1
|
Matuszewska J, Nowacka-Woszuk J, Radziejewska A, Grzęda E, Pruszyńska-Oszmałek E, Dylewski Ł, Chmurzyńska A, Sliwowska JH. Maternal cafeteria diet influences kisspeptin (Kiss1), kisspeptin receptor(Gpr54), and sirtuin (Sirt1) genes, hormonal and metabolic profiles, and reproductive functions in rat offspring in a sex-specific manner†. Biol Reprod 2023; 109:654-668. [PMID: 37665248 PMCID: PMC10651067 DOI: 10.1093/biolre/ioad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/27/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023] Open
Abstract
Kisspeptin (KP, encoded by Kiss1, binding to the Gpr54 receptor) is a neuropeptide conveying information on the metabolic status to the hypothalamic-pituitary-gonadal axis. KP acts together with dynorphin A (encoded by Pdyn) and neurokinin B (encoded by Tac2) to regulate reproduction. KP is crucial for the onset of puberty and is under the control of sirtuin (encoded by Sirt1). We hypothesize that the maternal cafeteria (CAF) diet has adverse effects on the offspring's hormonal, metabolic, and reproductive functions due to sex-specific alterations in the expression of Kiss1, Gpr54, Pdyn, Tac2, and Sirt1 in the hypothalamus, and Kiss1, Gpr54, and Sirt1 in the liver. Rats were fed a CAF diet before pregnancy, during pregnancy, and during lactation. The vaginal opening was monitored. Offspring were sacrificed in three age points: PND 30, PND 35, and PND 60 (females) and PND 40, PND 45, and PND 60 (males). Their metabolic and hormonal status was assessed. mRNA for Kiss1, Gpr54, Pdyn, Tac2, and Sirt1 were measured by real-time PCR in the hypothalamus and/or livers. We found that CAF offspring had lower weight and altered body composition; increased cholesterol and triglyceride levels, sex-specific changes in glucose and insulin levels; sex-dependent changes in Sirt1/Kiss1 mRNA ratio in the hypothalamus; sex-specific alterations in Kiss1 and Sirt1 mRNA in the liver with more diversity in males; and a delayed puberty onset in females. We concluded that the mother's CAF diet leads to sex-specific alterations in metabolic and reproductive outcomes via Kiss1/Gpr54 and Sirt1 systems in offspring.
Collapse
Affiliation(s)
- Julia Matuszewska
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Poznan, Poland
| | - Joanna Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Poznan, Poland
| | - Anna Radziejewska
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Poznan, Poland
| | - Emilia Grzęda
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Poznan, Poland
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Poznan, Poland
| | - Łukasz Dylewski
- Department of Zoology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Poznan, Poland
| | - Agata Chmurzyńska
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Poznan, Poland
| | - Joanna H Sliwowska
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
2
|
Sánchez-Garrido MA, García-Galiano D, Tena-Sempere M. Early programming of reproductive health and fertility: novel neuroendocrine mechanisms and implications in reproductive medicine. Hum Reprod Update 2022; 28:346-375. [PMID: 35187579 PMCID: PMC9071071 DOI: 10.1093/humupd/dmac005] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, environmental changes taking place during early maturational periods may alter normal development and predispose to the occurrence of diverse pathologies later in life. Indeed, adverse conditions during these critical developmental windows of high plasticity have been reported to alter the offspring developmental trajectory, causing permanent functional and structural perturbations that in the long term may enhance disease susceptibility. However, while solid evidence has documented that fluctuations in environmental factors, ranging from nutrient availability to chemicals, in early developmental stages (including the peri-conceptional period) have discernible programming effects that increase vulnerability to develop metabolic perturbations, the impact and eventual mechanisms involved, of such developmental alterations on the reproductive phenotype of offspring have received less attention. OBJECTIVE AND RATIONALE This review will summarize recent advances in basic and clinical research that support the concept of DOHaD in the context of the impact of nutritional and hormonal perturbations, occurring during the periconceptional, fetal and early postnatal stages, on different aspects of reproductive function in both sexes. Special emphasis will be given to the effects of early nutritional stress on the timing of puberty and adult gonadotropic function, and to address the underlying neuroendocrine pathways, with particular attention to involvement of the Kiss1 system in these reproductive perturbations. The implications of such phenomena in terms of reproductive medicine will also be considered. SEARCH METHODS A comprehensive MEDLINE search, using PubMed as main interface, of research articles and reviews, published mainly between 2006 and 2021, has been carried out. Search was implemented using multiple terms, focusing on clinical and preclinical data from DOHaD studies, addressing periconceptional, gestational and perinatal programming of reproduction. Selected studies addressing early programming of metabolic function have also been considered, when relevant. OUTCOMES A solid body of evidence, from clinical and preclinical studies, has documented the impact of nutritional and hormonal fluctuations during the periconceptional, prenatal and early postnatal periods on pubertal maturation, as well as adult gonadotropic function and fertility. Furthermore, exposure to environmental chemicals, such as bisphenol A, and maternal stress has been shown to negatively influence pubertal development and gonadotropic function in adulthood. The underlying neuroendocrine pathways and mechanisms involved have been also addressed, mainly by preclinical studies, which have identified an, as yet incomplete, array of molecular and neurohormonal effectors. These include, prominently, epigenetic regulatory mechanisms and the hypothalamic Kiss1 system, which likely contribute to the generation of reproductive alterations in conditions of early nutritional and/or metabolic stress. In addition to the Kiss1 system, other major hypothalamic regulators of GnRH neurosecretion, such as γ-aminobutyric acid and glutamate, may be targets of developmental programming. WIDER IMPLICATIONS This review addresses an underdeveloped area of reproductive biology and medicine that may help to improve our understanding of human reproductive disorders and stresses the importance, and eventual pathogenic impact, of early determinants of puberty, adult reproductive function and fertility.
Collapse
Affiliation(s)
- Miguel Angel Sánchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - David García-Galiano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Differential Effects of Post-Weaning Diet and Maternal Obesity on Mouse Liver and Brain Metabolomes. Nutrients 2020; 12:nu12061572. [PMID: 32481497 PMCID: PMC7352523 DOI: 10.3390/nu12061572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/16/2022] Open
Abstract
Nutritional changes during developmental windows are of particular concern in offspring metabolic disease. Questions are emerging concerning the role of maternal weight changes before conception, particularly for weight loss, in the development of diet-related disorders. Understanding the physiological pathways affected by the maternal trajectories in the offspring is therefore essential, but a broad overview is still lacking. We recently reported both metabolic and behavioral negative outcomes in offspring born to obese or weight-loss mothers and fed a control of high-fat diet, suggesting long-term modeling of metabolic pathways needing to be further characterized. Using non-targeted LC–HRMS, we investigated the impact of maternal and post-weaning metabolic status on the adult male offspring’s metabolome in three tissues involved in energy homeostasis: liver, hypothalamus and olfactory bulb. We showed that post-weaning diet interfered with the abundance of several metabolites, including 1,5-anhydroglucitol, saccharopine and β-hydroxybutyrate, differential in the three tissues. Moreover, maternal diet had a unique impact on the abundance of two metabolites in the liver. Particularly, anserine abundance, lowered by maternal obesity, was normalized by a preconceptional weight loss, whatever the post-weaning diet. This study is the first to identify a programming long-term effect of maternal preconception obesity on the offspring metabolome.
Collapse
|
4
|
Maternal diets enriched in olive oil regulate lipid metabolism and levels of PPARs and their coactivators in the fetal liver in a rat model of gestational diabetes mellitus. J Nutr Biochem 2020; 78:108334. [PMID: 32004928 DOI: 10.1016/j.jnutbio.2019.108334] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/07/2019] [Accepted: 12/30/2019] [Indexed: 01/10/2023]
Abstract
In a rat model of gestational diabetes mellitus (GDM) programmed in the offspring of neonatal streptozotocin-induced (nSTZ) diabetic rats, lipids are accumulated in the fetal liver in a sex-dependent way. Here, we evaluated whether maternal diets enriched in olive oil in rats that will develop GDM ameliorate lipid metabolic impairments in the fetal livers. Pregnant offspring of control and nSTZ diabetic rats (F0) were fed a 6% olive oil-supplemented diet throughout the F1 gestation. We evaluated maternal metabolic parameters as well as lipid content, expression of lipid metabolizing enzymes and protein expression of PLIN2, PPARs and PPAR coactivators in the fetal livers. The offspring of nSTZ diabetic rats developed GDM regardless of the maternal treatment. Hypertriglyceridemia in GDM rats was prevented by the olive oil-enriched maternal treatment. In the livers of male fetuses of GDM rats, the maternal olive oil-supplemented diet prevented lipid overaccumulation and prevented the increase in PPARγ and PPARδ levels. In the livers of female fetuses of GDM rats, the maternal olive oil supplementation prevented the increase in PPARδ levels and the reduction in PGC1α levels, but did not prevent the reduced lipid content. Control and GDM rats showed a reduction of lipid metabolic enzymes in the fetal livers, which was associated with reduced levels of the PPAR coactivators PGC-1α and SRC-1 in males and of SRC-1 in females. These results suggest powerful effects of a maternal olive oil-supplemented diet in the fetal liver, possibly providing benefits in the fetuses and offspring from GDM rats.
Collapse
|
5
|
Guillemette L, Hay JL, Kehler DS, Hamm NC, Oldfield C, McGavock JM, Duhamel TA. Exercise in Pregnancy and Children's Cardiometabolic Risk Factors: a Systematic Review and Meta-Analysis. SPORTS MEDICINE - OPEN 2018; 4:35. [PMID: 30069801 PMCID: PMC6070449 DOI: 10.1186/s40798-018-0148-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Maternal metabolic health during the prenatal period is an established determinant of cardiometabolic disease risk. Many studies have focused on poor offspring outcomes after exposure to poor maternal health, while few have systematically appraised the evidence surrounding the role of maternal exercise in decreasing this risk. The aim of this study is to characterize and quantify the specific impact of prenatal exercise on children's cardiometabolic health markers, at birth and in childhood. METHODS A systematic review of Scopus, MEDLINE, EMBASE, CENTRAL, CINAHL, and SPORTDiscus up to December 2017 was conducted. Randomized controlled trials (RCTs) and prospective cohort studies of prenatal aerobic exercise and/or resistance training reporting eligible offspring outcomes were included. Four reviewers independently identified eligible citations and extracted study-level data. The primary outcome was birth weight; secondary outcomes, specified a priori, included large-for-gestational age status, fat and lean mass, dyslipidemia, dysglycemia, and blood pressure. We included 73 of the 9804 citations initially identified. Data from RCTs was pooled using random effects models. Statistical heterogeneity was quantified using the I2 test. Analyses were done between June and December 2017 and the search was updated in December 2017. RESULTS Fifteen observational studies (n = 290,951 children) and 39 RCTs (n = 6875 children) were included. Observational studies were highly heterogeneous and had discrepant conclusions, but globally showed no clinically relevant effect of exercise on offspring outcomes. Meta-analyzed RCTs indicated that prenatal exercise did not significantly impact birth weight (mean difference [MD] - 22.1 g, 95% confidence interval [CI] - 51.5 to 7.3 g, n = 6766) or large-for-gestational age status (risk ratio 0.85, 95% CI 0.51 to 1.44, n = 937) compared to no exercise. Sub-group analyses showed that prenatal exercise reduced birth weight according to timing (starting after 20 weeks of gestation, MD - 84.3 g, 95% CI - 142.2, - 26.4 g, n = 1124), type of exercise (aerobic only, MD - 58.7 g, 95% CI - 109.7, - 7.8 g; n = 2058), pre-pregnancy activity status (previously inactive, MD - 34.8 g, 95% CI - 69.0, - 0.5 g; n = 2829), and exercise intensity (light to moderate intensity only, MD - 45.5 g, 95% CI - 82.4, - 8.6 g; n = 2651). Fat mass percentage at birth was not altered by prenatal exercise (0.19%, 95% CI - 0.27, 0.65%; n = 130); however, only two studies reported this outcome. Other outcomes were too scarcely reported to be meta-analyzed. CONCLUSIONS Prenatal exercise does not causally impact birth weight, fat mass, or large-for-gestational-age status in a clinically relevant way. Longer follow up of offspring exposed to prenatal exercise is needed along with measures of relevant metabolic variables (e.g., fat and lean mass). PROTOCOL REGISTRATION Protocol registration number: CRD42015029163 .
Collapse
Affiliation(s)
- Laetitia Guillemette
- Children’s Hospital Research Institute of Manitoba, John Buhler Research Center, University of Manitoba, 511-715 McDermot Avenue, Winnipeg, MB R3E 3P4 Canada
- Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, MB Canada
| | - Jacqueline L. Hay
- Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, MB Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB Canada
| | - D. Scott Kehler
- Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, MB Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB Canada
| | - Naomi C. Hamm
- Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, MB Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB Canada
| | - Christopher Oldfield
- Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, MB Canada
| | - Jonathan M. McGavock
- Children’s Hospital Research Institute of Manitoba, John Buhler Research Center, University of Manitoba, 511-715 McDermot Avenue, Winnipeg, MB R3E 3P4 Canada
| | - Todd A. Duhamel
- Children’s Hospital Research Institute of Manitoba, John Buhler Research Center, University of Manitoba, 511-715 McDermot Avenue, Winnipeg, MB R3E 3P4 Canada
- Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, MB Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB Canada
| |
Collapse
|
6
|
Aerobic Exercise Increases Meteorin-Like Protein in Muscle and Adipose Tissue of Chronic High-Fat Diet-Induced Obese Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6283932. [PMID: 29854769 PMCID: PMC5952564 DOI: 10.1155/2018/6283932] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/18/2018] [Accepted: 03/26/2018] [Indexed: 01/27/2023]
Abstract
Upregulated meteorin-like (Metrnl) protein in peripheral tissues because of exercise-induced increases in intramuscular Metrnl may effectively alleviate obesity by improving metabolism in whole-body tissues. The objective was to analyse the effects of regular treadmill exercise on Metrnl levels in muscle and peripheral tissues of chronic high-fat diet- (HFD-) induced obese mice. Forty-eight-week-old male C57BL/6 mice were first divided equally into normal-diet (CO) and high-fat diet (HF) groups. Following 16 weeks of a HFD, each group was again split equally into control (CO, HF) and training groups (COT, HFT). The HFT group expressed significantly higher phospho-AMP-activated protein kinase (AMPK), AMPK activity, and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in muscle tissue than the HF group (p < 0.05). Similar to muscle energy sensing network protein levels, the HFT group also expressed significantly higher muscle, plasma, and adipose tissue Metrnl (p < 0.05). Moreover, regular exercise increased acyl-CoA oxidase 1 (ACOX-1) and monoglyceride lipase (MGL) expression in adipose tissue (p < 0.05) and significantly decreased abdominal fat mass (p < 0.05). This study suggests that exercise-induced muscle Metrnl effectively reduces fat accumulation through the increase of Metrnl in adipose tissue, which may be a therapeutic target for chronic obesity.
Collapse
|
7
|
Bae JY, Woo J, Kang S, Shin KO. Effects of detraining and retraining on muscle energy-sensing network and meteorin-like levels in obese mice. Lipids Health Dis 2018; 17:97. [PMID: 29703203 PMCID: PMC5924483 DOI: 10.1186/s12944-018-0751-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/19/2018] [Indexed: 11/16/2022] Open
Abstract
Background Increased intramuscular peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) with exercise directly or indirectly affects other tissues, but the effector pathway of PGC-1α has not been clearly elucidated. The purpose of this study was to investigate the effect of exercise and/or dietary change on the protein levels of the soleus muscle energy-sensing network and meteorin-like (Metrnl), and additionally to analyze the detraining and retraining effects in high-fat diet (HFD)-induced obese mice. Methods One hundred male C57BL/6 mice were divided into normal-diet + sedentary (CO, n = 20) and HFD + sedentary (HF, n = 80) groups, and obesity was induced in the HF group through consumption of a 45% HFD for 6 weeks. The HF group was subdivided into HF only (n = 20), HF + training (HFT, n = 20), dietary change + sedentary (HFND, n = 20), and HFND + training (HFNDT, n = 20) groups, and the mice in the training groups underwent a treadmill training for 8 weeks, 5 times per week, 40 min per day. The HFT and HFNDT groups underwent 8-week training, 8-week detraining, and 4-week retraining. Results An 8-week training was effective in increasing the protein levels of soleus muscle AMP-activated protein kinase (AMPK), PGC-1α, and plasma Metrnl in the obese mice (P < 0.05). Moreover, exercise in obesity reduced body weight (P < 0.05), and exercise with dietary conversion was effective in reducing body weight (P < 0.05) and fat mass (P < 0.05) after 8-week training. 8-week detraining restored the increased protein level to the pre-exercise state, but, the previous exercise effect in body weight and fat mass (P < 0.05) of the HFNDT group remained until the end of 4-week detraining. 4-week retraining was effective in increasing the protein levels of soleus muscle AMPK, PGC-1α, blood Metrnl (P < 0.05), and reducing in body weight (P < 0.05) and fat mass (P < 0.05), when retraining with dietary change. Conclusions The results of this study suggest that regular exercise is indispensable to reduce body weight and fat mass through upregulation of the muscle energy-sensing network and Metrnl protein levels, and retraining with dietary change is necessary to obtain the retraining effects more quickly. Electronic supplementary material The online version of this article (10.1186/s12944-018-0751-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ju Yong Bae
- Laboratory of Exercise Biochemistry, Department of Physical Education, College of Arts and Physical Education, Dong-A University, 37 Nakdong-daero 550 beon-gil, Hadan-dong, Saha-gu, Busan, 604-714, Republic of Korea
| | - Jinhee Woo
- Laboratory of Exercise Biochemistry, Department of Physical Education, College of Arts and Physical Education, Dong-A University, 37 Nakdong-daero 550 beon-gil, Hadan-dong, Saha-gu, Busan, 604-714, Republic of Korea
| | - Sunghwun Kang
- Laboratory of Exercise Physiology, Division of Sport Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Ki Ok Shin
- Laboratory of Exercise Biochemistry, Department of Physical Education, College of Arts and Physical Education, Dong-A University, 37 Nakdong-daero 550 beon-gil, Hadan-dong, Saha-gu, Busan, 604-714, Republic of Korea.
| |
Collapse
|
8
|
Khanal P, Nielsen MO. Impacts of prenatal nutrition on animal production and performance: a focus on growth and metabolic and endocrine function in sheep. J Anim Sci Biotechnol 2017; 8:75. [PMID: 28919976 PMCID: PMC5594587 DOI: 10.1186/s40104-017-0205-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 08/17/2017] [Indexed: 11/10/2022] Open
Abstract
The concept of foetal programming (FP) originated from human epidemiological studies, where foetal life nutrition was linked to health and disease status later in life. Since the proposal of this phenomenon, it has been evaluated in various animal models to gain further insights into the mechanisms underlying the foetal origins of health and disease in humans. In FP research, the sheep has been quite extensively used as a model for humans. In this paper we will review findings mainly from our Copenhagen sheep model, on the implications of late gestation malnutrition for growth, development, and metabolic and endocrine functions later in life, and discuss how these implications may depend on the diet fed to the animal in early postnatal life. Our results have indicated that negative implications of foetal malnutrition, both as a result of overnutrition and, particularly, late gestation undernutrition, can impair a wide range of endocrine functions regulating growth and presumably also reproductive traits. These implications are not readily observable early in postnatal life, but are increasingly manifested as the animal approaches adulthood. No intervention or cure is known that can reverse this programming in postnatal life. Our findings suggest that close to normal growth and slaughter results can be obtained at least until puberty in animals which have undergone adverse programming in foetal life, but manifestation of programming effects becomes increasingly evident in adult animals. Due to the risk of transfer of the adverse programming effects to future generations, it is therefore recommended that animals that are suspected to have undergone adverse FP are not used for reproduction. Unfortunately, no reliable biomarkers have as yet been identified that allow accurate identification of adversely programmed offspring at birth, except for very low or high birth weights, and, in pigs, characteristic changes in head shape (dolphin head). Future efforts should be therefore dedicated to identify reliable biomarkers and evaluate their effectiveness for alleviation/reversal of the adverse programming in postnatal life. Our sheep studies have shown that the adverse impacts of an extreme, high-fat diet in early postnatal life, but not prenatal undernutrition, can be largely reversed by dietary correction later in life. Thus, birth (at term) appears to be a critical set point for permanent programming in animals born precocial, such as sheep. Appropriate attention to the nutrition of the late pregnant dam should therefore be a priority in animal production systems.
Collapse
Affiliation(s)
- Prabhat Khanal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 1st floor, DK-1870 Frederiksberg C, Denmark.,Current address: Department of Nutrition, Faculty of Medicine, Transgenic Animal and Lipid Storage, Norwegian Transgenic Centre (NTS), University of Oslo, Oslo, Norway
| | - Mette Olaf Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 1st floor, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
9
|
Lock MC, McGillick EV, Orgeig S, McMillen IC, Mühlhäusler BS, Zhang S, Morrison JL. Differential effects of late gestation maternal overnutrition on the regulation of surfactant maturation in fetal and postnatal life. J Physiol 2017; 595:6635-6652. [PMID: 28759122 DOI: 10.1113/jp274528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS Offspring of overweight and obese women are at greater risk for respiratory complications at birth. We determined the effect of late gestation maternal overnutrition (LGON) in sheep on surfactant maturation, glucose transport and fatty acid metabolism in the lung in fetal and postnatal life. There were significant decreases in surfactant components and numerical density of surfactant producing cells in the alveolar epithelium due to LGON in the fetal lung. However, there were no differences in the levels of these surfactant components between control and LGON lambs at 30 days of age. The reduced capacity for surfactant production in fetuses as a result of LGON may affect the transition to air breathing at birth. There was altered glucose transport and fatty acid metabolism in the lung as a result of LGON in postnatal life. However, there is a normalisation of surfactant components that suggests accelerated maturation in the lungs after birth. ABSTRACT With the increasing incidence of obesity worldwide, the proportion of women entering pregnancy overweight or obese has increased dramatically. The fetus of an overnourished mother experiences numerous metabolic changes that may modulate lung development and hence successful transition to air breathing at birth. We used a sheep model of maternal late gestation overnutrition (LGON; from 115 days' gestation, term 147 ± 3 days) to determine the effect of exposure to an increased plane of nutrition in late gestation on lung development in the fetus (at 141 days' gestation) and the lamb (30 days after birth). We found a decrease in the numerical density of surfactant protein positive cells, as well as a reduction in mRNA expression of surfactant proteins (SFTP-A, -B and -C), a rate limiting enzyme in surfactant phospholipid synthesis (phosphate cytidylyltransferase 1, choline, α; PCYT1A), and glucose transporters (SLC2A1 and SLC2A4) in the fetal lung. In lambs at 30 days after birth, there were no differences between Control and LGON groups in the surfactant components that were downregulated in the LGON fetuses. However, mRNA expression of SFTP-A, PCYT1A, peroxisome proliferator activated receptor-γ, fatty acid synthase and fatty acid transport protein were increased in LGON lambs compared to controls. These results indicate a reduced capacity for surfactant production in late gestation. While these deficits are normalised by 30 days after birth, the lungs of LGON lambs exhibited altered glucose transport and fatty acid metabolism, which is consistent with an enhanced capacity for surfactant synthesis and restoration of surfactant maturity in these animals.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - Erin V McGillick
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001.,Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - Sandra Orgeig
- Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - Beverly S Mühlhäusler
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| |
Collapse
|
10
|
Reynolds CM, Segovia SA, Vickers MH. Experimental Models of Maternal Obesity and Neuroendocrine Programming of Metabolic Disorders in Offspring. Front Endocrinol (Lausanne) 2017; 8:245. [PMID: 28993758 PMCID: PMC5622157 DOI: 10.3389/fendo.2017.00245] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/06/2017] [Indexed: 12/17/2022] Open
Abstract
Evidence from epidemiological, clinical, and experimental studies have clearly shown that disease risk in later life is increased following a poor early life environment, a process preferentially termed developmental programming. In particular, this work clearly highlights the importance of the nutritional environment during early development with alterations in maternal nutrition, including both under- and overnutrition, increasing the risk for a range of cardiometabolic and neurobehavioral disorders in adult offspring characterized by both adipokine resistance and obesity. Although the mechanistic basis for such developmental programming is not yet fully defined, a common feature derived from experimental animal models is that of alterations in the wiring of the neuroendocrine pathways that control energy balance and appetite regulation during early stages of developmental plasticity. The adipokine leptin has also received significant attention with clear experimental evidence that normal regulation of leptin levels during the early life period is critical for the normal development of tissues and related signaling pathways that are involved in metabolic and cardiovascular homeostasis. There is also increasing evidence that alterations in the epigenome and other underlying mechanisms including an altered gut-brain axis may contribute to lasting cardiometabolic dysfunction in offspring. Ongoing studies that further define the mechanisms between these associations will allow for identification of early risk markers and implementation of strategies around interventions that will have obvious beneficial implications in breaking a programmed transgenerational cycle of metabolic disorders.
Collapse
Affiliation(s)
| | | | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
- *Correspondence: Mark H. Vickers,
| |
Collapse
|
11
|
Enquobahrie DA, Wander PL, Tadesse MG, Qiu C, Holzman C, Williams MA. Maternal pre-pregnancy body mass index and circulating microRNAs in pregnancy. Obes Res Clin Pract 2016; 11:464-474. [PMID: 27789200 DOI: 10.1016/j.orcp.2016.10.287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/18/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Maternal pre-pregnancy overweight and obese status has been associated with a number of pregnancy complications and adverse offspring outcomes. Mechanisms for observed associations, however, are largely unknown. We investigated associations of pre-pregnancy body mass index with early-mid pregnancy epigenetic biomarkers, circulating microRNAs. METHODS Peripheral blood was collected from participants (16-27 weeks gestation) of two multi-racial pregnancy cohorts, the Omega Study and the Pregnancy Outcomes and Community Health Study. Plasma miRNA expression was characterised using epigenome-wide (319 miRNAs) profiling among 20 pregnant women in each cohort. Cohort-specific linear regression models that included the predictor (pre-pregnancy body mass index), the outcome (microRNA expression), and adjustment factors (maternal age, gestational age at blood collection, and race) were fit. RESULTS Expression of 27 miRNAs was positively associated with pre-pregnancy body mass index in both cohorts (p-values <0.05). A number of these differentially expressed miRNAs have previously been associated with adipogenesis (e.g. let-7d*, miR-103-2*, -130b, -146b-5-p, -29c, and -26b). Identified miRNAs as well as their experimentally validated targets participate in pathways that involve organismal injury, reproductive system disease, connective tissue disorders, cancer, cellular development, growth and proliferation. CONCLUSION Pre-pregnancy body mass index is associated with circulating miRNAs in early-mid pregnancy.
Collapse
Affiliation(s)
- Daniel A Enquobahrie
- Center for Perinatal Studies, Swedish Medical Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Pandora L Wander
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Mahlet G Tadesse
- Department of Mathematics and Statistics, Georgetown University, Washington DC, USA
| | - Chunfang Qiu
- Center for Perinatal Studies, Swedish Medical Center, Seattle, WA, USA
| | - Claudia Holzman
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Michelle A Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
12
|
A review of fundamental principles for animal models of DOHaD research: an Australian perspective. J Dev Orig Health Dis 2016; 7:449-472. [DOI: 10.1017/s2040174416000477] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidemiology formed the basis of ‘the Barker hypothesis’, the concept of ‘developmental programming’ and today’s discipline of the Developmental Origins of Health and Disease (DOHaD). Animal experimentation provided proof of the underlying concepts, and continues to generate knowledge of underlying mechanisms. Interventions in humans, based on DOHaD principles, will be informed by experiments in animals. As knowledge in this discipline has accumulated, from studies of humans and other animals, the complexity of interactions between genome, environment and epigenetics, has been revealed. The vast nature of programming stimuli and breadth of effects is becoming known. As a result of our accumulating knowledge we now appreciate the impact of many variables that contribute to programmed outcomes. To guide further animal research in this field, the Australia and New Zealand DOHaD society (ANZ DOHaD) Animals Models of DOHaD Research Working Group convened at the 2nd Annual ANZ DOHaD Congress in Melbourne, Australia in April 2015. This review summarizes the contributions of animal research to the understanding of DOHaD, and makes recommendations for the design and conduct of animal experiments to maximize relevance, reproducibility and translation of knowledge into improving health and well-being.
Collapse
|
13
|
Ruebel M, Shankar K, Gaddy D, Lindsey F, Badger T, Andres A. Maternal obesity is associated with ovarian inflammation and upregulation of early growth response factor 1. Am J Physiol Endocrinol Metab 2016; 311:E269-77. [PMID: 27279249 DOI: 10.1152/ajpendo.00524.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/01/2016] [Indexed: 01/22/2023]
Abstract
Obesity impairs reproductive functions through multiple mechanisms, possibly through disruption of ovarian function. We hypothesized that increased adiposity will lead to a proinflammatory gene signature and upregulation of Egr-1 protein in ovaries from obese (OB; n = 7) compared with lean (LN; n = 10) female Sprague-Dawley rats during the peri-implantation period at 4.5 days postcoitus (dpc). Obesity was induced by overfeeding (40% excess calories for 28 days) via total enteral nutrition prior to mating. OB dams had higher body weight (P < 0.001), greater fat mass (P < 0.001), and reduced lean mass (P < 0.05) and developed metabolic dysfunction with elevated serum lipids, insulin, leptin, and CCL2 (P < 0.05) compared with LN dams. Microarray analyses identified 284 differentially expressed genes between ovaries from LN vs. OB dams (±1.3 fold, P < 0.05). RT-qPCR confirmed a decrease in expression of glucose transporters GLUT4 and GLUT9 and elevation of proinflammatory genes, including CCL2, CXCL10, CXCL11, CCR2, CXCR1, and TNFα in ovaries from OB compared with LN (P < 0.05). Protein levels of PI3K and phosphorylated Akt were significantly decreased (P < 0.05), whereas nuclear levels of Egr-1 (P < 0.05) were increased in OB compared with LN ovaries. Moreover, Egr-1 was localized to granulosa cells, with the highest expression in cumulus cells of preovulatory follicles. mRNA expression of VCAN, AURKB, and PLAT (P < 0.05) correlated with %visceral fat weight (r = 0.51, -0.77, and -0.57, respectively, P ≤ 0.05), suggesting alterations in ovarian function with obesity. In summary, maternal obesity led to an upregulation of inflammatory genes and Egr-1 expression in peri-implantation ovarian tissue and a concurrent downregulation of GLUTs and Akt and PI3K protein levels.
Collapse
Affiliation(s)
- Meghan Ruebel
- Arkansas Children's Nutrition Center, Little Rock, Arkansas; Interdisciplinary Biomedical Sciences Program, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kartik Shankar
- Arkansas Children's Nutrition Center, Little Rock, Arkansas; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, Texas A & M University, College Station, Texas
| | | | - Thomas Badger
- Arkansas Children's Nutrition Center, Little Rock, Arkansas; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Aline Andres
- Arkansas Children's Nutrition Center, Little Rock, Arkansas; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| |
Collapse
|
14
|
Payolla TB, Lemes SF, de Fante T, Reginato A, Mendes da Silva C, de Oliveira Micheletti T, Rodrigues HG, Torsoni AS, Milanski M, Torsoni MA. High-fat diet during pregnancy and lactation impairs the cholinergic anti-inflammatory pathway in the liver and white adipose tissue of mouse offspring. Mol Cell Endocrinol 2016; 422:192-202. [PMID: 26687064 DOI: 10.1016/j.mce.2015.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 12/24/2022]
Abstract
Cholinergic anti-inflammatory pathway (CAP) prevents inflammatory cytokines production. The main was to evaluate the effect of maternal obesity on cholinergic pathway in the offspring. Female mice were subjected to either standard chow (SC) or high-fat diet (HFD) during pregnancy and the lactation period. After weaning, only male offspring from HFD dams (HFD-O) and from SC dams (SC-O) were fed the SC diet. Key proteins of the CAP were downregulated and serum TNF-α was elevated in the HFD-O mice. STAT3 and NF-κB activation in HFD-O mice ICV injected with nicotine (agonist) were lower than SC-O mice. Basal cholinesterase activity was upregulated in HFD-O mice in both investigated tissues. Lipopolysaccharide increased TNF-α and IL-1β expression in the liver and WAT of SC-O mice, but this effect was greater in HFD-O mice. In conclusion these changes exacerbated cytokine production in response to LPS and contributed to the reduced sensitivity of the CAP.
Collapse
Affiliation(s)
| | | | - Thaís de Fante
- School of Applied Sciences, University of Campinas, Brazil
| | | | - Cristiano Mendes da Silva
- Department of Biosciences, Federal University of São Paulo, Brazil; Obesity and Comorbidities Research Center, State University of Campinas, Brazil
| | | | | | - Adriana Souza Torsoni
- School of Applied Sciences, University of Campinas, Brazil; Department of Biosciences, Federal University of São Paulo, Brazil; Obesity and Comorbidities Research Center, State University of Campinas, Brazil
| | - Marciane Milanski
- School of Applied Sciences, University of Campinas, Brazil; Department of Biosciences, Federal University of São Paulo, Brazil; Obesity and Comorbidities Research Center, State University of Campinas, Brazil
| | - Marcio Alberto Torsoni
- School of Applied Sciences, University of Campinas, Brazil; Department of Biosciences, Federal University of São Paulo, Brazil; Obesity and Comorbidities Research Center, State University of Campinas, Brazil.
| |
Collapse
|
15
|
Nicholas LM, Morrison JL, Rattanatray L, Zhang S, Ozanne SE, McMillen IC. The early origins of obesity and insulin resistance: timing, programming and mechanisms. Int J Obes (Lond) 2016; 40:229-38. [PMID: 26367335 DOI: 10.1038/ijo.2015.178] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 08/06/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023]
Abstract
Maternal obesity is associated with an increased risk of developing gestational diabetes mellitus and it also results in an increased risk of giving birth to a large baby with increased fat mass. Furthermore, it is also contributes to an increased risk of obesity and insulin resistance in the offspring in childhood, adolescence and adult life. It has been proposed that exposure to maternal obesity may therefore result in an 'intergenerational cycle' of obesity and insulin resistance. There is significant interest in whether exposure to maternal obesity around the time of conception alone contributes directly to poor metabolic outcomes in the offspring and whether dieting in the obese mother before pregnancy or around the time of conception has metabolic benefits for the offspring. This review focusses on experimental and clinical studies that have investigated the specific impact of exposure to maternal obesity during the periconceptional period alone or extending beyond conception on adipogenesis, lipogenesis and on insulin signalling pathways in the fat, liver and muscle of the offspring. Findings from these studies highlight the need for a better evidence base for the development of dietary interventions in obese women before pregnancy and around the time of conception to maximize the metabolic benefits and minimize the metabolic costs for the next generation.
Collapse
Affiliation(s)
- L M Nicholas
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - J L Morrison
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - L Rattanatray
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia.,Discipline of Physiology, School of Molecular and Life Sciences, University of Adelaide, Adelaide, SA, Australia
| | - S Zhang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - S E Ozanne
- Department of Clinical Biochemistry, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - I C McMillen
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia.,The Chancellery, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
16
|
Lie S, Morrison JL, Williams-Wyss O, Suter CM, Humphreys DT, Ozanne SE, Zhang S, MacLaughlin SM, Kleemann DO, Walker SK, Roberts CT, McMillen IC. Impact of maternal undernutrition around the time of conception on factors regulating hepatic lipid metabolism and microRNAs in singleton and twin fetuses. Am J Physiol Endocrinol Metab 2016; 310:E148-59. [PMID: 26487010 PMCID: PMC4719029 DOI: 10.1152/ajpendo.00600.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 08/31/2015] [Indexed: 01/11/2023]
Abstract
We have investigated the effects of embryo number and maternal undernutrition imposed either around the time of conception or before implantation on hepatic lipid metabolism in the sheep fetus. We have demonstrated that periconceptional undernutrition and preimplantation undernutrition each resulted in decreased hepatic fatty acid β-oxidation regulators, PGC-1α (P < 0.05), PDK2 (P < 0.01), and PDK4 (P < 0.01) mRNA expression in singleton and twin fetuses at 135-138 days gestation. In singletons, there was also lower hepatic PDK4 (P < 0.01), CPT-1 (P < 0.01), and PKCζ (P < 0.01) protein abundance in the PCUN and PIUN groups and a lower protein abundance of PDPK-1 (P < 0.05) in the PCUN group. Interestingly, in twins, the hepatic protein abundance of p-AMPK (Ser(485)) (P < 0.01), p-PDPK-1 (Ser(41)) (P < 0.05), and PKCζ (P < 0.05) was higher in the PCUN and PIUN groups, and hepatic PDK4 (P < 0.001) and CPT-1 (P < 0.05) protein abundance was also higher in the PIUN twin fetus. We also found that the expression of a number of microRNAs was altered in response to PCUN or PIUN and that there is evidence that these changes may underlie the changes in the protein abundance of key regulators of hepatic fatty acid β-oxidation in the PCUN and PIUN groups. Therefore, embryo number and the timing of maternal undernutrition in early pregnancy have a differential impact on hepatic microRNA expression and on the factors that regulate hepatic fatty acid oxidation and lipid synthesis.
Collapse
Affiliation(s)
- Shervi Lie
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Olivia Williams-Wyss
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia; Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Catherine M Suter
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia; Faculty of Medicine, University of New South Wales, Kensington, Australia
| | | | - Susan E Ozanne
- University of Cambridge, Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Song Zhang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Severence M MacLaughlin
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - David O Kleemann
- South Australian Research and Development Institute, Turretfield Research Centre, Rosedale, Australia
| | - Simon K Walker
- South Australian Research and Development Institute, Turretfield Research Centre, Rosedale, Australia
| | - Claire T Roberts
- Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, Australia; and
| | - I Caroline McMillen
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia; The Chancellery, University of Newcastle, Newcastle, Australia
| |
Collapse
|
17
|
Clifton VL, Moss TJM, Wooldridge AL, Gatford KL, Liravi B, Kim D, Muhlhausler BS, Morrison JL, Davies A, De Matteo R, Wallace MJ, Bischof RJ. Development of an experimental model of maternal allergic asthma during pregnancy. J Physiol 2015; 594:1311-25. [PMID: 26235954 DOI: 10.1113/jp270752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/15/2015] [Indexed: 12/31/2022] Open
Abstract
Maternal asthma during pregnancy adversely affects pregnancy outcomes but identification of the cause/s, and the ability to evaluate interventions, is limited by the lack of an appropriate animal model. We therefore aimed to characterise maternal lung and cardiovascular responses and fetal-placental growth and lung surfactant levels in a sheep model of allergic asthma. Immune and airway functions were studied in singleton-bearing ewes, either sensitised before pregnancy to house dust mite (HDM, allergic, n = 7) or non-allergic (control, n = 5), and subjected to repeated airway challenges with HDM (allergic group) or saline (control group) throughout gestation. Maternal lung, fetal and placental phenotypes were characterised at 140 ± 1 days gestational age (term, ∼147 days). The eosinophil influx into lungs was greater after HDM challenge in allergic ewes than after saline challenge in control ewes before mating and in late gestation. Airway resistance increased throughout pregnancy in allergic but not control ewes, consistent with increased airway smooth muscle in allergic ewes. Maternal allergic asthma decreased relative fetal weight (-12%) and altered placental phenotype to a more mature form. Expression of surfactant protein B mRNA was 48% lower in fetuses from allergic ewes than controls, with a similar trend for surfactant protein D. Thus, allergic asthma in pregnant sheep modifies placental phenotype, and inhibits fetal growth and lung development consistent with observations from human pregnancies. Preconceptional allergen sensitisation and repeated airway challenges in pregnant sheep therefore provides an animal model to identify mechanisms of altered fetal development and adverse pregnancy outcomes caused by maternal asthma in pregnancy.
Collapse
Affiliation(s)
- Vicki L Clifton
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia.,Mater Medical Research Institute, University of Queensland, Brisbane, Qld, 4101, Australia
| | - Timothy J M Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Amy L Wooldridge
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kathryn L Gatford
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Bahar Liravi
- Department of Physiology, Monash University, Clayton, VIC, 3168, Australia
| | - Dasom Kim
- Department of Physiology, Monash University, Clayton, VIC, 3168, Australia
| | - Beverly S Muhlhausler
- FOODplus Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia
| | - Andrew Davies
- Department of Physiology, Monash University, Clayton, VIC, 3168, Australia.,School of Biomedical Sciences, Peninsula Campus, Monash University, Frankston, VIC, 3199, Australia
| | - Robert De Matteo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3168, Australia
| | - Megan J Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Robert J Bischof
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, 3168, Australia.,Department of Physiology, Monash University, Clayton, VIC, 3168, Australia
| |
Collapse
|
18
|
Shin KO, Bae JY, Woo J, Jang KS, Kim KS, Park JS, Kim IK, Kang S. The effect of exercise on expression of myokine and angiogenesis mRNA in skeletal muscle of high fat diet induced obese rat. J Exerc Nutrition Biochem 2015; 19:91-8. [PMID: 26244127 PMCID: PMC4523810 DOI: 10.5717/jenb.2015.15061006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/03/2015] [Accepted: 06/10/2015] [Indexed: 11/04/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the effect of regular treadmill exercise on the mRNA expressions of myokines and angiogenesis factors in the skeletal muscle of obese rats. METHODS Thirty two male Sprague-Dawley rats (4weeks old) were divided into the CO (control) and HF (high fat diet) groups. Obesity was induced in the HF group by consumption of 45% high-fat diet for 15 weeks. These groups were further subdivided into training groups (COT and HFT); the training groups conducted moderate intensity treadmill training for 8 weeks. Soleus muscles were excised and analyzed by real-time quantitative PCR. RESULTS mRNA expression of myokines, such as PGC-1α, IL-6, and IL-15, in the COT and HFT groups (which conducted regular exercise), were higher as compared with the CO and HF groups (p < 0.05). Also, the levels in the HF group were significantly lower when compared with CO group (p < 0.05). Expression of angiogenesis mRNA, namely mTOR, VEGF, and FLT1, were significantly lower in the HF group, as compared to the CO group (p < 0.05). In addition, COT group had a higher expression of mTORC1, mTORC2, VEGF and FLT mRNA, than the CO group (p < 0.05); the HFT group also had higher expressions of mTOR, VEGF and FLT1 mRNA than the HF group (p < 0.05). CONCLUSION These results indicate that mRNA expression of myokines was increased through the activity of muscle contraction, and it also promoted the mRNA expression of angiogenesis due to activation of mTOR. Thus, we conclude that not only under normal health conditions, but in obesity and excess nutritional circumstances also, regular exercise seems to act positively on the glycemic control and insulin sensitivity through the angiogenesis signaling pathway.
Collapse
Affiliation(s)
- Ki Ok Shin
- Laboratory of Exercise Biochemistry, Department of Physical Education, Dong-A University, Busan, Republic of Korea
| | - Ju Yong Bae
- Laboratory of Exercise Biochemistry, Department of Physical Education, Dong-A University, Busan, Republic of Korea
| | - Jinhee Woo
- Laboratory of Exercise Biochemistry, Department of Physical Education, Dong-A University, Busan, Republic of Korea
| | - Ki Soeng Jang
- Laboratory of Exercise Biochemistry, Department of Physical Education, Dong-A University, Busan, Republic of Korea
| | - Keun Su Kim
- Department of Physical Education, Korea Air Force Academy, Cheongju, Republic of Korea
| | - Jung Sub Park
- Department of Physical Education, Korea Air Force Academy, Cheongju, Republic of Korea
| | - In Ki Kim
- Department of Physical Education, Korea Air Force Academy, Cheongju, Republic of Korea
| | - Sunghwun Kang
- Department of Physical Education, Korea Air Force Academy, Cheongju, Republic of Korea
| |
Collapse
|
19
|
Abstract
The early embryo and periconceptional period is a window during which environmental factors may cause permanent change in the pattern and characteristics of development leading to risk of adult onset disease. This has now been demonstrated across small and large animal models and also in the human. Most evidence of periconceptional 'programming' has emerged from maternal nutritional models but also other in vivo and in vitro conditions including assisted reproductive treatments, show consistent outcomes. This short review first reports on the range of environmental in vivo and in vitro periconceptional models and resulting long-term outcomes. Second, it uses the rodent maternal low protein diet model restricted to the preimplantation period and considers the stepwise maternal-embryonic dialogue that comprises the induction of programming. This dialogue leads to cellular and epigenetic responses by the embryo, mainly identified in the extra-embryonic cell lineages, and underpins an apparently permanent change in the growth trajectory during pregnancy and associates with increased cardiometabolic and behavioural disease in adulthood. We recognize the important advice of David Barker some years ago to investigate the sensitivity of the early embryo to developmental programming, an insight for which we are grateful.
Collapse
|
20
|
Velazquez MA. Impact of maternal malnutrition during the periconceptional period on mammalian preimplantation embryo development. Domest Anim Endocrinol 2015; 51:27-45. [PMID: 25498236 DOI: 10.1016/j.domaniend.2014.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023]
Abstract
During episodes of undernutrition and overnutrition the mammalian preimplantation embryo undergoes molecular and metabolic adaptations to cope with nutrient deficits or excesses. Maternal adaptations also take place to keep a nutritional microenvironment favorable for oocyte development and embryo formation. This maternal-embryo communication takes place via several nutritional mediators. Although adaptive responses to malnutrition by both the mother and the embryo may ensure blastocyst formation, the resultant quality of the embryo can be compromised, leading to early pregnancy failure. Still, studies have shown that, although early embryonic mortality can be induced during malnutrition, the preimplantation embryo possesses an enormous plasticity that allows it to implant and achieve a full-term pregnancy under nutritional stress, even in extreme cases of malnutrition. This developmental strategy, however, may come with a price, as shown by the adverse developmental programming induced by even subtle nutritional challenges exerted exclusively during folliculogenesis and the preimplantation period, resulting in offspring with a higher risk of developing deleterious phenotypes in adulthood. Overall, current evidence indicates that malnutrition during the periconceptional period can induce cellular and molecular alterations in preimplantation embryos with repercussions for fertility and postnatal health.
Collapse
Affiliation(s)
- M A Velazquez
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK.
| |
Collapse
|