1
|
Secchiero P, Rimondi E, Marcuzzi A, Longo G, Papi C, Manfredini M, Fields M, Caruso L, Di Caprio R, Balato A. Metabolic Syndrome and Psoriasis: Pivotal Roles of Chronic Inflammation and Gut Microbiota. Int J Mol Sci 2024; 25:8098. [PMID: 39125666 PMCID: PMC11311610 DOI: 10.3390/ijms25158098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
In recent years, the incidence of metabolic syndrome (MS) has increased due to lifestyle-related factors in developed countries. MS represents a group of conditions that increase the risk of diabetes, cardiovascular diseases, and other severe health problems. Low-grade chronic inflammation is now considered one of the key aspects of MS and could be defined as a new cardiovascular risk factor. Indeed, an increase in visceral adipose tissue, typical of obesity, contributes to the development of an inflammatory state, which, in turn, induces the production of several proinflammatory cytokines responsible for insulin resistance. Psoriasis is a chronic relapsing inflammatory skin disease and is characterized by the increased release of pro-inflammatory cytokines, which can contribute to different pathological conditions within the spectrum of MS. A link between metabolic disorders and Psoriasis has emerged from evidence indicating that weight loss obtained through healthy diets and exercise was able to improve the clinical course and therapeutic response of Psoriasis in patients with obesity or overweight patients and even prevent its occurrence. A key factor in this balance is the gut microbiota; it is an extremely dynamic system, and this makes its manipulation through diet possible via probiotic, prebiotic, and symbiotic compounds. Given this, the gut microbiota represents an additional therapeutic target that can improve metabolism in different clinical conditions.
Collapse
Affiliation(s)
- Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (P.S.); (E.R.)
| | - Erika Rimondi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (P.S.); (E.R.)
| | - Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (C.P.); (M.M.); (M.F.)
| | - Giovanna Longo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (C.P.); (M.M.); (M.F.)
| | - Chiara Papi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (C.P.); (M.M.); (M.F.)
| | - Marta Manfredini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (C.P.); (M.M.); (M.F.)
| | - Matteo Fields
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (C.P.); (M.M.); (M.F.)
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Roberta Di Caprio
- Dermatology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (R.D.C.); (A.B.)
| | - Anna Balato
- Dermatology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (R.D.C.); (A.B.)
| |
Collapse
|
2
|
Circulating sTweak is associated with visceral adiposity and severity in patients with obstructive sleep apnea syndrome. Sci Rep 2021; 11:22058. [PMID: 34764367 PMCID: PMC8586253 DOI: 10.1038/s41598-021-01553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Hypoxia is linked to an inflammatory imbalance in obstructive sleep apnea syndrome (OSAS). Circulating soluble tumor necrosis factor (TNF)-like weak inducer of apoptosis (sTWEAK) is a cytokine that regulates inflammation and insulin resistance in adipose tissue. This study first investigated sTWEAK concentrations in patients OSAS and evaluated associations between sTWEAK concentrations and visceral adiposity, metabolic dysfunction, and hypoxia observed in OSAS. Forty age, sex, and body mass index-matched patients with simple habitual snoring (HSS) and 70 patients with OSAS were included. Patients were divided according to OSAS severity: mild-moderate (apnea–hypopnea index, AHI 5–30 events/h) and severe (AHI ≥ 30 events/h). Anthropometric data, glucose metabolism, visceral fat (VF) ratio, and sTWEAK levels were compared. sTWEAK levels were higher in the OSAS group than in the HSS group (931.23 ± 136.48 vs. 735.22 ± 102.84 ng/L, p = 0.001). sTWEAK levels were higher in severe OSAS than in mild-moderate OSAS (1031.83 ± 146.69 vs. 891.01 ± 110.01 ng/L, p = 0.002. When we evaluated the sTWEAK value and AHI, VF ratio, total cholesterol, blood pressure, homeostasis model of assessment-insulin resistance, and high-sensitivity C-reactive protein using multiple regression analysis, a significant correlation was found between sTWEAK levels and AHI (p < 0.001). It was found that sTWEAK levels were not correlated with glucose metabolism and VF ratio. Increased circulating sTWEAK levels were associated with the severity of OSAS. High sTWEAK levels were correlated with increased AHI. sTWEAK concentrations are linked to severe OSAS.
Collapse
|
3
|
Xia T, Shen Z, Cai J, Pan M, Sun C. ColXV Aggravates Adipocyte Apoptosis by Facilitating Abnormal Extracellular Matrix Remodeling in Mice. Int J Mol Sci 2020; 21:ijms21030959. [PMID: 32024006 PMCID: PMC7037489 DOI: 10.3390/ijms21030959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic structural network and plays an essential role in cell behavior and regulation during metabolic homeostasis and obesity progression. Abnormal ECM remodeling impairs adipocyte plasticity required for diverse cellular functions. Collagen XV (ColXV) is a proteoglycan localized to the outermost layer of basement membranes (BMs) and forms a bridge between the BMs and the fibrillar collagen matrix. Nevertheless, how ColXV affects ECM composition and the reason for subsequent adipocyte apoptosis is still unclear. This report found, through RNA-seq data, that ColXV is linked to cell growth and ECM remodeling. Findings show that, in response to excessive expression of extracellular ColXV, the AMPK/mTORC1 pathway is strongly activated and triggers a cascade of mitochondrial apoptosis. This is the first study to make use of ECM three-dimensional reconstruction, based on decellularization in the adipose tissues and the study reveals that ColXV is an activation factor that alters ECM remodeling in adipose tissues. It was also demonstrated that the fibroblast growth factor 2 (FGF2)/fibroblast growth factor receptor 1 (FGFR1) axis involved in ECM remodeling is suppressed by ColXV due to reduction of FGF2 translocation to FGFR1. Furthermore, ColXV induced remodeling of ECM preceding apoptosis and continued to induce apoptosis in adipocytes. Collectively, our findings establish ColXV as a basement membrane collagen with homology to ColXVIII, indicating that it is one of the positive regulators for inducing ECM remodeling and further promoting adipocyte apoptosis.
Collapse
|
4
|
Kanbay M, Yerlikaya A, Sag AA, Ortiz A, Kuwabara M, Covic A, Wiecek A, Stenvinkel P, Afsar B. A journey from microenvironment to macroenvironment: the role of metaflammation and epigenetic changes in cardiorenal disease. Clin Kidney J 2019; 12:861-870. [PMID: 31807301 PMCID: PMC6885688 DOI: 10.1093/ckj/sfz106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic non-communicable diseases have become a pandemic public problem in the 21st century, causing enormous burden on the economy, health and quality of life of societies. The role of a chronic inflammatory state in the pathogenesis of chronic disease has been more comprehensively recognized by recent findings. The new paradigm ‘metaflammation’ focuses on metabolism-induced (high fat or fructose-based diet or excessive calorie intake) chronic inflammation. There is a close correlation between the increased incidence of chronic kidney disease (CKD) and chronic heart failure with both increased inflammatory marker levels and western-type diet. In this review we describe the concept of metaflammation, its role in the development of CKD and chronic heart disease, the molecular and signalling pathways involved and the therapeutic consequences.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Aslihan Yerlikaya
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alan A Sag
- Department of Radiology, Division of Vascular and Interventional Radiology, Duke University Medical Center, Durham, NC, USA
| | - Alberto Ortiz
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Adrian Covic
- Nephrology Department, Dialysis and Renal Transplant Center, "Dr. C.I. Parhon" University Hospital, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Peter Stenvinkel
- Department of Clinical Science Intervention and Technology, Division of Renal Medicine and Baxter Novum, Karolinska Institutet, Stockholm, Sweden
| | - Baris Afsar
- Department of Medicine, Division of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| |
Collapse
|
5
|
Escoté X, Gómez-Zorita S, López-Yoldi M, Milton-Laskibar I, Fernández-Quintela A, Martínez JA, Moreno-Aliaga MJ, Portillo MP. Role of Omentin, Vaspin, Cardiotrophin-1, TWEAK and NOV/CCN3 in Obesity and Diabetes Development. Int J Mol Sci 2017; 18:ijms18081770. [PMID: 28809783 PMCID: PMC5578159 DOI: 10.3390/ijms18081770] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/22/2023] Open
Abstract
Adipose tissue releases bioactive mediators called adipokines. This review focuses on the effects of omentin, vaspin, cardiotrophin-1, Tumor necrosis factor-like Weak Inducer of Apoptosis (TWEAK) and nephroblastoma overexpressed (NOV/CCN3) on obesity and diabetes. Omentin is produced by the stromal-vascular fraction of visceral adipose tissue. Obesity reduces omentin serum concentrations and adipose tissue secretion in adults and adolescents. This adipokine regulates insulin sensitivity, but its clinical relevance has to be confirmed. Vaspin is produced by visceral and subcutaneous adipose tissues. Vaspin levels are higher in obese subjects, as well as in subjects showing insulin resistance or type 2 diabetes. Cardiotrophin-1 is an adipokine with a similar structure as cytokines from interleukin-6 family. There is some controversy regarding the regulation of cardiotrophin-1 levels in obese -subjects, but gene expression levels of cardiotrophin-1 are down-regulated in white adipose tissue from diet-induced obese mice. It also shows anti-obesity and hypoglycemic properties. TWEAK is a potential regulator of the low-grade chronic inflammation characteristic of obesity. TWEAK levels seem not to be directly related to adiposity, and metabolic factors play a critical role in its regulation. Finally, a strong correlation has been found between plasma NOV/CCN3 concentration and fat mass. This adipokine improves insulin actions.
Collapse
Affiliation(s)
- Xavier Escoté
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain.
| | - Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
| | - Miguel López-Yoldi
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain.
| | - Iñaki Milton-Laskibar
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
| | - Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
| | - J Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
- Navarra Institute for Health Research (IdiSNa), 31008 Pamplona, Spain.
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
- Navarra Institute for Health Research (IdiSNa), 31008 Pamplona, Spain.
| | - María P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
| |
Collapse
|
6
|
TWEAK blockade decreases atherosclerotic lesion size and progression through suppression of STAT1 signaling in diabetic mice. Sci Rep 2017; 7:46679. [PMID: 28447667 PMCID: PMC5406837 DOI: 10.1038/srep46679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/27/2017] [Indexed: 11/30/2022] Open
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK/Tnfsf12) is a cytokine implicated in different steps associated with vascular remodeling. However, the role of TWEAK under hyperglycemic conditions is currently unknown. Using two different approaches, genetic deletion of Tnfsf12 and treatment with a TWEAK blocking mAb, we have analyzed the effect of TWEAK inhibition on atherosclerotic plaque progression and stability in streptozotocin-induced diabetic ApoE deficient mice. Genetic inactivation of Tnfsf12 reduced atherosclerosis extension and severity in diabetic ApoE deficient mice. Tnfsf12 deficient mice display a more stable plaque phenotype characterized by lower lipid and macrophage content within atherosclerotic plaques. A similar phenotype was observed in diabetic mice treated with anti-TWEAK mAb. The proatherosclerotic effects of TWEAK were mediated, at least in part, by STAT1 activation and expression of proinflammatory target genes (CCL5, CXCL10 and ICAM-1), both in plaques of ApoE mice and in cultured vascular smooth muscle cells (VSMCs) under hyperglycemic conditions. Loss-of-function experiments demonstrated that TWEAK induces proinflammatory genes mRNA expression through its receptor Fn14 and STAT1 activation in cultured VSMCs. Overall, TWEAK blockade delay plaque progression and alter plaque composition in diabetic atherosclerotic mice. Therapies aimed to inhibit TWEAK expression and/or function could protect from diabetic vascular complications.
Collapse
|
7
|
Dong Y, Xu Z, Zhang Z, Yin X, Lin X, Li H, Zheng F. Impaired adipose expansion caused by liver X receptor activation is associated with insulin resistance in mice fed a high-fat diet. J Mol Endocrinol 2017; 58:141-154. [PMID: 28258092 DOI: 10.1530/jme-16-0196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 12/23/2022]
Abstract
Liver X receptors (LXR) are deemed as potential drug targets for atherosclerosis, whereas a role in adipose tissue expansion and its relation to insulin sensitivity remains unclear. To assess the metabolic effects of LXR activation by the dual LXRα/β agonist T0901317, C57BL/6 mice fed a high-fat diet (HFD) were treated with T0901317 (30 mg/kg once daily by intraperitoneal injection) for 3 weeks. Differentiated 3T3-L1 adipocytes were used for analysing the effect of T0901317 on glucose uptake. The following results were obtained from this study. T0901317 reduced fat mass, accompanied by a massive fatty liver and lower serum adipokine levels in HFD mice. Increased adipocyte apoptosis was found in epididymal fat of T0901317-treated HFD mice. In addition, T0901317 treatment promoted basal lipolysis, but blunted the anti-lipolytic action of insulin. Furthermore, LXR activation antagonised PPARγ target genes in epididymal fat and PPARγ-PPRE-binding activity in 3T3-L1 adipocytes. Although the glucose tolerance was comparable to that in HFD mice, the insulin response during IPGTT was significantly higher and the insulin tolerance was significantly impaired in T0901317-treated HFD mice, indicating decreased insulin sensitivity by T0901317 administration, and which was further supported by impaired insulin signalling found in epididymal fat and decreased insulin-induced glucose uptake in 3T3-L1 adipocytes by T0901317 administration. In conclusion, these findings reveal that LXR activation impairs adipose expansion by increasing adipocyte apoptosis, lipolysis and antagonising PPARγ-mediated transcriptional activity, which contributes to decreased insulin sensitivity in whole body. The potential of LXR activation being a therapeutic target for atherosclerosis might be limited by the possibility of exacerbating insulin resistance.
Collapse
Affiliation(s)
- Yueting Dong
- Department of EndocrinologySir Run Run Shaw Hospital Affiliated with School of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhiye Xu
- Department of EndocrinologySir Run Run Shaw Hospital Affiliated with School of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ziyi Zhang
- Department of EndocrinologySir Run Run Shaw Hospital Affiliated with School of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xueyao Yin
- Department of EndocrinologySir Run Run Shaw Hospital Affiliated with School of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xihua Lin
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang ProvinceSir Run Run Shaw Hospital Affiliated with School of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Hong Li
- Department of EndocrinologySir Run Run Shaw Hospital Affiliated with School of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fenping Zheng
- Department of EndocrinologySir Run Run Shaw Hospital Affiliated with School of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
8
|
Haka AS, Barbosa-Lorenzi VC, Lee HJ, Falcone DJ, Hudis CA, Dannenberg AJ, Maxfield FR. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation. J Lipid Res 2016; 57:980-92. [PMID: 27044658 PMCID: PMC4878183 DOI: 10.1194/jlr.m064089] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 12/13/2022] Open
Abstract
Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages.
Collapse
Affiliation(s)
- Abigail S Haka
- Departments of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | | | - Hyuek Jong Lee
- Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Domenick J Falcone
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Clifford A Hudis
- Medicine, Weill Cornell Medical College, New York, NY 10065 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | | | | |
Collapse
|
9
|
Sato S, Ogura Y, Tajrishi MM, Kumar A. Elevated levels of TWEAK in skeletal muscle promote visceral obesity, insulin resistance, and metabolic dysfunction. FASEB J 2014; 29:988-1002. [PMID: 25466899 DOI: 10.1096/fj.14-260703] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Skeletal muscle is responsible for the majority of glucose disposal in body. Impairment in skeletal muscle glucose handling capacity leads to the state of insulin resistance. The TNF-like weak inducer of apoptosis (TWEAK) cytokine has now emerged as a major regulator of skeletal muscle mass and function. However, the role of TWEAK in skeletal muscle metabolic function remains less understood. Here, we demonstrate that with progressive age, skeletal muscle-specific TWEAK-transgenic (TWEAK-Tg) mice gain increased body weight (∼16%) and fat mass (∼64%) and show glucose intolerance and insulin insensitivity. TWEAK-Tg mice also exhibit adipocyte hypertrophy in the epididymal fat. Oxygen uptake, voluntary physical activity, and exercise capacity were significantly reduced in TWEAK-Tg mice compared with controls. Overexpression of TWEAK inhibited (∼31%) 5' AMP-activated protein kinase (AMPK) and reduced (∼31%) the levels of glucose transporter type 4 (GLUT4) without affecting the Akt pathway. TWEAK also inhibited insulin-stimulated glucose uptake (∼32%) and repressed the levels of GLUT4 (∼50%) in cultured myotubes from C57BL6 mice. TWEAK represses the levels of Krüppel-like factor 15; myocyte enhancer factor 2, and peroxisome proliferator-activated receptor-γ coactivator-1α, which are required for the activation of the GLUT4 locus. Collectively our study demonstrates that elevated levels of TWEAK in skeletal muscle cause metabolic abnormalities. Inhibition of TWEAK could be a potential approach to prevent weight gain and type 2 diabetes.
Collapse
Affiliation(s)
- Shuichi Sato
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Yuji Ogura
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Marjan M Tajrishi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|