Appetite 2023; 183:106477. [PMID: 36764221 DOI: 10.1016/j.appet.2023.106477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Animal studies indicate that a high-fat/high-sugar diet (HFS) can change dopamine signal transmission in the brain, which could promote maladaptive behavior and decision-making. Such diet-induced changes may also explain observed alterations in the dopamine system in human obesity. Genetic variants that modulate dopamine transmission have been proposed to render some individuals more prone to potential effects of HFS. The objective of this study was to investigate the association of HFS with dopamine-dependent cognition in humans and how genetic variations might modulate this potential association. Using a questionnaire assessing the self-reported consumption of high-fat/high-sugar foods, we investigated the association with diet by recruiting healthy young men that fall into the lower or upper end of that questionnaire (low fat/sugar group: LFS, n = 45; high fat/sugar group: HFS, n = 41) and explored the interaction of fat and sugar consumption with COMT Val158Met and Taq1A genotype. During functional magnetic resonance imaging (fMRI) scanning, male participants performed a working memory (WM) task that probes distractor-resistance and updating of WM representations. Logistic and linear regression models revealed no significant difference in WM performance between the two diet groups, nor an interaction with COMT Val158Met or Taq1A genotype. Neural activation in task-related brain areas also did not differ between diet groups. Independent of diet group, higher BMI was associated with lower overall accuracy on the WM task. This cross-sectional study does not provide evidence for diet-related differences in WM stability and flexibility in men, nor for a predisposition of COMT Val158Met or Taq1A genotype to the hypothesized detrimental effects of an HFS diet. Previously reported associations of BMI with WM seem to be independent of HFS intake in our male study sample.
Collapse
Affiliation(s)
- Hendrik Hartmann
- Collaborative Research Centre 1052, University of Leipzig, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Lieneke K Janssen
- Collaborative Research Centre 1052, University of Leipzig, Leipzig, Germany; Institute of Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nadine Herzog
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany
| | - Filip Morys
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Daniel Fängström
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Annette Horstmann
- Collaborative Research Centre 1052, University of Leipzig, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Fang LZ, Lily Vidal JA, Hawlader O, Hirasawa M. High-fat diet-induced elevation of body weight set point in male mice. Obesity (Silver Spring) 2023; 31:1000-1010. [PMID: 36811235 DOI: 10.1002/oby.23650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/15/2022] [Accepted: 10/20/2022] [Indexed: 02/24/2023]
Abstract
OBJECTIVE High-fat diets (HFD) are thought to disrupt energy homeostasis to drive overeating and obesity. However, weight loss resistance in individuals with obesity suggests that homeostasis is intact. This study aimed to reconcile this difference by systematically assessing body weight (BW) regulation under HFD. METHODS Male C57BL/6 N mice were fed diets with varying fat and sugar in different durations and patterns. BW and food intake were monitored. RESULTS BW gain was transiently accelerated by HFD (≥40%) prior to plateauing. The plateau was consistent regardless of starting age, HFD duration, or fat/sugar content. Reverting to a low-fat diet (LFD) caused transiently accelerated weight loss, which correlated with how heavy mice were before the diet relative to LFD-only controls. Chronic HFD attenuated the efficacy of single or repetitive dieting, revealing a defended BW higher than that of LFD-only controls. CONCLUSIONS This study suggests that dietary fat modulates the BW set point immediately upon switching from LFD to HFD. Mice defend a new elevated set point by increasing caloric intake and efficiency. This response is consistent and controlled, suggesting that hedonic mechanisms contribute to rather than disrupt energy homeostasis. An elevated floor of the BW set point after chronic HFD could explain weight loss resistance in individuals with obesity.
Collapse
Affiliation(s)
- Lisa Z Fang
- Division of Biomedical Sciences, Memorial University, St John's, Newfoundland, Canada
| | - Josué A Lily Vidal
- Division of Biomedical Sciences, Memorial University, St John's, Newfoundland, Canada
| | - Oishi Hawlader
- Division of Biomedical Sciences, Memorial University, St John's, Newfoundland, Canada
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Memorial University, St John's, Newfoundland, Canada
| |
Collapse
|
18
|
Henderson BJ, Richardson MR, Cooper SY. A high-fat diet has sex-specific effects on nicotine vapor self-administration in mice. Drug Alcohol Depend 2022; 241:109694. [PMID: 36402049 PMCID: PMC9793688 DOI: 10.1016/j.drugalcdep.2022.109694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 10/07/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Previous investigations have shown that fat-rich diets increase vulnerability to drug dependence, including nicotine. Despite this knowledge, few investigations into the neurochemical mechanisms have been completed. Our objective here was to examine if high-fat diet (HFD) impacted nicotine intake and in parallel examine potential changes in dopamine signaling. METHODS Adult male and female C57/BL6J mice were used in nicotine e-vape® self-administration (EVSA) assays after being maintained on a standard diet or HFD for 6 weeks. In a separate cohort of mice, dopamine release in the nucleus accumbens core was examined with fast-scan cyclic voltammetry. RESULTS Female mice assigned to HFD exhibited increased nicotine EVSA during low-effort responding (FR1) when compared to standard-diet mice. HFD-assigned mice (male and female) also exhibited reduced active nose pokes in a progressive ratio task. Finally, HFD-mice exhibited reduced phasic dopamine release compared to standard-diet mice. CONCLUSIONS These show that fat-rich diets alter nicotine intake (females increase at low effort, males and females decrease at high effort) and this may occur due to HFD-induced decreases in NAc dopamine release.
Collapse
Affiliation(s)
- Brandon J Henderson
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Ave, Huntington, WV 25703, USA.
| | - Montana R Richardson
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Ave, Huntington, WV 25703, USA.
| | - Skylar Y Cooper
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Ave, Huntington, WV 25703, USA.
| |
Collapse
|
19
|
Casagrande BP, Ribeiro AM, Pisani LP, Estadella D. Hippocampal BDNF mediated anxiety-like behaviours induced by obesogenic diet withdrawal. Behav Brain Res 2022; 436:114077. [PMID: 36041572 DOI: 10.1016/j.bbr.2022.114077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
Obesogenic diets (ODs) consumption is associated with anxiety-like behaviour and negative changes in hippocampal BDNF. At the same time, interrupting OD intake, OD withdrawal (WTD), can bring health benefits, but previous studies reported the development of anxiety-like behaviours. The present work aimed to assess the relationship between anxiety-like behaviour with hippocampal BDNF in a WTD rodent model. Male Wistar rats (60d old) were fed a high-sugar/high-fat (HSHF) diet for 30d (n=32), and half of them were transitioned to a control diet for 48h (n=16) afterwards. The control group (n=16) was fed a control diet across the whole experiment. Besides increasing anxiety-like behaviours and lowering sociability, the WTD led to an increase in BDNF in the dentate gyrus and the CA1 of the hippocampus. It also decreased locomotor activity in both OF and EPM, however, they did not significantly interfere with the other behavioural parameters analysed. Western blotting analysis revealed that the increase in BDNF likely occurred in the mature forms (14kD monomer and 28kD dimer). The mediation models analyses suggested that the effect of WTD on anxiety-like behaviour was driven by hippocampal BDNF, this mediation of effect was region-dependent. Our results also suggested that mature BDNF forms (14kD and 28kD) were responsible. The present work brought light to a possible new role for mature BDNF, although it is generally associated with beneficial features, it can also be part of the genesis of anxiety-like behaviours and sociability aspects on WTD models.
Collapse
Affiliation(s)
- Breno Picin Casagrande
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, 1015-020, Santos, São Paulo, Brazil.
| | - Alessandra Mussi Ribeiro
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, 1015-020, Santos, São Paulo, Brazil.
| | - Luciana Pellegrini Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, 1015-020, Santos, São Paulo, Brazil.
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, 1015-020, Santos, São Paulo, Brazil.
| |
Collapse
|
20
|
Food Reward Alterations during Obesity Are Associated with Inflammation in the Striatum in Mice: Beneficial Effects of Akkermansia muciniphila. Cells 2022; 11:cells11162534. [PMID: 36010611 PMCID: PMC9406832 DOI: 10.3390/cells11162534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The reward system involved in hedonic food intake presents neuronal and behavioral dysregulations during obesity. Moreover, gut microbiota dysbiosis during obesity promotes low-grade inflammation in peripheral organs and in the brain contributing to metabolic alterations. The mechanisms underlying reward dysregulations during obesity remain unclear. We investigated if inflammation affects the striatum during obesity using a cohort of control-fed or diet-induced obese (DIO) male mice. We tested the potential effects of specific gut bacteria on the reward system during obesity by administrating Akkermansia muciniphila daily or a placebo to DIO male mice. We showed that dysregulations of the food reward are associated with inflammation and alterations in the blood–brain barrier in the striatum of obese mice. We identified Akkermansia muciniphila as a novel actor able to improve the dysregulated reward behaviors associated with obesity, potentially through a decreased activation of inflammatory pathways and lipid-sensing ability in the striatum. These results open a new field of research and suggest that gut microbes can be considered as an innovative therapeutic approach to attenuate reward alterations in obesity. This study provides substance for further investigations of Akkermansia muciniphila-mediated behavioral improvements in other inflammatory neuropsychiatric disorders.
Collapse
|
21
|
de Wouters d’Oplinter A, Huwart SJP, Cani PD, Everard A. Gut microbes and food reward: From the gut to the brain. Front Neurosci 2022; 16:947240. [PMID: 35958993 PMCID: PMC9358980 DOI: 10.3389/fnins.2022.947240] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Inappropriate food intake behavior is one of the main drivers for fat mass development leading to obesity. Importantly the gut microbiota-mediated signals have emerged as key actors regulating food intake acting mainly on the hypothalamus, and thereby controlling hunger or satiety/satiation feelings. However, food intake is also controlled by the hedonic and reward systems leading to food intake based on pleasure (i.e., non-homeostatic control of food intake). This review focus on both the homeostatic and the non-homeostatic controls of food intake and the implication of the gut microbiota on the control of these systems. The gut-brain axis is involved in the communications between the gut microbes and the brain to modulate host food intake behaviors through systemic and nervous pathways. Therefore, here we describe several mediators of the gut-brain axis including gastrointestinal hormones, neurotransmitters, bioactive lipids as well as bacterial metabolites and compounds. The modulation of gut-brain axis by gut microbes is deeply addressed in the context of host food intake with a specific focus on hedonic feeding. Finally, we also discuss possible gut microbiota-based therapeutic approaches that could lead to potential clinical applications to restore food reward alterations. Therapeutic applications to tackle these dysregulations is of utmost importance since most of the available solutions to treat obesity present low success rate.
Collapse
|
22
|
Guzmán-Ramos K, Osorio-Gómez D, Bermúdez-Rattoni F. Cognitive impairment in alzheimer’s and metabolic diseases: A catecholaminergic hypothesis. Neuroscience 2022; 497:308-323. [DOI: 10.1016/j.neuroscience.2022.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/16/2022]
|
23
|
Vindas-Smith R, Quesada D, Hernández-Solano MI, Castro M, Sequeira-Cordero A, Fornaguera J, Gómez G, Brenes JC. Fat intake and obesity-related parameters predict striatal BDNF gene expression and dopamine metabolite levels in cafeteria diet-fed rats. Neuroscience 2022; 491:225-239. [DOI: 10.1016/j.neuroscience.2022.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
24
|
de Wouters d’Oplinter A, Rastelli M, Van Hul M, Delzenne NM, Cani PD, Everard A. Gut microbes participate in food preference alterations during obesity. Gut Microbes 2022; 13:1959242. [PMID: 34424831 PMCID: PMC8386729 DOI: 10.1080/19490976.2021.1959242] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hypothalamic regulations of food intake are altered during obesity. The dopaminergic mesocorticolimbic system, responsible for the hedonic response to food intake, is also affected. Gut microbes are other key players involved in obesity. Therefore, we investigated whether the gut microbiota plays a causal role in hedonic food intake alterations contributing to obesity. We transferred fecal material from lean or diet-induced obese mice into recipient mice and evaluated the hedonic food intake using a food preference test comparing the intake of control and palatable diets (HFHS, High-Fat High-Sucrose) in donor and recipient mice. Obese mice ate 58% less HFHS during the food preference test (p < 0.0001) than the lean donors, suggesting a dysregulation of the hedonic food intake during obesity. Strikingly, the reduction of the pleasure induced by eating during obesity was transferable through gut microbiota transplantation since obese gut microbiota recipient mice exhibited similar reduction in HFHS intake during the food preference test (40% reduction as compared to lean gut microbiota recipient mice, p < 0.01). This effect was associated with a consistent trend in modifications of dopaminergic markers expression in the striatum. We also pinpointed a highly positive correlation between HFHS intake and Parabacteroides (p < 0.0001), which could represent a potential actor involved in hedonic feeding probably through the gut-to-brain axis. We further demonstrated the key roles played by gut microbes in this paradigm since depletion of gut microbiota using broad-spectrum antibiotics also altered HFHS intake during food preference test in lean mice. In conclusion, we discovered that gut microbes regulate hedonic aspects of food intake. Our data demonstrate that gut microbiota modifications associated with obesity participate in dysregulations of the reward and hedonic components of the food intake. These data provide evidence that gut microbes could be an interesting therapeutic target to tackle hedonic disorders related to obesity.
Collapse
Affiliation(s)
- Alice de Wouters d’Oplinter
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Marialetizia Rastelli
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium,CONTACT Amandine Everard UCLouvain, Université Catholique De Louvain, LDRI, Metabolism and Nutrition Research Group, Av. E. Mounier, 73 Box B1.73.11, B-1200Brussels, Belgium
| |
Collapse
|
25
|
OUP accepted manuscript. Nutr Rev 2022; 80:2178-2197. [DOI: 10.1093/nutrit/nuac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Totten MS, Wallace CW, Pierce DM, Fordahl SC, Erikson KM. The impact of a high-fat diet on physical activity and dopamine neurochemistry in the striatum is sex and strain dependent in C57BL/6J and DBA/2J mice. Nutr Neurosci 2021; 25:2601-2615. [PMID: 34693894 DOI: 10.1080/1028415x.2021.1992082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Obesity has been linked to behavioral and biochemical changes, such as reduced physical activity, dysregulated dopamine metabolism, and gene expression alterations in the brain. The impact of a continuous high-fat diet and resulting state of obesity may vary depending on sex and genetics. OBJECTIVE The aim of this study was to investigate the impact of a high-fat diet on physical activity, gene expression in the striatum, and dopamine neurochemistry using male and female mice from different strains as a model to examine sex and strain influences on dopamine-mediated behavior and neurobiology. METHODS Male and female mice from the C57BL/6J (B6J) and DBA/2J (D2J) strains were randomly assigned a control low-fat diet with 10% kcal fat or a high-fat diet with 60% kcal fat for 16 weeks. We assessed ambulation and habituation using the open field test; dopamine release and reuptake using ex-vivo fast scan cyclic voltammetry; and striatal mRNA expression of dopamine receptor D2, alpha synuclein, and tyrosine hydroxylase. RESULTS Mice fed a high-fat diet exhibited reduced motor activity, but only obese B6J male mice displayed reduced habituation. Dopamine clearance in the dorsal striatum was reduced only in obese D2J mice, while dopamine clearance in the nucleus accumbens core was reduced only in male obese D2J mice. Striatal dopamine receptor D2 gene expression was upregulated exclusively in obese male B6J mice. CONCLUSION Our study provides evidence for important sex and strain influences on the impact of a high-fat diet and obesity-induced behavior alterations and neurobiology dysregulation in the striatum.
Collapse
Affiliation(s)
- Melissa S Totten
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Conner W Wallace
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Derek M Pierce
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Steve C Fordahl
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Keith M Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
27
|
Casagrande BP, Pisani LP, Estadella D. AMPK in the gut-liver-brain axis and its influence on OP rats in an HSHF intake and WTD rat model. Pflugers Arch 2021; 473:1199-1211. [PMID: 34075446 DOI: 10.1007/s00424-021-02583-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Obesogenic diets (ODs) can affect AMPK activation in several sites as the colon, liver, and hypothalamus. OD intake can impair the hypothalamic AMPK regulation of energy homeostasis. Despite consuming ODs, not all subjects have the propensity to develop or progress to obesity. The obesity propensity is more associated with energy intake than expenditure dysregulations and may have a link with AMPK activity. While the effects of ODs are studied widely, few evaluate the short-term effects of terminating OD intake. Withdrawing from OD (WTD) is thought to improve or reverse the damages caused by the intake. Therefore, here we applied an OD intake and WTD protocol aiming to evaluate AMPK protein content and phosphorylation in the colon, liver, and hypothalamus and their relationship with obesity propensity. To this end, male Wistar rats (60 days) received control or high-sugar/high-fat (HSHF) OD for 30 days. Half of the animals were OD-withdrawn and fed the control diet for 48 h. After intake, we found a reduction in AMPK phosphorylation in the hypothalamus and colon, and after WTD, we found an increase in its hepatic and hypothalamic phosphorylation. The decrease in colon pAMPK/AMPK could be linked with hypothalamic pAMPK/AMPK after HSHF intake, while the increase in hepatic pAMPK/AMPK could have prevented the increase in hypothalamic pAMPK/AMPK. In the obesity-prone rats, we found higher levels of hypothalamic and colon pAMPK/AMPK despite the higher body mass gain. Our results highlight the relevance in multi-organ investigations and animal phenotype evaluation when studying the energy metabolism regulations.
Collapse
Affiliation(s)
- Breno Picin Casagrande
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP/BS, Santos, São Paulo, 11015-020, Brazil
| | - Luciana Pellegrini Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP/BS, Santos, São Paulo, 11015-020, Brazil
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP/BS, Santos, São Paulo, 11015-020, Brazil.
| |
Collapse
|
28
|
Replacing a Palatable High-Fat Diet with a Low-Fat Alternative Heightens κ-Opioid Receptor Control over Nucleus Accumbens Dopamine. Nutrients 2021; 13:nu13072341. [PMID: 34371851 PMCID: PMC8308677 DOI: 10.3390/nu13072341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/22/2021] [Accepted: 07/06/2021] [Indexed: 12/04/2022] Open
Abstract
Diet-induced obesity reduces dopaminergic neurotransmission in the nucleus accumbens (NAc), and stressful weight loss interventions could promote cravings for palatable foods high in fat and sugar that stimulate dopamine. Activation of κ-opioid receptors (KORs) reduces synaptic dopamine, but contribution of KORs to lower dopamine tone after dietary changes is unknown. Therefore, the purpose of this study was to determine the function of KORs in C57BL/6 mice that consumed a 60% high-fat diet (HFD) for six weeks followed by replacement of HFD with a control 10% fat diet for one day or one week. HFD replacement induced voluntary caloric restriction and weight loss. However, fast-scan cyclic voltammetry revealed no differences in baseline dopamine parameters, whereas sex effects were revealed during KOR stimulation. NAc core dopamine release was reduced by KOR agonism after one day of HFD replacement in females but after one week of HFD replacement in males. Further, elevated plus-maze testing revealed no diet effects during HFD replacement on overt anxiety. These results suggest that KORs reduce NAc dopamine tone and increase food-related anxiety during dietary weight loss interventions that could subsequently promote palatable food cravings and inhibit weight loss.
Collapse
|
29
|
Obesity and dietary fat influence dopamine neurotransmission: exploring the convergence of metabolic state, physiological stress, and inflammation on dopaminergic control of food intake. Nutr Res Rev 2021; 35:236-251. [PMID: 34184629 DOI: 10.1017/s0954422421000196] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this review is to explore how metabolic changes induced by diets high in saturated fat (HFD) affect nucleus accumbens (NAc) dopamine neurotransmission and food intake, and to explore how stress and inflammation influence this process. Recent evidence linked diet-induced obesity and HFD with reduced dopamine release and reuptake. Altered dopamine neurotransmission could disrupt satiety circuits between NAc dopamine terminals and projections to the hypothalamus. The NAc directs learning and motivated behaviours based on homeostatic needs and psychological states. Therefore, impaired dopaminergic responses to palatable food could contribute to weight gain by disrupting responses to food cues or stress, which impacts type and quantity of food consumed. Specifically, saturated fat promotes neuronal resistance to anorectic hormones and activation of immune cells that release proinflammatory cytokines. Insulin has been shown to regulate dopamine neurotransmission by enhancing satiety, but less is known about effects of diet-induced stress. Therefore, changes to dopamine signalling due to HFD warrant further examination to characterise crosstalk of cytokines with endocrine and neurotransmitter signals. A HFD promotes a proinflammatory environment that may disrupt neuronal endocrine function and dopamine signalling that could be exacerbated by the hypothalamic-pituitary-adrenal and κ-opioid receptor stress systems. Together, these adaptive changes may dysregulate eating by changing NAc dopamine during hedonic versus homeostatic food intake. This could drive palatable food cravings during energy restriction and hinder weight loss. Understanding links between HFD and dopamine neurotransmission will inform treatment strategies for diet-induced obesity and identify molecular candidates for targeted therapeutics.
Collapse
|
30
|
Estes MK, Bland JJ, Ector KK, Puppa MJ, Powell DW, Lester DB. A high fat western diet attenuates phasic dopamine release. Neurosci Lett 2021; 756:135952. [PMID: 33979702 DOI: 10.1016/j.neulet.2021.135952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Natural rewards, such as food and social interaction, as well as drugs of abuse elicit increased mesolimbic dopamine release in the nucleus accumbens (NAc). Drugs of abuse, however, increase NAc dopamine release to a greater extent and are known to induce lasting changes on the functioning of the mesolimbic dopamine pathway. Less is known about the long-term effects of diet composition on this reward pathway. In the present study, two diets were compared: a higher-fat diet (Western Diet: WD) and a control diet (standard lab chow) on their effect on the mesolimbic dopamine system. Twenty male C57BL/6 J mice were placed on one of these diets at 7 weeks old. After twelve weeks on the diet, in vivo fixed potential amperometry was used to measure real-time stimulation-evoked dopamine release in the NAc of anesthetized mice before and after an i.p. injection of the dopamine transporter (DAT) inhibitor nomifensine. Results indicated that diet altered mesolimbic dopamine functioning. Mice that consumed the WD demonstrated a hypodopaminergic profile, specifically reduced baseline dopamine release and an attenuated dopaminergic response to DAT inhibition compared to the control diet group. Thus, diet may play a role in mediating dopamine-related behavior, disorders associated with dopamine dysfunction, and pharmacological treatments aimed at altering dopamine transmission.
Collapse
Affiliation(s)
- Mary K Estes
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Jasric J Bland
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Kenya K Ector
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Melissa J Puppa
- College of Health Sciences, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Douglas W Powell
- College of Health Sciences, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Deranda B Lester
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA.
| |
Collapse
|
31
|
Hernández-Ramírez S, Osorio-Gómez D, Escobar ML, Rodríguez-Durán L, Velasco M, Bermúdez-Rattoni F, Hiriart M, Guzmán-Ramos KR. Catecholaminergic stimulation restores high-sucrose diet-induced hippocampal dysfunction. Psychoneuroendocrinology 2021; 127:105178. [PMID: 33706043 DOI: 10.1016/j.psyneuen.2021.105178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 11/15/2022]
Abstract
Increasing evidence suggests that long-term consumption of high-caloric diets increases the risk of developing cognitive dysfunctions. In the present study, we assessed the catecholaminergic activity in the hippocampus as a modulatory mechanism that is altered in rats exposed to six months of a high-sucrose diet (HSD). Male Wistar rats fed with this diet developed a metabolic disorder and showed impaired spatial memory in both water maze and object location memory (OLM) tasks. Intrahippocampal free-movement microdialysis showed a diminished dopaminergic and noradrenergic response to object exploration during OLM acquisition compared to rats fed with normal diet. In addition, electrophysiological results revealed an impaired long-term potentiation (LTP) of the perforant to dentate gyrus pathway in rats exposed to a HSD. Local administration of nomifensine, a catecholaminergic reuptake inhibitor, prior to OLM acquisition or LTP induction, improved long-term memory and electrophysiological responses, respectively. These results suggest that chronic exposure to HSD induces a hippocampal deterioration which impacts on cognitive and neural plasticity events negatively; these impairments can be ameliorated by increasing or restituting the affected catecholaminergic activity.
Collapse
Affiliation(s)
- Susana Hernández-Ramírez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Martha L Escobar
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Luis Rodríguez-Durán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Myrian Velasco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Marcia Hiriart
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico.
| | - Kioko R Guzmán-Ramos
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Av. de las Garzas No. 10, Col. El Panteón, Lerma de Villada, Estado de México, C.P. 52005, Mexico.
| |
Collapse
|
32
|
Minhas M, Limebeer CL, Strom E, Parker LA, Leri F. High fructose corn syrup alters behavioural and neurobiological responses to oxycodone in rats. Pharmacol Biochem Behav 2021; 205:173189. [PMID: 33845083 DOI: 10.1016/j.pbb.2021.173189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022]
Abstract
There are indications that sugars in the diet can play a role in vulnerability to opioid abuse. The current study examined a range of neuro-behavioural interactions between oxycodone (OXY) and high fructose corn syrup (HFCS). Male Sprague-Dawley rats had access to HFCS (0 or 50%) over 26 days in their home cages and were subsequently tested on place conditioning induced by 0, 0.16 and 2.5 mg/kg OXY (3 pairings of drug and saline, each 30 min), as well as on locomotor responses to 0, 0.16 and 2.5 mg/kg OXY, and in-vivo microdialysis was employed to measure dopamine (DA) levels in the nucleus accumbens (NAc) in response to 0 and 2.5 mg/kg OXY. A complex set of interactions between HFCS exposure and responses to OXY were observed: HFCS increased place preference induced by OXY, it enhanced the suppressant effect of OXY on locomotion, and it attenuated OXY-induced elevation in DA overflow in the NAc. Taken together, these findings suggest that nutrition has the potential to influence some responses to opioids which may be relevant to their abuse.
Collapse
Affiliation(s)
- Meenu Minhas
- Department of Psychology, University of Guelph, Ontario N1G 2W1, Canada
| | - Cheryl L Limebeer
- Department of Psychology, University of Guelph, Ontario N1G 2W1, Canada
| | - Evan Strom
- Department of Psychology, University of Guelph, Ontario N1G 2W1, Canada
| | - Linda A Parker
- Department of Psychology, University of Guelph, Ontario N1G 2W1, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
33
|
Yin KJ, Ren JN, Li X, Fan G, Zhao L, Li Z, Zhang LL, Xie DY, Pan SY, Yuan F. Effect and mechanism of high-fat diet on the preference for sweeteners on mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1844-1853. [PMID: 32901966 DOI: 10.1002/jsfa.10798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/31/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Male Kunming mice were divided into a normal diet group (control group) and a high-fat diet group (HF group) (185 g·kg-1 protein, 600 g·kg-1 fat and 205 g·kg-1 carbohydrate). After 8 weeks' feeding, behavioral indicators and biochemical indicators in serum were determined. The double-bottle preference experiment was used to study the preferences of mice for five sweeteners. The monoamine neurotransmitter content, gene expression related to dopamine (DA), and opioid receptors were also determined. RESULTS The body weight of the mice in the HF group increased significantly (P < 0.05) after 36 days compared with the control group. The feed intake of the HF group increased sharply in the first 12 days, and then it became basically unchanged. The preference of the HF group for all of the five sweeteners was highly significantly lower (P < 0.01) than that of the control group. Depression-related behavior was observed in the HF group mice. The triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDLC) content in the HF group were very much higher (P < 0.01) than those of the control group. The gene expression related to DA and opioid receptor in the HF group was significantly lower than that of the control group, except for preproenkephalin (PENK). CONCLUSIONS In summary, this study suggested that a long-term high-fat diet could result in a decrease in the preference for sweeteners and could result in a state of reward hypofunction in mice. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai-Jing Yin
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, China
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, China
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, China
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, China
| | - Lei Zhao
- Food and Agriculture Standardization Institute, China National Institute of Standardization, Beijing, China
| | - Zhi Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, China
| | - Lu-Lu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, China
| | - Ding-Yuan Xie
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, China
| | - Si-Yi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, China
| | - Fang Yuan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, China
| |
Collapse
|
34
|
Subba R, Sandhir R, Singh SP, Mallick BN, Mondal AC. Pathophysiology linking depression and type 2 diabetes: Psychotherapy, physical exercise, and fecal microbiome transplantation as damage control. Eur J Neurosci 2021; 53:2870-2900. [PMID: 33529409 DOI: 10.1111/ejn.15136] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/10/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Diabetes increases the likelihood of developing depression and vice versa. Research on this bidirectional association has somewhat managed to delineate the interplay among implicated physiological processes. Still, further exploration is required in this context. This review addresses the comorbidity by investigating suspected common pathophysiological mechanisms. One such factor is psychological stress which disturbs the hypothalamic-pituitary-adrenal axis causing hormonal imbalance. This includes elevated cortisol levels, a common biomarker of both depression and diabetes. Disrupted insulin signaling drives the hampered neurotransmission of serotonin, dopamine, and norepinephrine. Also, adipokine hormones such as adiponectin, leptin, and resistin and the orexigenic hormone, ghrelin, are involved in both depression and T2DM. This disarray further interferes with physiological processes encompassing sleep, the gut-brain axis, metabolism, and mood stability. Behavioral coping mechanisms, such as unhealthy eating, mediate disturbed glucose homeostasis, and neuroinflammation. This is intricately linked to oxidative stress, redox imbalance, and mitochondrial dysfunction. However, interventions such as psychotherapy, physical exercise, fecal microbiota transplantation, and insulin-sensitizing agents can help to manage the distressing condition. The possibility of glucagon-like peptide 1 possessing a therapeutic role has also been discussed. Nonetheless, there stands an urgent need for unraveling new correlating targets and biological markers for efficient treatment.
Collapse
Affiliation(s)
- Rhea Subba
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajat Sandhir
- Dept. of Biochemistry, Panjab University, Chandigarh, Punjab, India
| | - Surya Pratap Singh
- Dept. of Biochemistry, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | | |
Collapse
|
35
|
Totten MS, Pierce DM, Erikson KM. Diet-Induced Obesity Disrupts Trace Element Homeostasis and Gene Expression in the Olfactory Bulb. Nutrients 2020; 12:E3909. [PMID: 33371327 PMCID: PMC7767377 DOI: 10.3390/nu12123909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to determine the impact of diet-induced obesity (DIO) on trace element homeostasis and gene expression in the olfactory bulb and to identify potential interaction effects between diet, sex, and strain. Our study is based on evidence that obesity and olfactory bulb impairments are linked to neurodegenerative processes. Briefly, C57BL/6J (B6J) and DBA/2J (D2J) male and female mice were fed either a low-fat diet or a high-fat diet for 16 weeks. Brain tissue was then evaluated for iron, manganese, copper, and zinc concentrations and mRNA gene expression. There was a statistically significant diet-by-sex interaction for iron and a three-way interaction between diet, sex, and strain for zinc in the olfactory bulb. Obese male B6J mice had a striking 75% increase in iron and a 50% increase in manganese compared with the control. There was an increase in zinc due to DIO in B6J males and D2J females, but a decrease in zinc in B6J females and D2J males. Obese male D2J mice had significantly upregulated mRNA gene expression for divalent metal transporter 1, alpha-synuclein, amyloid precursor protein, dopamine receptor D2, and tyrosine hydroxylase. B6J females with DIO had significantly upregulated brain-derived neurotrophic factor expression. Our results demonstrate that DIO has the potential to disrupt trace element homeostasis and mRNA gene expression in the olfactory bulb, with effects that depend on sex and genetics. We found that DIO led to alterations in iron and manganese predominantly in male B6J mice, and gene expression dysregulation mainly in male D2J mice. These results have important implications for health outcomes related to obesity with possible connections to neurodegenerative disease.
Collapse
Affiliation(s)
- Melissa S. Totten
- Department of Nutrition, School of Health and Human Sciences, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (D.M.P.); (K.M.E.)
| | | | | |
Collapse
|
36
|
Wallace CW, Loudermilt MC, Fordahl SC. Effect of fasting on dopamine neurotransmission in subregions of the nucleus accumbens in male and female mice. Nutr Neurosci 2020; 25:1338-1349. [PMID: 33297887 DOI: 10.1080/1028415x.2020.1853419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diets high in saturated fat (HFD) disrupt dopamine neurotransmission, whereas fasting alters tonic and phasic dopamine release to drive motivation and food consumption. However, functional compartments in the nucleus accumbens (NAc) influencing these effects are not well characterized, and sex comparisons have not been made. This study sought to determine whether consumption of a HFD, sex, or being fed versus fasted altered baseline dopamine release and reuptake throughout NAc subregions. Male and female C57BL/6 mice were fed a control diet or nutrient matched HFD for six weeks. Ex-vivo fast-scan cyclic voltammetry revealed females had significantly slower dopamine reuptake in the NAc core than males when fed ad lib control diet. Fasting enhanced dopamine release and reuptake in the NAc core but not the medioventral shell. Further, being fasted versus fed significantly increased dopamine release throughout the NAc core in control males but specifically promoted release and reuptake in only the ventrolateral core of HF-fed males, effects which were lacking in females. Finally, fasting promoted dopamine release and reuptake in the rostral NAc core of controls and more caudally in HFD groups. These data support that dopamine neurotransmission is heterogeneous in NAc subregions and suggest the ventrolateral core is responsive to energy state. Furthermore, a rostrocaudal gradient in the NAc core might control valence responses to fasting that could promote overeating after chronic HFD consumption.
Collapse
Affiliation(s)
- C W Wallace
- Department of Nutrition, UNC Greensboro, Greensboro, NC, USA
| | - M C Loudermilt
- Department of Nutrition, UNC Greensboro, Greensboro, NC, USA
| | - S C Fordahl
- Department of Nutrition, UNC Greensboro, Greensboro, NC, USA
| |
Collapse
|
37
|
Casagrande BP, Estadella D. Withdrawing from obesogenic diets: benefits and barriers in the short- and long-term in rodent models. Am J Physiol Endocrinol Metab 2020; 319:E485-E493. [PMID: 32663098 DOI: 10.1152/ajpendo.00174.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is accumulating evidence of dietary impact on several metabolic parameters. Unhealthy diets are estimated to be responsible for about 20% of the deaths worldwide. The recommendation is to improve the dietary pattern, aiming to prevent further harm. In this context, we reviewed the benefits and barriers of withdrawing from continuous obesogenic diet intake in the short- and long-term, which were found in rodent models. Although dietary modifications demand a re-establishment of the equilibrium, withdrawing was seen as a homeostatic insult and thus elicited several responses to protect the organism. In the short-term, withdrawal presented stressful and reward destimulating responses. The intake of obesogenic diets presented rewarding and stress destimulating responses. Whereas withdrawing in the long term ameliorated several biological functions and histopathologic features, it was not effective at reestablishing food intake and normalizing feeding behaviors or reward pathways. Altogether, terminating obesogenic diet intake does not immediately extinguish all negative consequences, and it even elicits brain behavioral and metabolic modifications. These modifications can hinder the maintenance of habits' change and prevent reaching the long-term benefits of diet improvement.
Collapse
Affiliation(s)
- Breno P Casagrande
- Biosciences Department, Institute of Health and Society, Federal University of Sao Paulo, Santos, Sao Paulo, Brazil
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of Sao Paulo, Santos, Sao Paulo, Brazil
| |
Collapse
|
38
|
Lloyd K, Reyes T. High fat diet consumption restricted to adolescence has minimal effects on adult executive function that vary by sex. Nutr Neurosci 2020; 25:801-811. [PMID: 32840166 DOI: 10.1080/1028415x.2020.1809879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Early life environment can have a lasting effect on brain development and behavior. Diet is a potent environmental factor that can positively or negatively affect neurodevelopment, and unfortunately, the likelihood of a poor diet is high during adolescence. Adverse effects of adolescent high fat diet have been observed on reward-related behaviors, reversal learning, and hippocampal-dependent learning tasks in rodents when tested in adulthood. The prefrontal cortex (PFC) continues to develop throughout adolescence and is thus vulnerable to environmental insults such as poor diet. Therefore, we sought to examine the effects of a high fat diet (HFD) consumed only during adolescence on later life adult PFC-dependent executive function. Male and female mice were fed a HFD (60% energy from fat) during either early or late adolescence then switched to standard chow and tested in a battery of touchscreen-based operant tests of executive function in adulthood. Contrary to our prediction of an adverse effect of HFD, there was no effect of adolescent HFD in males, and females showed faster learning and decreased inattention in adulthood. We conclude that the effects of adolescent-limited HFD on adult executive function are mild, positive, and vary by sex.
Collapse
Affiliation(s)
- Kelsey Lloyd
- Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Teresa Reyes
- Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
39
|
The Role of Microbiome, Dietary Supplements, and Probiotics in Autism Spectrum Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082647. [PMID: 32290635 PMCID: PMC7215504 DOI: 10.3390/ijerph17082647] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder characterized by the impairment of the cognitive function of a child. Studies suggested that the intestinal microbiota has a critical role in the function and regulation of the central nervous system, neuroimmune system and neuroendocrine system. Any adverse changes in the gut–brain axis may cause serious disease. Food preferences and dietary patterns are considered as key in influencing the factors of ASD development. Several recent reviews narrated the importance of dietary composition on controlling or reducing the ASD symptoms. It has been known that the consumption of probiotics confers several health benefits by positive amendment of gut microbiota. The influence of probiotic intervention in children with ASD has also been reported and it has been considered as an alternative and complementary therapeutic supplement for ASD. The present manuscript discusses the role of microbiota and diet in the development of ASD. It also summarizes the recent updates on the influence of dietary supplements and the beneficial effect of probiotics on ASD symptoms. An in-depth literature survey suggested that the maternal diet and lifestyle are greatly associated with the development of ASD and other neurodevelopmental disorders. Mounting evidences have confirmed the alteration in the gut microbial composition in children suffering from ASD. However, the unique profile of microbiome has not yet been fully characterized due to the heterogeneity of patients. The supplementation of probiotics amended the symptoms associated with ASD but the results are inconclusive. The current study recommends further detailed research considering the role of microbiome, diet and probiotics in the development and control of ASD.
Collapse
|
40
|
Dopamine Signaling in the Suprachiasmatic Nucleus Enables Weight Gain Associated with Hedonic Feeding. Curr Biol 2020; 30:196-208.e8. [PMID: 31902720 DOI: 10.1016/j.cub.2019.11.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022]
Abstract
The widespread availability of energy-dense, rewarding foods is correlated with the increased incidence of obesity across the globe. Overeating during mealtimes and unscheduled snacking disrupts timed metabolic processes, which further contribute to weight gain. The neuronal mechanism by which the consumption of energy-dense food restructures the timing of feeding is poorly understood. Here, we demonstrate that dopaminergic signaling within the suprachiasmatic nucleus (SCN), the central circadian pacemaker, disrupts the timing of feeding, resulting in overconsumption of food. D1 dopamine receptor (Drd1)-null mice are resistant to diet-induced obesity, metabolic disease, and circadian disruption associated with energy-dense diets. Conversely, genetic rescue of Drd1 expression within the SCN restores diet-induced overconsumption, weight gain, and obesogenic symptoms. Access to rewarding food increases SCN dopamine turnover, and elevated Drd1-signaling decreases SCN neuronal activity, which we posit disinhibits downstream orexigenic responses. These findings define a connection between the reward and circadian pathways in the regulation of pathological calorie consumption.
Collapse
|
41
|
Folgueira C, Beiroa D, Porteiro B, Duquenne M, Puighermanal E, Fondevila MF, Barja-Fernández S, Gallego R, Hernández-Bautista R, Castelao C, Senra A, Seoane P, Gómez N, Aguiar P, Guallar D, Fidalgo M, Romero-Pico A, Adan R, Blouet C, Labandeira-García JL, Jeanrenaud F, Kallo I, Liposits Z, Salvador J, Prevot V, Dieguez C, Lopez M, Valjent E, Frühbeck G, Seoane LM, Nogueiras R. Hypothalamic dopamine signaling regulates brown fat thermogenesis. Nat Metab 2019; 1:811-829. [PMID: 31579887 PMCID: PMC6774781 DOI: 10.1038/s42255-019-0099-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dopamine signaling is a crucial part of the brain reward system and can affect feeding behavior. Dopamine receptors are also expressed in the hypothalamus, which is known to control energy metabolism in peripheral tissues. Here we show that pharmacological or chemogenetic stimulation of dopamine receptor 2 (D2R) expressing cells in the lateral hypothalamic area (LHA) and the zona incerta (ZI) decreases body weight and stimulates brown fat activity in rodents in a feeding-independent manner. LHA/ZI D2R stimulation requires an intact sympathetic nervous system and orexin system to exert its action and involves inhibition of PI3K in the LHA/ZI. We further demonstrate that, as early as 3 months after onset of treatment, patients treated with the D2R agonist cabergoline experience an increase in energy expenditure that persists for one year, leading to total body weight and fat loss through a prolactin-independent mechanism. Our results may provide a mechanistic explanation for how clinically used D2R agonists act in the CNS to regulate energy balance.
Collapse
Affiliation(s)
- Cintia Folgueira
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo. Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Daniel Beiroa
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Begoña Porteiro
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Manon Duquenne
- Jean-Pierre Aubert Research Center (JPArc), Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm UMR-S 1172, Lille, France
| | | | - Marcos F Fondevila
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Silvia Barja-Fernández
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo. Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Rosalia Gallego
- Department of Morphological Sciences, School of Medicine, University of Santiago de Compostela, S. Francisco s/n, 15782 Santiago de Compostela (A Coruña), Spain
| | - René Hernández-Bautista
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Cecilia Castelao
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo. Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Ana Senra
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Patricia Seoane
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Noemi Gómez
- Molecular Imaging Group, Department of Psychiatry, Radiology and Public Health, Faculty of Medicine Universidade de Santiago de Compostela (USC), Santiago de Compostela 15782 Spain; Molecular Imaging Group. Health Research Institute of Santiago de Compostela (IDIS). Travesía da Choupana s/n Santiago de Compostela. Zip Code: 15706. Spain; Nuclear Medicine Department University Clinical Hospital Santiago de Compostela (SERGAS) (CHUS), Travesía Choupana s/n. Santiago de Compostela 15706 Spain
| | - Pablo Aguiar
- Molecular Imaging Group, Department of Psychiatry, Radiology and Public Health, Faculty of Medicine Universidade de Santiago de Compostela (USC), Santiago de Compostela 15782 Spain; Molecular Imaging Group. Health Research Institute of Santiago de Compostela (IDIS). Travesía da Choupana s/n Santiago de Compostela. Zip Code: 15706. Spain; Nuclear Medicine Department University Clinical Hospital Santiago de Compostela (SERGAS) (CHUS), Travesía Choupana s/n. Santiago de Compostela 15706 Spain
| | - Diana Guallar
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Miguel Fidalgo
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Amparo Romero-Pico
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Roger Adan
- Brain Center Rudolf Magnus, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Clemence Blouet
- MRC Metabolic Disease Unit. Institute of Metabolic Science. University of Cambridge, UK
| | - Jose Luís Labandeira-García
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases, CIBERNED, Madrid, Spain
| | - Françoise Jeanrenaud
- Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Imre Kallo
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, HAS, 1083, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, HAS, 1083, Budapest, Hungary
| | - Javier Salvador
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra & IdiSNA, Pamplona, Spain
| | - Vincent Prevot
- Jean-Pierre Aubert Research Center (JPArc), Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm UMR-S 1172, Lille, France
| | - Carlos Dieguez
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Miguel Lopez
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Emmanuel Valjent
- IGF, Inserm, CNRS, Univ. Montpellier, F-34094 Montpellier, France
| | - Gema Frühbeck
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra & IdiSNA, Pamplona, Spain
| | - Luisa M Seoane
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo. Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| |
Collapse
|
42
|
Leite F, Ribeiro L. Dopaminergic Pathways in Obesity-Associated Inflammation. J Neuroimmune Pharmacol 2019; 15:93-113. [PMID: 31317376 DOI: 10.1007/s11481-019-09863-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
|
43
|
Moreton E, Baron P, Tiplady S, McCall S, Clifford B, Langley-Evans S, Fone K, Voigt J. Impact of early exposure to a cafeteria diet on prefrontal cortex monoamines and novel object recognition in adolescent rats. Behav Brain Res 2019; 363:191-198. [DOI: 10.1016/j.bbr.2019.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/24/2019] [Accepted: 02/02/2019] [Indexed: 12/19/2022]
|
44
|
Ducrocq F, Hyde A, Fanet H, Oummadi A, Walle R, De Smedt-Peyrusse V, Layé S, Ferreira G, Trifilieff P, Vancassel S. Decrease in Operant Responding Under Obesogenic Diet Exposure is not Related to Deficits in Incentive or Hedonic Processes. Obesity (Silver Spring) 2019; 27:255-263. [PMID: 30597761 DOI: 10.1002/oby.22358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE A growing body of evidence suggests that obesity could result from alterations in reward processing. In rodent models, chronic exposure to an obesogenic diet leads to blunted dopamine signaling and related incentive responding. This study aimed to determine which reward-related behavioral dimensions are actually impacted by obesogenic diet exposure. METHODS Mice were chronically exposed to an obesogenic diet. Incentive and hedonic processes were tested through operant conditioning and licking microstructures, respectively. In parallel, mesolimbic dopamine transmission was assessed using microdialysis. RESULTS Prolonged high-fat (HF) diet exposure led to blunted mesolimbic dopamine release, paralleled by a decrease in operant responding in all schedules tested. HF-fed and control animals similarly decreased their operant responding in an effort-based choice task, and HF-fed animals displayed an overall lower calorie intake in this task. Analysis of the licking microstructures during consumption of a freely accessible reward suggested a decrease in basal hunger and a potentiation of gastrointestinal inhibition in HF-fed animals, without changes in hedonic reactivity. CONCLUSIONS These results suggest that the decrease in operant responding under prolonged HF diet exposure is mainly driven by decrease in hunger as well as stronger postingestive negative feedback mechanisms, rather than by a decrease in incentive or hedonic responses.
Collapse
Affiliation(s)
- Fabien Ducrocq
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
| | - Alexia Hyde
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
| | - Hortense Fanet
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Asma Oummadi
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
| | - Roman Walle
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
| | - Véronique De Smedt-Peyrusse
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Sophie Layé
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Guillaume Ferreira
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Pierre Trifilieff
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Sylvie Vancassel
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| |
Collapse
|
45
|
Duraffourd C, Huckstepp RTR, Braren I, Fernandes C, Brock O, Delogu A, Prysyazhna O, Burgoyne J, Eaton P. PKG1α oxidation negatively regulates food seeking behaviour and reward. Redox Biol 2018; 21:101077. [PMID: 30593979 PMCID: PMC6306694 DOI: 10.1016/j.redox.2018.101077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022] Open
Abstract
Genes that are highly conserved in food seeking behaviour, such as protein kinase G (PKG), are of interest because of their potential role in the global obesity epidemic. PKG1α can be activated by binding of cyclic guanosine monophosphate (cGMP) or oxidant-induced interprotein disulfide bond formation between the two subunits of this homodimeric kinase. PKG1α activation by cGMP plays a role in reward and addiction through its actions in the ventral tegmental area (VTA) of the brain. ‘Redox dead’ C42S PKG1α knock-in (KI) mice, which are fully deficient in oxidant-induced disulfide-PKG1α formation, display increased food seeking and reward behaviour compared to wild-type (WT) littermates. Rewarding monoamines such as dopamine, which are released during feeding, are metabolised by monoamine oxidase to generate hydrogen peroxide that was shown to mediate PKG1α oxidation. Indeed, inhibition of monoamine oxidase, which prevents it producing hydrogen peroxide, attenuated PKG1α oxidation and increased sucrose preference in WT, but not KI mice. The deficient reward phenotype of the KI mice was rescued by expressing WT kinase that can form the disulfide state in the VTA using an adeno-associated virus, consistent with PKG1α oxidation providing a break on feeding behaviour. In conclusion, disulfide-PKG1α in VTA neurons acts as a negative regulator of feeding and therefore may provide a novel therapeutic target for obesity.
Collapse
Affiliation(s)
- Celine Duraffourd
- King's College London, School of Cardiovascular Medicine & Sciences, the Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | | | - Ingke Braren
- University Medical Center Eppendorf, Vector Facility, Inst. for Exp. Pharmacology and Toxikology, N30, Room 09, Martinistr. 52, 20246 Hamburg, Germany
| | - Cathy Fernandes
- SGDP Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Olivier Brock
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Alessio Delogu
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Oleksandra Prysyazhna
- King's College London, School of Cardiovascular Medicine & Sciences, the Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Joseph Burgoyne
- King's College London, School of Cardiovascular Medicine & Sciences, the Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Philip Eaton
- King's College London, School of Cardiovascular Medicine & Sciences, the Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom.
| |
Collapse
|
46
|
Martins de Carvalho L, Lauar Gonçalves J, Sondertoft Braga Pedersen A, Damasceno S, Elias Moreira Júnior R, Uceli Maioli T, Faria AMCD, Brunialti Godard AL. High-fat diet withdrawal modifies alcohol preference and transcription of dopaminergic and GABAergic receptors. J Neurogenet 2018; 33:10-20. [DOI: 10.1080/01677063.2018.1526934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Luana Martins de Carvalho
- Laboratório de Genética Animal e Humana, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Lauar Gonçalves
- Laboratório de Genética Animal e Humana, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Agatha Sondertoft Braga Pedersen
- Laboratório de Genética Animal e Humana, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Samara Damasceno
- Laboratório de Genética Animal e Humana, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renato Elias Moreira Júnior
- Laboratório de Genética Animal e Humana, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Escola de Enfermagem, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Maria Caetano de Faria
- Departmento de Bioquímica e Imunologia, Departamento de Nutrição, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lúcia Brunialti Godard
- Laboratório de Genética Animal e Humana, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
47
|
Striatal dopamine 2 receptor upregulation during development predisposes to diet-induced obesity by reducing energy output in mice. Proc Natl Acad Sci U S A 2018; 115:10493-10498. [PMID: 30254156 DOI: 10.1073/pnas.1800171115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dopaminergic signaling in the striatum, particularly at dopamine 2 receptors (D2R), has been a topic of active investigation in obesity research in the past decades. However, it still remains unclear whether variations in striatal D2Rs modulate the risk for obesity and if so in which direction. Human studies have yielded contradictory findings that likely reflect a complex nonlinear relationship, possibly involving a combination of causal effects and compensatory changes. Animal work indicates that although chronic obesogenic diets reduce striatal D2R function, striatal D2R down-regulation does not lead to obesity. In this study, we evaluated the consequences of striatal D2R up-regulation on body-weight gain susceptibility and energy balance in mice. We used a mouse model of D2R overexpression (D2R-OE) in which D2Rs were selectively up-regulated in striatal medium spiny neurons. We uncover a pathological mechanism by which striatal D2R-OE leads to reduced brown adipose tissue thermogenesis, reduced energy expenditure, and accelerated obesity despite reduced eating. We also show that D2R-OE restricted to development is sufficient to promote obesity and to induce energy-balance deficits. Together, our findings indicate that striatal D2R-OE during development persistently increases the propensity for obesity by reducing energy output in mice. This suggests that early alterations in the striatal dopamine system could represent a key predisposition factor toward obesity.
Collapse
|
48
|
Ali EF, MacKay JC, Graitson S, James JS, Cayer C, Audet MC, Kent P, Abizaid A, Merali Z. Palatable Food Dampens the Long-Term Behavioral and Endocrine Effects of Juvenile Stressor Exposure but May Also Provoke Metabolic Syndrome in Rats. Front Behav Neurosci 2018; 12:216. [PMID: 30283308 PMCID: PMC6156124 DOI: 10.3389/fnbeh.2018.00216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022] Open
Abstract
The juvenile period is marked by a reorganization and growth of important brain regions including structures associating with reward seeking behaviors such as the nucleus accumbens (NA) and prefrontal cortex (PFC). These changes are impacted by stressors during the juvenile period and may lead to a predisposition to stress induced psychopathology and abnormal development of brain reward systems. Like in humans, adult rodents engage certain coping mechanisms such as increases in the consumption of calorie-rich palatable foods to reduce stress, but this behavior can lead to obesity and metabolic disorders. In this study, we examined whether stressors during the juvenile period led to increased caloric intake when a palatable diet was accessible, and whether this diet attenuated adult stress responses. In addition, we examined if the stress buffering effects produced by the palatable diet were also accompanied by an offset propensity towards obesity, and by alterations in mRNA expression of dopamine (DA) receptors in the NA and PFC in adulthood. To this end, juvenile male Wistar rats underwent episodic stressor exposure (forced swim, elevated platform stress and restraint) on postnatal days (PD) 27-29 and received access to regular chow or daily limited access to a palatable diet until adulthood. At the age of 2 months, rats were tested on a social interaction test that screens for anxiety-like behaviors and their endocrine responses to an acute stressor. Animals were sacrificed, and their brains processed to detect differences in DA receptor subtype expression in the PFC and NA using qPCR. Results showed that rats that were stressed during the juvenile period displayed higher social anxiety and a sensitized corticosterone response as adults and these effects were attenuated by access to the palatable diet. Nevertheless, rats that experienced juvenile stress and consumed a palatable diet showed greater adiposity in adulthood. Interestingly, the same group displayed greater mRNA expression of DA receptors at the NA. This suggests that access to a palatable diet mitigates the behavioral and endocrine effects of juvenile stressor exposure in adulthood, but at the cost of metabolic imbalances and a sensitized dopaminergic system.
Collapse
Affiliation(s)
- Eliza Fatima Ali
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | | - Samantha Graitson
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan Stewart James
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Christian Cayer
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Marie-Claude Audet
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Pamela Kent
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Zul Merali
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
49
|
Matikainen-Ankney BA, Kravitz AV. Persistent effects of obesity: a neuroplasticity hypothesis. Ann N Y Acad Sci 2018; 1428:221-239. [PMID: 29741270 DOI: 10.1111/nyas.13665] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
The obesity epidemic is a leading cause of health problems in the United States, increasing the risk of cardiovascular, endocrine, and psychiatric diseases. Although many people lose weight through changes in diet and lifestyle, keeping the weight off remains a challenge. Here, we discuss a hypothesis that seeks to explain why obesity is so persistent. There is a great degree of overlap in the circuits implicated in substance use disorder and obesity, and neural plasticity of these circuits in response to drugs of abuse is well documented. We hypothesize that obesity is also associated with neural plasticity in these circuits, and this may underlie persistent changes in behavior, energy balance, and body weight. Here, we discuss how obesity-associated reductions in motivation and physical activity may be rooted in neurophysiological alterations in these circuits. Such plasticity may alter how humans and animals use, expend, and store energy, even after weight loss.
Collapse
Affiliation(s)
- Bridget A Matikainen-Ankney
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alexxai V Kravitz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.,National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
50
|
Leigh SJ, Morris MJ. The role of reward circuitry and food addiction in the obesity epidemic: An update. Biol Psychol 2018; 131:31-42. [DOI: 10.1016/j.biopsycho.2016.12.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/10/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022]
|