1
|
Desilets A, Repetto M, Drilon A. Repotrectinib: Redefining the therapeutic landscape for patients with ROS1 fusion-driven non-small cell lung cancer. Clin Transl Med 2024; 14:e70017. [PMID: 39402859 PMCID: PMC11473655 DOI: 10.1002/ctm2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 10/19/2024] Open
Abstract
The ROS1 proto-oncogene encodes a receptor tyrosine kinase with structural homology to other oncogenic drivers, including ALK and TRKA-B-C. The FDA-approved tyrosine kinase inhibitors (TKIs) crizotinib and entrectinib have demonstrated efficacy in treating ROS1 fusion-positive NSCLC. However, limitations such as poor blood-brain barrier penetration and acquired resistance, particularly the ROS1 G2032R solvent-front mutation, hinder treatment durability. Repotrectinib, a next-generation macrocyclic TKI, was rationally designed to overcome on-target resistance mutations and improve brain distribution through its low molecular weight. In the TRIDENT-1 clinical trial, repotrectinib demonstrated significant efficacy in both TKI-naïve and TKI-pretreated patients with ROS1-rearranged NSCLC, including those with CNS metastases and G2032R resistance mutations. In the TKI-naïve cohort (n = 71), 79% of patients achieved an objective response, with a median progression-free survival (PFS) of 35.7 months, surpassing all previously approved ROS1 TKIs. In patients who had received one prior ROS1 TKI but were chemotherapy-naïve (n = 56), objective responses were observed in 38%, and median PFS was 9.0 months. The safety profile of repotrectinib was consistent with earlier-generation ROS1 TKIs and common adverse events included anemia, neurotoxicity, increased creatine kinase levels, and weight gain. These findings underscore the potential of repotrectinib to address unmet needs in ROS1-rearranged NSCLC, offering durable responses and improved intracranial activity. Future research should prioritize developing next-generation, selective ROS1 inhibitors to reduce Trk-mediated toxicities and improve treatment tolerance.
Collapse
Affiliation(s)
- Antoine Desilets
- Department of MedicineEarly Drug Development ServiceMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Matteo Repetto
- Department of MedicineEarly Drug Development ServiceMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Department of Oncology and Hemato‐OncologyUniversity of MilanMilanItaly
| | - Alexander Drilon
- Department of MedicineEarly Drug Development ServiceMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Department of MedicineWeill Cornell Medicine and New York Presbyterian HospitalNew YorkNew YorkUSA
| |
Collapse
|
2
|
Yang AT, Laetsch TW. Safety of current treatment options for NTRK fusion-positive cancers. Expert Opin Drug Saf 2023; 22:1073-1089. [PMID: 37869783 PMCID: PMC10842066 DOI: 10.1080/14740338.2023.2274426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
INTRODUCTION Oncogenic NTRK fusions have been found in multiple cancer types affecting adults and/or children, including rare tumors with pathognomonic fusions and common cancers in which fusions are rare. The tropomyosin receptor kinase inhibitors (TRKi) larotrectinib and entrectinib are among the first agents with tissue agnostic FDA approvals for cancer treatment, and additional TRKi are undergoing development. As experience with TRKi grow, novel mechanisms of resistance and on/off target side effects have become increasingly important considerations. AREAS COVERED Authors reviewed literature published through July 2023 on platforms such as PubMed, clinicaltrials.gov, and manufacturer/FDA drug labels, focusing on the development of TRKi, native functions of TRK, phenotype of congenital TRK aberrancies, efficacy, and safety profile of TRKi in clinical trials and investigator reports, and on/off target adverse effects associated with TRKi (Appendix A). EXPERT OPINION TRKi have histology-agnostic activity against tumors with NTRK gene fusions. TRKi are generally well tolerated with a side effect profile that compares favorably to cytotoxic chemotherapy. There are numerous ongoing studies investigating TRKi as frontline, adjuvant, and salvage therapy. It will be critical to continue to gather long-term safety data on the use of these agents, particularly in children.
Collapse
Affiliation(s)
- Adeline T. Yang
- Division of Oncology, Children’s Hospital of Philadelphia, and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore Willis Laetsch
- Division of Oncology, Children’s Hospital of Philadelphia, and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Lavi Y, Vojdani A, Halpert G, Sharif K, Ostrinski Y, Zyskind I, Lattin MT, Zimmerman J, Silverberg JI, Rosenberg AZ, Shoenfeld Y, Amital H. Dysregulated Levels of Circulating Autoantibodies against Neuronal and Nervous System Autoantigens in COVID-19 Patients. Diagnostics (Basel) 2023; 13:diagnostics13040687. [PMID: 36832180 PMCID: PMC9955917 DOI: 10.3390/diagnostics13040687] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND COVID-19 is a heterogenous disease resulting in long-term sequela in predisposed individuals. It is not uncommon that recovering patients endure non-respiratory ill-defined manifestations, including anosmia, and neurological and cognitive deficit persisting beyond recovery-a constellation of conditions that are grouped under the umbrella of long-term COVID-19 syndrome. Association between COVID-19 and autoimmune responses in predisposed individuals was shown in several studies. AIM AND METHODS To investigate autoimmune responses against neuronal and CNS autoantigens in SARS-CoV-2-infected patients, we performed a cross-sectional study with 246 participants, including 169 COVID-19 patients and 77 controls. Levels of antibodies against the acetylcholine receptor, glutamate receptor, amyloid β peptide, alpha-synucleins, dopamine 1 receptor, dopamine 2 receptor, tau protein, GAD-65, N-methyl D-aspartate (NMDA) receptor, BDNF, cerebellar, ganglioside, myelin basic protein, myelin oligodendrocyte glycoprotein, S100-B, glial fibrillary acidic protein, and enteric nerve were measured using an Enzyme-Linked Immunosorbent Assay (ELISA). Circulating levels of autoantibodies were compared between healthy controls and COVID-19 patients and then classified by disease severity (mild [n = 74], severe [n = 65], and requiring supplemental oxygen [n = 32]). RESULTS COVID-19 patients were found to have dysregulated autoantibody levels correlating with the disease severity, e.g., IgG to dopamine 1 receptor, NMDA receptors, brain-derived neurotrophic factor, and myelin oligodendrocyte glycoprotein. Elevated levels of IgA autoantibodies against amyloid β peptide, acetylcholine receptor, dopamine 2 receptor, myelin basic protein, and α-synuclein were detected in COVID-19 patients compared with healthy controls. Lower IgA autoantibody levels against NMDA receptors, and IgG autoantibodies against glutamic acid decarboxylase 65, amyloid β peptide, tau protein, enteric nerve, and S100-B were detected in COVID-19 patients versus healthy controls. Some of these antibodies have known clinical correlations with symptoms commonly reported in the long COVID-19 syndrome. CONCLUSIONS Overall, our study shows a widespread dysregulation in the titer of various autoantibodies against neuronal and CNS-related autoantigens in convalescent COVID-19 patients. Further research is needed to provide insight into the association between these neuronal autoantibodies and the enigmatic neurological and psychological symptoms reported in COVID-19 patients.
Collapse
Affiliation(s)
- Yael Lavi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
| | - Gilad Halpert
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
- Correspondence: ; Tel.: +972-3-5303361; Fax: +972-3-5304796
| | - Kassem Sharif
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Medicine B, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Yuri Ostrinski
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Israel Zyskind
- Department of Pediatrics, NYU Langone Medical Center, New York, NY 10016, USA
- Maimonides Medical Center, Brooklyn, NY 11219, USA
| | - Miriam T Lattin
- Department of Biology, Yeshiva University, New York, NY 10461, USA
| | | | - Jonathan I Silverberg
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yehuda Shoenfeld
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Howard Amital
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Medicine B, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| |
Collapse
|
4
|
Bumb JM, Bach P, Grosshans M, Wagner X, Koopmann A, Vollstädt-Klein S, Schuster R, Wiedemann K, Kiefer F. BDNF influences neural cue-reactivity to food stimuli and food craving in obesity. Eur Arch Psychiatry Clin Neurosci 2021; 271:963-974. [PMID: 33367955 PMCID: PMC8236045 DOI: 10.1007/s00406-020-01224-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023]
Abstract
There is increasing evidence that brain-derived neurotrophic factor (BDNF) impacts on the development of obesity. We are the first to test the hypothesis that BDNF levels might be associated with neural reactivity to food cues in patients suffering from obesity and healthy controls. We assessed visual food cue-induced neural response in 19 obese patients and 20 matched controls using functional magnetic resonance imaging and analyzed the associations between BDNF levels, food cue-reactivity and food craving. Whole-brain analysis in both groups revealed that food cues elicited higher neural activation in clusters of mesolimbic brain areas including the insula (food > neutral). Patients suffering from obesity showed a significant positive correlation between plasma BDNF levels and visual food cue-reactivity in the bilateral insulae. In addition, patients suffering from obesity with positive food cue-induced insula activation also reported significantly higher food craving than those with low cue-reactivity-an effect that was absent in normal weight participants. The present findings implicate that BDNF levels in patients suffering from obesity might be involved in food craving and obesity in humans. This highlights the importance to consider BDNF pathways when investigating obesity and obesity treatment.
Collapse
Affiliation(s)
- Jan Malte Bumb
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany. .,Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany.
| | - Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany ,Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| | - Martin Grosshans
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany
| | - Xenija Wagner
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany
| | - Anne Koopmann
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany ,Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany ,Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rilana Schuster
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany ,Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| | - Klaus Wiedemann
- Department of Psychiatry and Psychotherapy, University Medical Center, Martinistr, 52, 20246 Hamburg, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany ,Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany ,Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
5
|
Liu H, Sun Y, Zhang X, Li S, Hu D, Xiao L, Chen Y, He L, Wang DW. Integrated Analysis of Summary Statistics to Identify Pleiotropic Genes and Pathways for the Comorbidity of Schizophrenia and Cardiometabolic Disease. Front Psychiatry 2020; 11:256. [PMID: 32425817 PMCID: PMC7212438 DOI: 10.3389/fpsyt.2020.00256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/17/2020] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified abundant risk loci associated with schizophrenia (SCZ), cardiometabolic disease (CMD) including body mass index, coronary artery diseases, type 2 diabetes, low- and high-density lipoprotein, total cholesterol, and triglycerides. Although recent studies have suggested that genetic risk shared between these disorders, the pleiotropic genes and biological pathways shared between them are still vague. Here we integrated comprehensive multi-dimensional data from GWAS, expression quantitative trait loci (eQTL), and gene set database to systematically identify potential pleiotropic genes and biological pathways shared between SCZ and CMD. By integrating the results from different approaches including FUMA, Sherlock, SMR, UTMOST, FOCUS, and DEPICT, we revealed 21 pleiotropic genes that are likely to be shared between SCZ and CMD. These genes include VRK2, SLC39A8, NT5C2, AMBRA1, ARL6IP4, OGFOD2, PITPNM2, CDK2AP1, C12orf65, ABCB9, SETD8, MPHOSPH9, FES, FURIN, INO80E, YPEL3, MAPK3, SREBF1, TOM1L2, GATAD2A, and TM6SF2. In addition, we also performed the gene-set enrichment analysis using the software of GSA-SNP2 and MAGMA with GWAS summary statistics and identified three biological pathways (MAPK-TRK signaling, growth hormone signaling, and regulation of insulin secretion signaling) shared between them. Our study provides insights into the pleiotropic genes and biological pathways underlying mechanisms for the comorbidity of SCZ and CMD. However, further genetic and functional studies are required to validate the role of these potential pleiotropic genes and pathways in the etiology of the comorbidity of SCZ and CMD, which should provide potential targets for future diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hao Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xinxin Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Shiyang Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dong Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Lei Xiao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yanghui Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
6
|
An isoform-selective inhibitor of tropomyosin receptor kinase A behaves as molecular glue. Bioorg Med Chem Lett 2020; 30:126775. [PMID: 31699609 DOI: 10.1016/j.bmcl.2019.126775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022]
Abstract
The production of TrkA-selective inhibitors is considerably difficult because the kinase domains of TrkA and its isoforms TrkB/C have highly homologous amino acid sequences. Here we describe the structural basis for the acquisition of selectivity for a isoform-selective TrkA inhibitor, namely compound V1. The X-ray structure revealed that V1 acts as a molecular glue to stabilize the symmetrical dimer of the TrkA kinase domains. V1 binds to the ATP-binding site and simultaneously engages in the dimeric interface of TrkA. The region of the dimeric interface in TrkA is not conserved in TrkB/C; thus, dimer formation may be a novel mechanism for the production of selective TrkA inhibitors. The biochemical and biophysical assay results confirmed that V1 selectively inhibited TrkA and induced the dimer formation of TrkA, but not TrkB. The binding pocket at the TrkA dimer interface can be used for the production of new isoform-selective TrkA inhibitors.
Collapse
|
7
|
Pfarr N, Kirchner M, Lehmann U, Leichsenring J, Merkelbach‐Bruse S, Glade J, Hummel M, Stögbauer F, Lehmann A, Trautmann M, Kumbrink J, Jung A, Dietmaier W, Endris V, Kazdal D, Evert M, Horst D, Kreipe H, Kirchner T, Wardelmann E, Lassen U, Büttner R, Weichert W, Dietel M, Schirmacher P, Stenzinger A. Testing
NTRK
testing: Wet‐lab and in silico comparison of RNA‐based targeted sequencing assays. Genes Chromosomes Cancer 2019; 59:178-188. [DOI: 10.1002/gcc.22819] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 01/03/2023] Open
Affiliation(s)
- Nicole Pfarr
- Institute of PathologyTechnical University Munich (TUM) Munich Germany
| | - Martina Kirchner
- Institute of PathologyUniversity Hospital Heidelberg Heidelberg Germany
| | - Ulrich Lehmann
- Institute of PathologyUniversity Hospital Hannover Hannover Germany
| | | | | | - Julia Glade
- Institute of PathologyUniversity Hospital Heidelberg Heidelberg Germany
| | - Michael Hummel
- Institute of PathologyCharité University Hospital Berlin Germany
| | - Fabian Stögbauer
- Institute of PathologyTechnical University Munich (TUM) Munich Germany
| | - Annika Lehmann
- Institute of PathologyCharité University Hospital Berlin Germany
| | - Marcel Trautmann
- Gerhard‐Domagk‐Institute of Pathology, and Division of Translational Pathology, Gerhard‐Domagk‐Institute of PathologyUniversity Hospital Münster Münster Germany
| | - Jörg Kumbrink
- Institute of PathologyLudwig Maximilian University (LMU) Munich Germany
| | - Andreas Jung
- Institute of PathologyLudwig Maximilian University (LMU) Munich Germany
| | | | - Volker Endris
- Institute of PathologyUniversity Hospital Heidelberg Heidelberg Germany
| | - Daniel Kazdal
- Institute of PathologyUniversity Hospital Heidelberg Heidelberg Germany
| | - Matthias Evert
- Institute of PathologyUniversity Hospital Regensburg Regensburg Germany
| | - David Horst
- Institute of PathologyCharité University Hospital Berlin Germany
| | - Hans Kreipe
- Institute of PathologyUniversity Hospital Hannover Hannover Germany
| | - Thomas Kirchner
- Institute of PathologyLudwig Maximilian University (LMU) Munich Germany
| | - Eva Wardelmann
- Gerhard‐Domagk‐Institute of Pathology, and Division of Translational Pathology, Gerhard‐Domagk‐Institute of PathologyUniversity Hospital Münster Münster Germany
| | - Ulrik Lassen
- Department of Oncology, RigshospitaletUniversity of Copenhagen Copenhagen Denmark
| | - Reinhard Büttner
- Institute of PathologyUniversity Hospital Cologne Cologne Germany
| | - Wilko Weichert
- Institute of PathologyTechnical University Munich (TUM) Munich Germany
| | | | - Peter Schirmacher
- Institute of PathologyUniversity Hospital Heidelberg Heidelberg Germany
| | | |
Collapse
|
8
|
Dugger R, Li B, Richardson P. Discovery and Development of Lorlatinib: A Macrocyclic Inhibitor of EML4-ALK for the Treatment of NSCLC. ACS SYMPOSIUM SERIES 2019. [DOI: 10.1021/bk-2019-1332.ch002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Robert Dugger
- Process Development, Medicinal Sciences, Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Bryan Li
- Process Development, Medicinal Sciences, Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Paul Richardson
- Oncology Medicinal Chemistry, Medicine Design, Pfizer Inc., La Jolla, California 92122, United States
| |
Collapse
|
9
|
Langille NF, Horne DB. Discovery and Development of AMG 333: A TRPM8 Antagonist for Migraine. ACS SYMPOSIUM SERIES 2019. [DOI: 10.1021/bk-2019-1332.ch006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Neil F. Langille
- Pivotal Drug Substance Synthetic Technologies, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Daniel B. Horne
- Discovery Research, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
10
|
Bagal SK, Andrews M, Bechle BM, Bian J, Bilsland J, Blakemore DC, Braganza JF, Bungay PJ, Corbett MS, Cronin CN, Cui JJ, Dias R, Flanagan NJ, Greasley SE, Grimley R, James K, Johnson E, Kitching L, Kraus ML, McAlpine I, Nagata A, Ninkovic S, Omoto K, Scales S, Skerratt SE, Sun J, Tran-Dubé M, Waldron GJ, Wang F, Warmus JS. Discovery of Potent, Selective, and Peripherally Restricted Pan-Trk Kinase Inhibitors for the Treatment of Pain. J Med Chem 2018; 61:6779-6800. [PMID: 29944371 DOI: 10.1021/acs.jmedchem.8b00633] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hormones of the neurotrophin family, nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4), are known to activate the family of Tropomyosin receptor kinases (TrkA, TrkB, and TrkC). Moreover, inhibition of the TrkA kinase pathway in pain has been clinically validated by the NGF antibody tanezumab, leading to significant interest in the development of small molecule inhibitors of TrkA. Furthermore, Trk inhibitors having an acceptable safety profile will require minimal brain availability. Herein, we discuss the discovery of two potent, selective, peripherally restricted, efficacious, and well-tolerated series of pan-Trk inhibitors which successfully delivered three candidate quality compounds 10b, 13b, and 19. All three compounds are predicted to possess low metabolic clearance in human that does not proceed via aldehyde oxidase-catalyzed reactions, thus addressing the potential clearance prediction liability associated with our current pan-Trk development candidate PF-06273340.
Collapse
Affiliation(s)
- Sharan K Bagal
- Worldwide Medicinal Chemistry , Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Mark Andrews
- Pfizer Worldwide R&D U.K. , Sandwich , Kent CT13 9NJ , U.K
| | - Bruce M Bechle
- Pfizer Worldwide R&D, Groton Laboratories , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Jianwei Bian
- Pfizer Worldwide R&D, Groton Laboratories , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - James Bilsland
- Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - David C Blakemore
- Worldwide Medicinal Chemistry , Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - John F Braganza
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Peter J Bungay
- Pharmacokinetics, Dynamics & Metabolism , Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Matthew S Corbett
- Pfizer Worldwide R&D, Groton Laboratories , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Ciaran N Cronin
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Jingrong Jean Cui
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Rebecca Dias
- Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Neil J Flanagan
- Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Samantha E Greasley
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Rachel Grimley
- Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Kim James
- Peakdale Molecular , Discovery Park House, Ramsgate Road , Sandwich CT13 9ND , U.K
| | - Eric Johnson
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Linda Kitching
- Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Michelle L Kraus
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Indrawan McAlpine
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Asako Nagata
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Sacha Ninkovic
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Kiyoyuki Omoto
- Worldwide Medicinal Chemistry , Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Stephanie Scales
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Sarah E Skerratt
- Worldwide Medicinal Chemistry , Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Jianmin Sun
- Pfizer Worldwide R&D, Groton Laboratories , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Michelle Tran-Dubé
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Gareth J Waldron
- Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Fen Wang
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Joseph S Warmus
- Pfizer Worldwide R&D, Groton Laboratories , Eastern Point Road , Groton , Connecticut 06340 , United States
| |
Collapse
|
11
|
Bagal SK, Omoto K, Blakemore DC, Bungay PJ, Bilsland JG, Clarke PJ, Corbett MS, Cronin CN, Cui JJ, Dias R, Flanagan NJ, Greasley SE, Grimley R, Johnson E, Fengas D, Kitching L, Kraus ML, McAlpine I, Nagata A, Waldron GJ, Warmus JS. Discovery of Allosteric, Potent, Subtype Selective, and Peripherally Restricted TrkA Kinase Inhibitors. J Med Chem 2018; 62:247-265. [PMID: 29672039 DOI: 10.1021/acs.jmedchem.8b00280] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tropomyosin receptor kinases (TrkA, TrkB, TrkC) are activated by hormones of the neurotrophin family: nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4). Moreover, the NGF antibody tanezumab has provided clinical proof of concept for inhibition of the TrkA kinase pathway in pain leading to significant interest in the development of small molecule inhibitors of TrkA. However, achieving TrkA subtype selectivity over TrkB and TrkC via a Type I and Type II inhibitor binding mode has proven challenging and Type III or Type IV allosteric inhibitors may present a more promising selectivity design approach. Furthermore, TrkA inhibitors with minimal brain availability are required to deliver an appropriate safety profile. Herein, we describe the discovery of a highly potent, subtype selective, peripherally restricted, efficacious, and well-tolerated series of allosteric TrkA inhibitors that culminated in the delivery of candidate quality compound 23.
Collapse
Affiliation(s)
- Sharan K Bagal
- Worldwide Medicinal Chemistry , Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Kiyoyuki Omoto
- Worldwide Medicinal Chemistry , Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - David C Blakemore
- Worldwide Medicinal Chemistry , Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Peter J Bungay
- Pharmacokinetics, Dynamics & Metabolism , Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - James G Bilsland
- Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Philip J Clarke
- Peakdale Molecular , Discovery Park House, Ramsgate Road , Sandwich , Kent CT13 9ND , U.K
| | - Matthew S Corbett
- Pfizer Global R&D, Groton Laboratories , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Ciaran N Cronin
- Pfizer Global R&D, La Jolla Laboratories , 10770 Science Center Drive, San Diego , California 92121 , United States
| | - J Jean Cui
- Pfizer Global R&D, La Jolla Laboratories , 10770 Science Center Drive, San Diego , California 92121 , United States
| | - Rebecca Dias
- Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Neil J Flanagan
- Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Samantha E Greasley
- Pfizer Global R&D, La Jolla Laboratories , 10770 Science Center Drive, San Diego , California 92121 , United States
| | - Rachel Grimley
- Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Eric Johnson
- Pfizer Global R&D, La Jolla Laboratories , 10770 Science Center Drive, San Diego , California 92121 , United States
| | - David Fengas
- Peakdale Molecular , Discovery Park House, Ramsgate Road , Sandwich , Kent CT13 9ND , U.K
| | - Linda Kitching
- Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Michelle L Kraus
- Pfizer Global R&D, La Jolla Laboratories , 10770 Science Center Drive, San Diego , California 92121 , United States
| | - Indrawan McAlpine
- Pfizer Global R&D, La Jolla Laboratories , 10770 Science Center Drive, San Diego , California 92121 , United States
| | - Asako Nagata
- Pfizer Global R&D, La Jolla Laboratories , 10770 Science Center Drive, San Diego , California 92121 , United States
| | - Gareth J Waldron
- Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Joseph S Warmus
- Pfizer Global R&D, Groton Laboratories , Eastern Point Road , Groton , Connecticut 06340 , United States
| |
Collapse
|
12
|
Lutter M, Bahl E, Hannah C, Hofammann D, Acevedo S, Cui H, McAdams CJ, Michaelson JJ. Novel and ultra-rare damaging variants in neuropeptide signaling are associated with disordered eating behaviors. PLoS One 2017; 12:e0181556. [PMID: 28846695 PMCID: PMC5573281 DOI: 10.1371/journal.pone.0181556] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
Objective Eating disorders develop through a combination of genetic vulnerability and environmental stress, however the genetic basis of this risk is unknown. Methods To understand the genetic basis of this risk, we performed whole exome sequencing on 93 unrelated individuals with eating disorders (38 restricted-eating and 55 binge-eating) to identify novel damaging variants. Candidate genes with an excessive burden of predicted damaging variants were then prioritized based upon an unbiased, data-driven bioinformatic analysis. One top candidate pathway was empirically tested for therapeutic potential in a mouse model of binge-like eating. Results An excessive burden of novel damaging variants was identified in 186 genes in the restricted-eating group and 245 genes in the binge-eating group. This list is significantly enriched (OR = 4.6, p<0.0001) for genes involved in neuropeptide/neurotrophic pathways implicated in appetite regulation, including neurotensin-, glucagon-like peptide 1- and BDNF-signaling. Administration of the glucagon-like peptide 1 receptor agonist exendin-4 significantly reduced food intake in a mouse model of ‘binge-like’ eating. Conclusions These findings implicate ultra-rare and novel damaging variants in neuropeptide/neurotropic factor signaling pathways in the development of eating disorder behaviors and identify glucagon-like peptide 1-receptor agonists as a potential treatment for binge eating.
Collapse
Affiliation(s)
- Michael Lutter
- Eating Recovery Center of Dallas, Plano, Texas, United States of America
| | - Ethan Bahl
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Claire Hannah
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Dabney Hofammann
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Summer Acevedo
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Huxing Cui
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Carrie J. McAdams
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jacob J. Michaelson
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
13
|
Zilkha N, Kuperman Y, Kimchi T. High-fat diet exacerbates cognitive rigidity and social deficiency in the BTBR mouse model of autism. Neuroscience 2017; 345:142-154. [DOI: 10.1016/j.neuroscience.2016.01.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 12/13/2022]
|
14
|
Skerratt SE, Andrews M, Bagal SK, Bilsland J, Brown D, Bungay PJ, Cole S, Gibson KR, Jones R, Morao I, Nedderman A, Omoto K, Robinson C, Ryckmans T, Skinner K, Stupple P, Waldron G. The Discovery of a Potent, Selective, and Peripherally Restricted Pan-Trk Inhibitor (PF-06273340) for the Treatment of Pain. J Med Chem 2016; 59:10084-10099. [PMID: 27766865 DOI: 10.1021/acs.jmedchem.6b00850] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The neurotrophin family of growth factors, comprised of nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4), is implicated in the physiology of chronic pain. Given the clinical efficacy of anti-NGF monoclonal antibody (mAb) therapies, there is significant interest in the development of small molecule modulators of neurotrophin activity. Neurotrophins signal through the tropomyosin related kinase (Trk) family of tyrosine kinase receptors, hence Trk kinase inhibition represents a potentially "druggable" point of intervention. To deliver the safety profile required for chronic, nonlife threatening pain indications, highly kinase-selective Trk inhibitors with minimal brain availability are sought. Herein we describe how the use of SBDD, 2D QSAR models, and matched molecular pair data in compound design enabled the delivery of the highly potent, kinase-selective, and peripherally restricted clinical candidate PF-06273340.
Collapse
Affiliation(s)
- Sarah E Skerratt
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| | - Mark Andrews
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Sharan K Bagal
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| | - James Bilsland
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| | - David Brown
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Peter J Bungay
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| | - Susan Cole
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Karl R Gibson
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Russell Jones
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Inaki Morao
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Angus Nedderman
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Kiyoyuki Omoto
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| | - Colin Robinson
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Thomas Ryckmans
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Kimberly Skinner
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Paul Stupple
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Gareth Waldron
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| |
Collapse
|
15
|
|
16
|
Liao GY, Li Y, Xu B. Ablation of TrkB expression in RGS9-2 cells leads to hyperphagic obesity. Mol Metab 2013; 2:491-7. [PMID: 24327964 DOI: 10.1016/j.molmet.2013.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 01/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB (tropomyosin receptor kinase B), are widely expressed in the brain where they regulate a wide variety of biological processes, including energy homeostasis. However, the specific population(s) of TrkB-expressing neurons through which BDNF governs energy homeostasis remain(s) to be determined. Using the Cre-loxP recombination system, we deleted the mouse TrkB gene in RGS9-2-expressing cells. In this mouse mutant, TrkB expression was abolished in several hypothalamic nuclei, including arcuate nucleus, dorsomedial hypothalamus, and lateral hypothalamus. TrkB expression was also abolished in a small number of cells in other brain regions, including the cerebral cortex and striatum. The mutant animals developed hyperphagic obesity with normal energy expenditure. Despite hyperglycemia under fed conditions, these animals exhibited normal fasting blood glucose levels and normal glucose tolerance. These results suggest that BDNF regulates energy homeostasis in part through TrkB-expressing neurons in the hypothalamus.
Collapse
Key Words
- 3V, third ventricle
- ARC, arcuate nucleus
- BDNF
- BS, brainstem
- Cb, cerebellum
- Ctx, cerebral cortex
- DMH, dorsomedial hypothalamus
- Hp, hippocampus
- Hy, hypothalamus
- Hyperphagia
- Hypothalamus
- LH, lateral hypothalamus
- NTS, nucleus of the solitary tract
- Obesity
- PMV, ventral premammillary nucleus
- PVH, paraventricular hypothalamus
- Rgs9-Cre
- SN, substantia nigra
- Stm, striatum
- TrkB
- Tu, olfactory tubercle
- VMH, ventromedial hypothalamus
Collapse
Affiliation(s)
- Guey-Ying Liao
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA ; Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | | | | |
Collapse
|