1
|
Taesuwan S, Inchai J, Boonyingsathit K, Chimkerd C, Judprasong K, Rachtanapun P, Muanprasat C, Vaddhanaphuti CS. Holy Basil ( Ocimum sanctum L.) Flower and Fenofibrate Improve Lipid Profiles in Rats with Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD): The Role of Choline Metabolism. PLANTS (BASEL, SWITZERLAND) 2024; 14:13. [PMID: 39795274 PMCID: PMC11722946 DOI: 10.3390/plants14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is linked to choline metabolism. The present study investigated the effect of holy basil (Ocimum sanctum L.) flower water extract (OSLY) on MASLD with choline metabolism as an underlying mechanism. Rats with high-fat diet (HFD)-induced MASLD received 250-1000 mg/kg bw of OSLY, fenofibrate, or fenofibrate + 1000 mg/kg OSLY combination. Biochemical parameters, choline metabolites, and one-carbon gene transcription were analyzed. OSLY and fenofibrate independently reduced serum LDL cholesterol (p < 0.02), liver cholesterol (p < 0.001), and liver triglyceride levels (p < 0.001) in HFD-fed rats. Only OSLY reduced signs of liver injury and increased serum HDL. Fenofibrate influenced choline metabolism by decreasing liver glycerophosphocholine (GPC; p = 0.04), as well as increasing betaine (p < 0.001) and the betaine:choline ratio (p = 0.02) in HFD-fed rats. Fenofibrate (vs. HFD) increased the expression of one-carbon metabolism genes Mthfd1l, Pemt, Smpd3, and Chka (p < 0.04). The OSLY treatment decreased liver GPC (500 mg dose; p = 0.03) and increased Smpd3 expression (1000 mg dose; p = 0.04). OSLY and fenofibrate showed weak synergistic effects on lipid and choline metabolism. Collectively, OSLY and fenofibrate independently improve lipid profiles in MASLD rats. The benefits of fenofibrate are partially mediated by choline/one-carbon metabolism, while those of OSLY are not mediated by this pathway. Holy basil flower extract merits further development as an alternative medicine for MASLD.
Collapse
Affiliation(s)
- Siraphat Taesuwan
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (S.T.); (P.R.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Canberra, ACT 2617, Australia
| | - Jakkapong Inchai
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Konpong Boonyingsathit
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand; (K.B.); (K.J.)
| | - Chanika Chimkerd
- Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Kunchit Judprasong
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand; (K.B.); (K.J.)
| | - Pornchai Rachtanapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (S.T.); (P.R.)
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Chutima S. Vaddhanaphuti
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
2
|
Tan EY, Muthiah MD, Sanyal AJ. Metabolomics at the cutting edge of risk prediction of MASLD. Cell Rep Med 2024; 5:101853. [PMID: 39657668 PMCID: PMC11722125 DOI: 10.1016/j.xcrm.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/12/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health threat globally. Management of patients afflicted with MASLD and research in this domain are limited by the lack of robust well-established non-invasive biomarkers for diagnosis, prognostication, and monitoring. The circulating metabolome reflects both the systemic metabo-inflammatory milieu and changes in the liver in affected individuals. In this review we summarize the available literature on changes in the different components of the metabolome in MASLD with a focus on changes that are linked to the presence of underlying steatohepatitis, severity of disease activity, and fibrosis stage. We further summarize the existing literature around biomarker panels that are derived from interrogation of the metabolome. Their relevance to disease biology and utility in practice are also discussed. We further highlight potential direction for future studies particularly to ensure they are fit for purpose and suitable for widespread use.
Collapse
Affiliation(s)
- En Ying Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.
| | - Mark D Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
3
|
Martín Barraza JI, Bars-Cortina D. Dietary Pattern's Role in Hepatic Epigenetic and Dietary Recommendations for the Prevention of NAFLD. Nutrients 2024; 16:2956. [PMID: 39275272 PMCID: PMC11396970 DOI: 10.3390/nu16172956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
NAFLD has emerged as a significant public health concern, with its prevalence increasing globally. Emphasizing the complex relationship between dietary patterns and epigenetic modifications such as DNA methylation or miRNA expression can exert a positive impact on preventing and managing metabolic disorders, including NAFLD, within the 2030 Sustainable Development Goals. This review aims to evaluate the influence of dietary patterns on hepatic epigenetic gene modulation and provide dietary recommendations for the prevention and management of NAFLD in the general population. METHODS Comprehensive screening and eligibility criteria identified eleven articles focusing on epigenetic changes in NAFLD patients through dietary modifications or nutrient supplementation. RESULTS AND DISCUSSION Data were organized based on study types, categorizing them into evaluations of epigenetic changes in NAFLD patients through dietary pattern modifications or specific nutrient intake. CONCLUSIONS The study highlights the importance of dietary interventions in managing and preventing NAFLD, emphasizing the potential of dietary patterns to influence hepatic epigenetic gene modulation. This study provides valuable insights and recommendations to mitigate the risk of developing NAFLD: (i) eat a primarily plant-based diet; (ii) increase consumption of high-fiber foods; (iii) consume more polyunsaturated and monounsaturated fatty acids; (iv) limit processed foods, soft drinks, added sugars, and salt; and (v) avoid alcohol.
Collapse
Affiliation(s)
| | - David Bars-Cortina
- Oncology Data Analytics Program (ODAP), Unit of Biomarkers and Susceptibility (UBS), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
- Department of Health Sciences, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
| |
Collapse
|
4
|
Tzeng HT, Lee WC. Impact of Transgenerational Nutrition on Nonalcoholic Fatty Liver Disease Development: Interplay between Gut Microbiota, Epigenetics and Immunity. Nutrients 2024; 16:1388. [PMID: 38732634 PMCID: PMC11085251 DOI: 10.3390/nu16091388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent pediatric liver disorder, primarily attributed to dietary shifts in recent years. NAFLD is characterized by the accumulation of lipid species in hepatocytes, leading to liver inflammation that can progress to steatohepatitis, fibrosis, and cirrhosis. Risk factors contributing to NAFLD encompass genetic variations and metabolic disorders such as obesity, diabetes, and insulin resistance. Moreover, transgenerational influences, resulting in an imbalance of gut microbial composition, epigenetic modifications, and dysregulated hepatic immune responses in offspring, play a pivotal role in pediatric NAFLD development. Maternal nutrition shapes the profile of microbiota-derived metabolites in offspring, exerting significant influence on immune system regulation and the development of metabolic syndrome in offspring. In this review, we summarize recent evidence elucidating the intricate interplay between gut microbiota, epigenetics, and immunity in fetuses exposed to maternal nutrition, and its impact on the onset of NAFLD in offspring. Furthermore, potential therapeutic strategies targeting this network are also discussed.
Collapse
Affiliation(s)
- Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33332, Taiwan
| |
Collapse
|
5
|
Theys C, Vanderhaeghen T, Van Dijck E, Peleman C, Scheepers A, Ibrahim J, Mateiu L, Timmermans S, Vanden Berghe T, Francque SM, Van Hul W, Libert C, Vanden Berghe W. Loss of PPARα function promotes epigenetic dysregulation of lipid homeostasis driving ferroptosis and pyroptosis lipotoxicity in metabolic dysfunction associated Steatotic liver disease (MASLD). FRONTIERS IN MOLECULAR MEDICINE 2024; 3:1283170. [PMID: 39086681 PMCID: PMC11285560 DOI: 10.3389/fmmed.2023.1283170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/14/2023] [Indexed: 08/02/2024]
Abstract
Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is a growing epidemic with an estimated prevalence of 20%-30% in Europe and the most common cause of chronic liver disease worldwide. The onset and progression of MASLD are orchestrated by an interplay of the metabolic environment with genetic and epigenetic factors. Emerging evidence suggests altered DNA methylation pattern as a major determinant of MASLD pathogenesis coinciding with progressive DNA hypermethylation and gene silencing of the liver-specific nuclear receptor PPARα, a key regulator of lipid metabolism. To investigate how PPARα loss of function contributes to epigenetic dysregulation in MASLD pathology, we studied DNA methylation changes in liver biopsies of WT and hepatocyte-specific PPARα KO mice, following a 6-week CDAHFD (choline-deficient, L-amino acid-defined, high-fat diet) or chow diet. Interestingly, genetic loss of PPARα function in hepatocyte-specific KO mice could be phenocopied by a 6-week CDAHFD diet in WT mice which promotes epigenetic silencing of PPARα function via DNA hypermethylation, similar to MASLD pathology. Remarkably, genetic and lipid diet-induced loss of PPARα function triggers compensatory activation of multiple lipid sensing transcription factors and epigenetic writer-eraser-reader proteins, which promotes the epigenetic transition from lipid metabolic stress towards ferroptosis and pyroptosis lipid hepatoxicity pathways associated with advanced MASLD. In conclusion, we show that PPARα function is essential to support lipid homeostasis and to suppress the epigenetic progression of ferroptosis-pyroptosis lipid damage associated pathways towards MASLD fibrosis.
Collapse
Affiliation(s)
- Claudia Theys
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tineke Vanderhaeghen
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Cedric Peleman
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Pathophysiology Lab, Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anne Scheepers
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Joe Ibrahim
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Ligia Mateiu
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Steven Timmermans
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Pathophysiology Lab, Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sven M. Francque
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Geiger M, Gorica E, Mohammed SA, Mongelli A, Mengozi A, Delfine V, Ruschitzka F, Costantino S, Paneni F. Epigenetic Network in Immunometabolic Disease. Adv Biol (Weinh) 2024; 8:e2300211. [PMID: 37794610 DOI: 10.1002/adbi.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Although a large amount of data consistently shows that genes affect immunometabolic characteristics and outcomes, epigenetic mechanisms are also heavily implicated. Epigenetic changes, including DNA methylation, histone modification, and noncoding RNA, determine gene activity by altering the accessibility of chromatin to transcription factors. Various factors influence these alterations, including genetics, lifestyle, and environmental cues. Moreover, acquired epigenetic signals can be transmitted across generations, thus contributing to early disease traits in the offspring. A closer investigation is critical in this aspect as it can help to understand the underlying molecular mechanisms further and gain insights into potential therapeutic targets for preventing and treating diseases arising from immuno-metabolic dysregulation. In this review, the role of chromatin alterations in the transcriptional modulation of genes involved in insulin resistance, systemic inflammation, macrophage polarization, endothelial dysfunction, metabolic cardiomyopathy, and nonalcoholic fatty liver disease (NAFLD), is discussed. An overview of emerging chromatin-modifying drugs and the importance of the individual epigenetic profile for personalized therapeutic approaches in patients with immuno-metabolic disorders is also presented.
Collapse
Affiliation(s)
- Martin Geiger
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessia Mongelli
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessandro Mengozi
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Valentina Delfine
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- Department of Research and Education, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| |
Collapse
|
7
|
Gan Z, Zhao M, Xia Y, Yan Y, Ren W. Carbon metabolism in the regulation of macrophage functions. Trends Endocrinol Metab 2024; 35:62-73. [PMID: 37778898 DOI: 10.1016/j.tem.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/03/2023]
Abstract
Carbon metabolism, including one-carbon (1C) metabolism and central carbon metabolism (CCM), provides energy for the cell and generates metabolites with signaling activities. The regulation of macrophage polarization involves complex signals and includes an epigenetic level. Epigenetic modifications through changes in carbon metabolism allow macrophages to respond in a timely manner to their environment and adapt to metabolic demands during macrophage polarization. Here we summarize the current understanding of the crosstalk between carbon metabolism and epigenetic modifications in macrophages under physiological conditions and in the tumor microenvironment (TME) and provide targets and further directions for macrophage-associated diseases.
Collapse
Affiliation(s)
- Zhending Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510000, Guangdong, China
| | - Muyang Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510000, Guangdong, China
| | - Yaoyao Xia
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yuqi Yan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wenkai Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510000, Guangdong, China.
| |
Collapse
|
8
|
Theys C, Ibrahim J, Mateiu L, Mposhi A, García-Pupo L, De Pooter T, De Rijk P, Strazisar M, İnce İA, Vintea I, Rots MG, Vanden Berghe W. Mitochondrial GpC and CpG DNA Hypermethylation Cause Metabolic Stress-Induced Mitophagy and Cholestophagy. Int J Mol Sci 2023; 24:16412. [PMID: 38003603 PMCID: PMC10671279 DOI: 10.3390/ijms242216412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by a constant accumulation of lipids in the liver. This hepatic lipotoxicity is associated with a dysregulation of the first step in lipid catabolism, known as beta oxidation, which occurs in the mitochondrial matrix. Eventually, this dysregulation will lead to mitochondrial dysfunction. To evaluate the possible involvement of mitochondrial DNA methylation in this lipid metabolic dysfunction, we investigated the functional metabolic effects of mitochondrial overexpression of CpG (MSssI) and GpC (MCviPI) DNA methyltransferases in relation to gene expression and (mito)epigenetic signatures. Overall, the results show that mitochondrial GpC and, to a lesser extent, CpG methylation increase bile acid metabolic gene expression, inducing the onset of cholestasis through mito-nuclear epigenetic reprogramming. Moreover, both increase the expression of metabolic nuclear receptors and thereby induce basal overactivation of mitochondrial respiration. The latter promotes mitochondrial swelling, favoring lipid accumulation and metabolic-stress-induced mitophagy and autophagy stress responses. In conclusion, both mitochondrial GpC and CpG methylation create a metabolically challenging environment that induces mitochondrial dysfunction, which may contribute to the progression of MASLD.
Collapse
Affiliation(s)
- Claudia Theys
- Lab Protein Chemistry, Proteomics & Epigenetic Signaling (PPES), Department Biomedical Sciences, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium; (C.T.)
| | - Joe Ibrahim
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Ligia Mateiu
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Archibold Mposhi
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Laura García-Pupo
- Lab Protein Chemistry, Proteomics & Epigenetic Signaling (PPES), Department Biomedical Sciences, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium; (C.T.)
| | - Tim De Pooter
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Wilrijk, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wirlijk, 2610 Antwerp, Belgium
| | - Peter De Rijk
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Wilrijk, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wirlijk, 2610 Antwerp, Belgium
| | - Mojca Strazisar
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Wilrijk, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wirlijk, 2610 Antwerp, Belgium
| | - İkbal Agah İnce
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Medical Microbiology, School of Medicine, Acıbadem Mehmet, Ali Aydınlar University, 34752 Ataşehir, İstanbul, Türkiye
| | - Iuliana Vintea
- Pathophysiology Lab, Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium
| | - Marianne G. Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Wim Vanden Berghe
- Lab Protein Chemistry, Proteomics & Epigenetic Signaling (PPES), Department Biomedical Sciences, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium; (C.T.)
| |
Collapse
|
9
|
Moreno E, Martínez-Sanz J, Martín-Mateos R, Díaz-Álvarez J, Serrano-Villar S, Burgos-Santamaría D, Luna L, Vivancos MJ, Moreno-Zamora A, Pérez-Elías MJ, Moreno S, Dronda F, Montes ML, Sánchez-Conde M. Global DNA methylation and telomere length as markers of accelerated aging in people living with HIV and non-alcoholic fatty liver disease. BMC Genomics 2023; 24:567. [PMID: 37741970 PMCID: PMC10517540 DOI: 10.1186/s12864-023-09653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023] Open
Abstract
Metabolic-dysfunction-associated fatty liver disease (MAFLD) is a comorbidity that generally increases in people living with HIV (PLWH). This condition is usually accompanied by persistent inflammation and premature immune system aging. In this prospective cohort study, we describe a straightforward methodology for quantifying biomarkers of aging, such as DNA methylation and telomere length, in PLWH and in the context of another relevant condition, such as MAFLD. Fifty-seven samples in total, thirty-eight from PLWH and nineteen from non-PLWH participants with or without MAFLD, were obtained and subjected to DNA extraction from peripheral blood mononuclear cells (PBMCs). Global DNA methylation and telomere length quantification were performed using an adapted enzyme-linked immunosorbent assay (ELISA) and qPCR, respectively. The quantification results were analysed and corrected by clinically relevant variables in this context, such as age, sex, and metabolic syndrome. Our results show an increased association of these biomarkers in PLWH regardless of their MAFLD status. Thus, we propose including the quantification of these age-related factors in studies of comorbidities. This will allow a better understanding of the effect of comorbidities of HIV infection and MAFLD and prevent their effects in these populations in the future.
Collapse
Affiliation(s)
- Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain.
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Javier Martínez-Sanz
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Rosa Martín-Mateos
- Department of Gastroenterology and Hepatology, Metabolic Liver Disease Clinic, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- Universidad de Alcalá, 28871, Madrid, Spain
| | - Jorge Díaz-Álvarez
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Diego Burgos-Santamaría
- Department of Gastroenterology and Hepatology, Metabolic Liver Disease Clinic, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Laura Luna
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Jesús Vivancos
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ana Moreno-Zamora
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Jesús Pérez-Elías
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Universidad de Alcalá, 28871, Madrid, Spain
| | - Fernando Dronda
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Luisa Montes
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Internal Medicine Service, Hospital Universitario La Paz. IdiPAZ, 28046, Madrid, Spain
| | - Matilde Sánchez-Conde
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain.
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
10
|
Li Q, Wang W, Duan F, Wang Y, Chen S, Shi K, Xia Y, Li X, Gao Y, Liu G. DNMT3B Alleviates Liver Steatosis Induced by Chronic Low-grade LPS via Inhibiting CIDEA Expression. Cell Mol Gastroenterol Hepatol 2023; 17:59-77. [PMID: 37703946 PMCID: PMC10665944 DOI: 10.1016/j.jcmgh.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease is the most prevalent chronic liver disease and threats to human health. Gut dysbiosis caused by lipopolysaccharide (LPS) leakage has been strongly related to nonalcoholic fatty liver disease progression, although the underlying mechanisms remain unclear. METHODS Previous studies have shown that low-grade LPS administration to mice on a standard, low-fat chow diet is sufficient to induce symptoms of fatty liver. This study confirmed these findings and supported LPS as a lipid metabolism regulator in the liver. RESULTS Mechanically, LPS induced dysregulated lipid metabolism by inhibiting the expression of DNA methyltransferases 3B (DNMT3B). Genetic overexpression of DNMT3B alleviated LPS-induced lipid accumulation, whereas its knockdown increased steatosis in mice and human hepatocytes. LPS-induced lower expression of DNMT3B led to hypomethylation in promoter region of CIDEA, resulting in increased binding of SREBP-1c to its promoter and activated CIDEA expression. Hepatic interference of CIDEA reversed the effect of LPS on lipogenesis. These effects were independent of a high-fat diet or high fatty acid action. CONCLUSIONS Overall, these findings sustain the conclusion that LPS is a lipogenic factor and could be involved in hepatic steatosis progression.
Collapse
Affiliation(s)
- Qiang Li
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China; Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui, China.
| | - Wenjing Wang
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China
| | - Feifan Duan
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China
| | - Yaju Wang
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China
| | - Shuya Chen
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China
| | - Kangyun Shi
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China
| | - Yinyin Xia
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China
| | - Xinyu Li
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China
| | - Yu Gao
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Guoquan Liu
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui, China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China.
| |
Collapse
|
11
|
Wegermann K, Fudim M, Henao R, Howe CF, McGarrah R, Guy C, Abdelmalek MF, Diehl AM, Moylan CA. Serum Metabolites Are Associated With HFpEF in Biopsy-Proven Nonalcoholic Fatty Liver Disease. J Am Heart Assoc 2023:e029873. [PMID: 37421270 PMCID: PMC10382080 DOI: 10.1161/jaha.123.029873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) and heart failure with preserved ejection fraction (HFpEF) share common risk factors, including obesity and diabetes. They are also thought to be mechanistically linked. The aim of this study was to define serum metabolites associated with HFpEF in a cohort of patients with biopsy-proven NAFLD to identify common mechanisms. Methods and Results We performed a retrospective, single-center study of 89 adult patients with biopsy-proven NAFLD who had transthoracic echocardiography performed for any indication. Metabolomic analysis was performed on serum using ultrahigh performance liquid and gas chromatography/tandem mass spectrometry. HFpEF was defined as ejection fraction >50% plus at least 1 echocardiographic feature of HFpEF (diastolic dysfunction, abnormal left atrial size) and at least 1 heart failure sign or symptom. We performed generalized linear models to evaluate associations between individual metabolites, NAFLD, and HFpEF. Thirty-seven out of 89 (41.6%) patients met criteria for HFpEF. A total of 1151 metabolites were detected; 656 were analyzed after exclusion of unnamed metabolites and those with >30% missing values. Fifty-three metabolites were associated with the presence of HFpEF with unadjusted P value <0.05; none met statistical significance after adjustment for multiple comparisons. The majority (39/53, 73.6%) were lipid metabolites, and levels were generally increased. Two cysteine metabolites (cysteine s-sulfate and s-methylcysteine) were present at significantly lower levels in patients with HFpEF. Conclusions We identified serum metabolites associated with HFpEF in patients with biopsy-proven NAFLD, with increased levels of multiple lipid metabolites. Lipid metabolism could be an important pathway linking HFpEF to NAFLD.
Collapse
Affiliation(s)
- Kara Wegermann
- Division of Gastroenterology, Department of Medicine Duke University Health System Durham NC
| | - Marat Fudim
- Division of Cardiology, Department of Medicine Duke University Health System Durham NC
| | - Ricardo Henao
- Department of Biostatistics and Bioinformatics Duke University Durham NC
| | | | - Robert McGarrah
- Division of Cardiology, Department of Medicine Duke University Health System Durham NC
| | - Cynthia Guy
- Department of Pathology Duke University Hospital Durham NC
| | - Manal F Abdelmalek
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic Rochester MN
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine Duke University Health System Durham NC
| | - Cynthia A Moylan
- Division of Gastroenterology, Department of Medicine Duke University Health System Durham NC
- Department of Medicine, Durham Veterans Affairs Medical Center Durham NC
| |
Collapse
|
12
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
13
|
Zhang N, Tian X, Yan T, Wang H, Zhang D, Lin C, Liu Q, Jiang S. Insights into the role of nucleotide methylation in metabolic-associated fatty liver disease. Front Immunol 2023; 14:1148722. [PMID: 37020540 PMCID: PMC10067741 DOI: 10.3389/fimmu.2023.1148722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by fatty infiltration of the liver. In recent years, the MAFLD incidence rate has risen and emerged as a serious public health concern. MAFLD typically progresses from the initial hepatocyte steatosis to steatohepatitis and then gradually advances to liver fibrosis, which may ultimately lead to cirrhosis and carcinogenesis. However, the potential evolutionary mechanisms still need to be clarified. Recent studies have shown that nucleotide methylation, which was directly associated with MAFLD's inflammatory grading, lipid synthesis, and oxidative stress, plays a crucial role in the occurrence and progression of MAFLD. In this review, we highlight the regulatory function and associated mechanisms of nucleotide methylation modification in the progress of MAFLD, with a particular emphasis on its regulatory role in the inflammation of MAFLD, including the regulation of inflammation-related immune and metabolic microenvironment. Additionally, we summarize the potential value of nucleotide methylation in the diagnosis and treatment of MAFLD, intending to provide references for the future investigation of MAFLD.
Collapse
Affiliation(s)
- Ni Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinchen Tian
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haochen Wang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Dengtian Zhang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Cong Lin
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Qingbin Liu, ; Shulong Jiang,
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Qingbin Liu, ; Shulong Jiang,
| |
Collapse
|
14
|
Pansa CC, Molica LR, Moraes KCM. Non-alcoholic fatty liver disease establishment and progression: genetics and epigenetics as relevant modulators of the pathology. Scand J Gastroenterol 2022; 58:521-533. [PMID: 36426638 DOI: 10.1080/00365521.2022.2148835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) results from metabolic dysfunctions that affect more than one-third of the world population. Over the last decades, scientific investigations have clarified many details on the pathology establishment and development; however, effective therapeutics approaches are still evasive. In addition, studies demonstrated that NAFLD establishment and progression are related to several etiologies. Recently, genetics and epigenetics backgrounds have emerged as relevant elements to the pathology onset, and, hence, deserve deep investigation to clarify molecular details on NAFLD signaling, which may be correlated with population behavior. Thus, to minimize the global problem, public health and public policies should take advantage of studies on NAFLD over the next following decades. METHODS In this context, we have performed a selective literature review focusing on biochemistry of lipid metabolism, genetics, epigenetics, and the ethnicity as strong elements that drive NAFLD establishment. RESULTS Considering the etiological agents that acts on NAFLD development and progression, the genetics and the epigenetics emerged as relevant factors. Genetics acts as a powerful element in the establishment and progression of the NAFLD. Over the last decades, details concerning genes and their polymorphisms, as well as epigenetics, have been considered relevant elements in the systems biology of diseases, and their effects on NAFLD should be considered in-depth, as well as the ethnicity, clarifying whether people are susceptible to liver diseases. Moreover, the endemicity and social problems of hepatic disfunction are far to be solved, which require a combined effort of various sectors of society. CONCLUSION Hence, the elements presented and discussed in this short review demonstrated their relevance to the physiological control of NAFLD, opening perspectives for research to develop new strategy to treat fatty liver diseases.
Collapse
Affiliation(s)
- Camila Cristiane Pansa
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| | - Letícia Ramos Molica
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| | - Karen C M Moraes
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| |
Collapse
|
15
|
PPARα in the Epigenetic Driver Seat of NAFLD: New Therapeutic Opportunities for Epigenetic Drugs? Biomedicines 2022; 10:biomedicines10123041. [PMID: 36551797 PMCID: PMC9775974 DOI: 10.3390/biomedicines10123041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing epidemic and the most common cause of chronic liver disease worldwide. It consists of a spectrum of liver disorders ranging from simple steatosis to NASH which predisposes patients to further fibrosis, cirrhosis and even hepatocarcinoma. Despite much research, an approved treatment is still lacking. Finding new therapeutic targets has therefore been a main priority. Known as a main regulator of the lipid metabolism and highly expressed in the liver, the nuclear receptor peroxisome proliferator-activated receptor-α (PPARα) has been identified as an attractive therapeutic target. Since its expression is silenced by DNA hypermethylation in NAFLD patients, many research strategies have aimed to restore the expression of PPARα and its target genes involved in lipid metabolism. Although previously tested PPARα agonists did not ameliorate the disease, current research has shown that PPARα also interacts and regulates epigenetic DNMT1, JMJD3, TET and SIRT1 enzymes. Moreover, there is a growing body of evidence suggesting the orchestrating role of epigenetics in the development and progression of NAFLD. Therefore, current therapeutic strategies are shifting more towards epigenetic drugs. This review provides a concise overview of the epigenetic regulation of NAFLD with a focus on PPARα regulation and highlights recently identified epigenetic interaction partners of PPARα.
Collapse
|
16
|
Vachher M, Bansal S, Kumar B, Yadav S, Burman A. Deciphering the role of aberrant DNA methylation in NAFLD and NASH. Heliyon 2022; 8:e11119. [PMID: 36299516 PMCID: PMC9589178 DOI: 10.1016/j.heliyon.2022.e11119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
The global incidence of nonalcoholic fatty liver disease (NAFLD) is mounting incessantly, and it is emerging as the most frequent cause of chronic and end stage liver disorders. It is the starting point for a range of conditions from simple steatosis to more progressive nonalcoholic steatohepatitis (NASH) and associated hepatocellular carcinoma (HCC). Dysregulation of insulin secretion and dyslipidemia due to obesity and other lifestyle variables are the primary contributors to establishment of NAFLD. Onset and progression of NAFLD is orchestrated by an interplay of metabolic environment with genetic and epigenetic factors. An incompletely understood mechanism of NAFLD progression has greatly hampered the progress in identification of novel prognostic and therapeutic strategies. Emerging evidence suggests altered DNA methylation pattern as a key determinant of NAFLD pathogenesis. Environmental and lifestyle factors can manipulate DNA methylation patterns in a reversible manner, which manifests as changes in gene expression. In this review we attempt to highlight the importance of DNA methylation in establishment and progression of NAFLD. Development of novel diagnostic, prognostic and therapeutic strategies centered around DNA methylation signatures and modifiers has also been explored.
Collapse
|
17
|
Pan X, Wu Y, Peng H, Cai X, Hu Z, Lin X, Peng XE. Genome-wide DNA methylation profiling in nonalcoholic fatty liver reveals predictive aberrant methylation in PRKCE and SEC14L3 promoters. Dig Liver Dis 2022; 54:521-528. [PMID: 34108094 DOI: 10.1016/j.dld.2021.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Optimal non-invasive biomarkers for diagnosis and treatment of nonalcoholic fatty liver disease (NAFLD) remain to be identified. AIMS To identify potential DNA methylation biomarkers for NAFLD. METHODS Genome-wide DNA methylation profiling was performed to identify differentially methylated CpG sites in peripheral blood leukocytes. Differentially methylated regions were validated using the MassCLEAVE assay. The expression levels of candidate genes were explored by Gene Expression Omnibus database. RESULTS The hypomethylation of PRKCE CpG 4.5 and CpG 18.19 was associated with nonalcoholic fatty liver (NAFL), the odds ratio (OR) and 95% confidence interval (CI) were 0.129 (0.026-0.639) and 0.231 (0.069-0.768). The methylation level of CpG 1.2 and average methylation level of SEC14L3 were correlated with NAFL, with OR (95% CI) being 0.283 (0.093-0.865) and 0.264 (0.087-0.799). PRKCE CpG 4.5 and cg17802464 of SEC14L3 were correlated with body mass index, waist circumference, total triglyceride, high-density lipoprotein cholesterol, alanine aminotransferase and aspartate aminotransferase. All selected datasets showed high expression levels of PRKCE and SEC14L3 in patients with NAFLD. CONCLUSIONS Our findings suggest that the hypomethylation of PRKCE and SEC14L3 promoters represent attractive biomarkers for NAFLD. Further studies are warranted to validate these biomarkers as molecular tools for diagnosis of NAFLD and therapeutic targets.
Collapse
Affiliation(s)
- Xinting Pan
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, PR China
| | - Yunli Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, PR China
| | - Hewei Peng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, PR China
| | - Xiaoling Cai
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, PR China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, PR China
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, PR China
| | - Xian-E Peng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, PR China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, PR China.
| |
Collapse
|
18
|
Sun QF, Tang LJ, Wang MJ, Zhu PW, Li YY, Ma HL, Huang OY, Hong L, Li G, Byrne CD, Targher G, Liu WY, Lu Y, Ding JG, Zheng MH. Potential Blood DNA Methylation Biomarker Genes for Diagnosis of Liver Fibrosis in Patients With Biopsy-Proven Non-alcoholic Fatty Liver Disease. Front Med (Lausanne) 2022; 9:864570. [PMID: 35433752 PMCID: PMC9008751 DOI: 10.3389/fmed.2022.864570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 12/29/2022] Open
Abstract
Background and objectiveThis pilot study aimed to identify potential blood DNA methylation (BDM) biomarker genes for the diagnosis of liver fibrosis in non-alcoholic fatty liver disease (NAFLD).MethodsWe included a total of 16 NAFLD patients with significant (SLF, liver fibrosis stage ≥ 2) and 16 patients with non-significant liver fibrosis (NSLF, fibrosis stages 0–1). The association between BDM and liver fibrosis was analyzed. Genes were selected based on a stepwise-filtering with CpG islands containing significant differentially methylated probes.ResultsThe two groups of patients were distinguishable through both t-distributed stochastic neighbor embedding (t-SNE) analysis and unsupervised hierarchical clustering analysis based on their BDM status. BDM levels were significantly higher in the NSLF group than in the SLF group. The methylation levels in the island and shelf regions were also significantly higher in the NSLF group, as well as the methylation levels in the first exon, 3′-untranslated region, body, ExonBnd, non-intergenic region, transcription start site (TSS)1500, and TSS200 regions (all p < 0.05). BDM status was associated with greater histological liver fibrosis, but not with age, sex, or other histological features of NAFLD (p < 0.05). The methylation levels of the hypomethylated CpG island region of CISTR, IFT140, and RGS14 genes were increased in the NSLF group compared to the SLF group (all p < 0.05).ConclusionBDM may stratify NAFLD patients with significant and non-significant liver fibrosis. The CISTR, IFT140, and RGS14 genes are potential novel candidate BDM biomarkers for liver fibrosis and these pilot data suggest further work on BDM biomarkers is warranted.
Collapse
Affiliation(s)
- Qing-Feng Sun
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming-Jie Wang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pei-Wu Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yang-Yang Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hong-Lei Ma
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Practice, Affiliated People’s Hospital, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ou-Yang Huang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Hong
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Li
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Christopher D. Byrne
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, University of Verona, Verona, Italy
| | - Wen-Yue Liu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Lu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ji-Guang Ding
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Ji-Guang Ding,
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
- *Correspondence: Ming-Hua Zheng,
| |
Collapse
|
19
|
Tang Y, Chen X, Chen Q, Xiao J, Mi J, Liu Q, You Y, Chen Y, Ling W. Association of serum methionine metabolites with non-alcoholic fatty liver disease: a cross-sectional study. Nutr Metab (Lond) 2022; 19:21. [PMID: 35303918 PMCID: PMC8932073 DOI: 10.1186/s12986-022-00647-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
Background and project Non-alcoholic fatty liver disease (NAFLD) is viewed as the hepatic manifestation of metabolic syndrome. Methionine metabolites have been linked to metabolic syndrome and its related diseases. Whether serum methionine metabolites levels are associated with NAFLD remains unclear. The study aimed to assess the association between methionine metabolites and NAFLD. Methods This cross-sectional study included a total of 2814 individuals aged 40–75 years old. All participants underwent anthropometric measurements, laboratory tests, dietary assessment and abdominal ultrasonography. Multivariable logistic regression analysis was performed to estimate the association of methionine metabolites with NAFLD. Results Overall, 1446 with and 1368 without NAFLD were enrolled in this study. Participants with NAFLD had significantly higher serum S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH) and homocysteine (Hcy) levels, and a lower S-adenosylmethionine/S-adenosylhomocysteine (SAM/SAH) ratio than those without NAFLD (all P < 0.001). After adjusting multiple confounders, odds ratios (95% confidence interval) for quartile 4 versus quartile 1 of SAH, Hcy and SAM/SAH ratio were 1.65 (1.27–2.14), 1.63 (1.26–2.12) and 0.63 (0.49–0.83), respectively (all P for trend < 0.01). In addition, serum SAH, Hcy levels and SAM/SAH ratio were significantly correlated with the degree of hepatic steatosis (all P for trend < 0.001). Conclusion Elevated serum SAH, Hcy levels and lower SAM/SAH ratio may be independently associated with the presence of NAFLD in middle-aged and elder Chinese. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00647-7.
Collapse
Affiliation(s)
- Yi Tang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Xu Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Qian Chen
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jinghe Xiao
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Jiaxin Mi
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Qiannan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Yiran You
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Yuming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong Province, People's Republic of China. .,Department of Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, Guangdong Province, People's Republic of China. .,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| |
Collapse
|
20
|
Rodríguez-Sanabria JS, Escutia-Gutiérrez R, Rosas-Campos R, Armendáriz-Borunda JS, Sandoval-Rodríguez A. An Update in Epigenetics in Metabolic-Associated Fatty Liver Disease. Front Med (Lausanne) 2022; 8:770504. [PMID: 35087844 PMCID: PMC8787199 DOI: 10.3389/fmed.2021.770504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is characterized by hepatic steatosis accompanied by one of three features: overweight or obesity, T2DM, or lean or normal weight with evidence of metabolic dysregulation. It is distinguished by excessive fat accumulation in hepatocytes, and a decrease in the liver's ability to oxidize fats, the accumulation of ectopic fat, and the activation of proinflammatory pathways. Chronic damage will keep this pathophysiologic cycle active causing progression from hepatic steatosis to cirrhosis and eventually, hepatocarcinoma. Epigenetics affecting gene expression without altering DNA sequence allows us to study MAFLD pathophysiology from a different perspective, in which DNA methylation processes, histone modifications, and miRNAs expression have been closely associated with MAFLD progression. However, these considerations also faced us with the circumstance that modifying those epigenetics patterns might lead to MAFLD regression. Currently, epigenetics is an area of great interest because it could provide new insights in therapeutic targets and non-invasive biomarkers. This review comprises an update on the role of epigenetic patterns, as well as innovative therapeutic targets and biomarkers in MAFLD.
Collapse
Affiliation(s)
- J Samael Rodríguez-Sanabria
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Rebeca Escutia-Gutiérrez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Rebeca Rosas-Campos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Juan S Armendáriz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Campus Guadalajara, Zapopan, Mexico
| | - Ana Sandoval-Rodríguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
21
|
Hernandez-Landero F, Sanchez-Garcia E, Gomez-Crisostomo N, Contreras-Paredes A, Eduardo MA, de la Cruz-Hernandez E. Anthropometric, biochemical, and haematological indicators associated with hyperhomocysteinemia and their relation to global DNA methylation in a young adult population. Epigenetics 2021; 17:1269-1280. [PMID: 34923898 DOI: 10.1080/15592294.2021.2013420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Increased homocysteine (Hcy) levels have been associated with a higher risk of cardiovascular and neurodegenerative diseases. Passive DNA demethylation has been suggested as one of the mechanisms implicated in the development of these conditions, and most studies have investigated this relationship in older adult populations. Therefore, this study aimed to evaluate the relationship between corporal composition and biochemical and haematological indicators with plasma homocysteine levels and genome-wide methylation (Alu, LINE-1, and SAT2) in a population of healthy young adults (median age, 18 years). We showed that the prevalence of hyperhomocysteinemia was significantly higher in men (18.5%) than in women (6.6%) (P = 0.034). Increased Hcy level was substantially associated with higher levels of body mass index and visceral fat in females, whereas in males, it was significantly associated with reduced red cell distribution width and high-density lipoprotein (HDL) cholesterol (HDL-C) levels and increased low-density lipoprotein/HDL ratio. Hypomethylation of Alu was significantly associated with reduced levels of HDL-C (<40.0 mg dL-1), whereas hypomethylation of LINE-1 and SAT2 was significantly associated with higher levels of skeletal muscle (<39.3%) in males. These results highlight the participation of hormonal factors in regulating Hcy metabolism, primarily in the female population, whereas changes in DNA methylation observed in males might be associated with the consumption of a protein diet with high levels of methionine, independent of increased Hcy levels.
Collapse
Affiliation(s)
- Fernanda Hernandez-Landero
- Laboratory of Research in Metabolic and Infectious Diseases. Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco City, Mexico
| | - Erika Sanchez-Garcia
- Laboratory of Research in Metabolic and Infectious Diseases. Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco City, Mexico
| | - Nancy Gomez-Crisostomo
- Laboratory of Research in Metabolic and Infectious Diseases. Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco City, Mexico
| | - Adriana Contreras-Paredes
- Laboratory of Molecular Biology of Oncogenic Viruses, Unit of Biomedical Research in Cancer, National Cancer Institute - Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Martínez Abundis Eduardo
- Laboratory of Research in Metabolic and Infectious Diseases. Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco City, Mexico
| | - Erick de la Cruz-Hernandez
- Laboratory of Research in Metabolic and Infectious Diseases. Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco City, Mexico
| |
Collapse
|
22
|
Chen X, Luo J, Liu J, Chen T, Sun J, Zhang Y, Xi Q. Exploration of the Effect on Genome-Wide DNA Methylation by miR-143 Knock-Out in Mice Liver. Int J Mol Sci 2021; 22:13075. [PMID: 34884879 PMCID: PMC8658369 DOI: 10.3390/ijms222313075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
MiR-143 play an important role in hepatocellular carcinoma and liver fibrosis via inhibiting hepatoma cell proliferation. DNA methyltransferase 3 alpha (DNMT3a), as a target of miR-143, regulates the development of primary organic solid tumors through DNA methylation mechanisms. However, the effect of miR-143 on DNA methylation profiles in liver is unclear. In this study, we used Whole-Genome Bisulfite Sequencing (WGBS) to detect the differentially methylated regions (DMRs), and investigated DMR-related genes and their enriched pathways by miR-143. We found that methylated cytosines increased 0.19% in the miR-143 knock-out (KO) liver fed with high-fat diet (HFD), compared with the wild type (WT). Furthermore, compared with the WT group, the CG methylation patterns of the KO group showed lower CG methylation levels in CG islands (CGIs), promoters and hypermethylation in CGI shores, 5'UTRs, exons, introns, 3'UTRs, and repeat regions. A total of 984 DMRs were identified between the WT and KO groups consisting of 559 hypermethylation and 425 hypomethylation DMRs. Furthermore, DMR-related genes were enriched in metabolism pathways such as carbon metabolism (serine hydroxymethyltransferase 2 (Shmt2), acyl-Coenzyme A dehydrogenase medium chain (Acadm)), arginine and proline metabolism (spermine synthase (Sms), proline dehydrogenase (Prodh2)) and purine metabolism (phosphoribosyl pyrophosphate synthetase 2 (Prps2)). In summary, we are the first to report the change in whole-genome methylation levels by miR-143-null through WGBS in mice liver, and provide an experimental basis for clinical diagnosis and treatment in liver diseases, indicating that miR-143 may be a potential therapeutic target and biomarker for liver damage-associated diseases and hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (X.C.); (J.L.); (J.L.); (T.C.); (J.S.)
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (X.C.); (J.L.); (J.L.); (T.C.); (J.S.)
| |
Collapse
|
23
|
Zaiou M, Amrani R, Rihn B, Hajri T. Dietary Patterns Influence Target Gene Expression through Emerging Epigenetic Mechanisms in Nonalcoholic Fatty Liver Disease. Biomedicines 2021; 9:1256. [PMID: 34572442 PMCID: PMC8468830 DOI: 10.3390/biomedicines9091256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to the pathologic buildup of extra fat in the form of triglycerides in liver cells without excessive alcohol intake. NAFLD became the most common cause of chronic liver disease that is tightly associated with key aspects of metabolic disorders, including insulin resistance, obesity, diabetes, and metabolic syndrome. It is generally accepted that multiple mechanisms and pathways are involved in the pathogenesis of NAFLD. Heredity, sedentary lifestyle, westernized high sugar saturated fat diet, metabolic derangements, and gut microbiota, all may interact on a on genetically susceptible individual to cause the disease initiation and progression. While there is an unquestionable role for gene-diet interaction in the etiopathogenesis of NAFLD, it is increasingly apparent that epigenetic processes can orchestrate many aspects of this interaction and provide additional mechanistic insight. Exciting research demonstrated that epigenetic alterations in chromatin can influence gene expression chiefly at the transcriptional level in response to unbalanced diet, and therefore predispose an individual to NAFLD. Thus, further discoveries into molecular epigenetic mechanisms underlying the link between nutrition and aberrant hepatic gene expression can yield new insights into the pathogenesis of NAFLD, and allow innovative epigenetic-based strategies for its early prevention and targeted therapies. Herein, we outline the current knowledge of the interactive role of a high-fat high-calories diet and gene expression through DNA methylation and histone modifications on the pathogenesis of NAFLD. We also provide perspectives on the advancement of the epigenomics in the field and possible shortcomings and limitations ahead.
Collapse
Affiliation(s)
- Mohamed Zaiou
- The Jean-Lamour Institute, UMR 7198 CNRS, University of Lorraine, F-54000 Nancy, France;
| | - Rim Amrani
- Department of Neonatology, University Mohammed First, Oujda 60000, Morocco;
| | - Bertrand Rihn
- The Jean-Lamour Institute, UMR 7198 CNRS, University of Lorraine, F-54000 Nancy, France;
| | - Tahar Hajri
- Department of Human Ecology, Delaware State University, Dover, DE 1191, USA;
| |
Collapse
|
24
|
Li F, Ou Q, Lai Z, Pu L, Chen X, Wang L, Sun L, Liang X, Wang Y, Xu H, Wei J, Wu F, Zhu H, Wang L. The Co-occurrence of Chronic Hepatitis B and Fibrosis Is Associated With a Decrease in Hepatic Global DNA Methylation Levels in Patients With Non-alcoholic Fatty Liver Disease. Front Genet 2021; 12:671552. [PMID: 34335686 PMCID: PMC8318039 DOI: 10.3389/fgene.2021.671552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/01/2021] [Indexed: 01/23/2023] Open
Abstract
Global DNA hypomethylation has been reported in patients with chronic hepatitis B (CHB) and non-alcoholic fatty-liver disease (NAFLD). However, the global DNA methylation profile of patients with concurrent NAFLD and CHB (NAFLD + CHB) is still unclear. We aimed to detect the hepatic global DNA methylation levels of NAFLD + CHB patients and assess the associated risk factors. Liver biopsies were collected from 55 NAFLD patients with or without CHB. The histological characteristics of the biopsy were then assessed. Hepatic global DNA methylation levels were quantified by fluorometric method. The hepatic global DNA methylation levels in NAFLD + CHB group were significantly lower than that in NAFLD group. Participants with fibrosis showed lower levels of hepatic global DNA methylation than those without fibrosis. Participants with both CHB and fibrosis had lower levels of hepatic global DNA methylation than those without either CHB or fibrosis. The co-occurrence of CHB and fibrosis was significantly associated with a reduction in global DNA methylation levels compared to the absence of both CHB and fibrosis. Our study suggests that patients with NAFLD + CHB exhibited lower levels of global DNA methylation than patients who had NAFLD alone. The co-occurrence of CHB and liver fibrosis in NAFLD patients was associated with a decrease in global DNA methylation levels.
Collapse
Affiliation(s)
- FangYuan Li
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - Qian Ou
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - ZhiWei Lai
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - LiuZhen Pu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - XingYi Chen
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - LiRong Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - LiuQiao Sun
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - XiaoPing Liang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - YaoYao Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - Hang Xu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - Jun Wei
- Department of Science and Technology, Guangzhou Customs, Guangzhou, China
| | - Feng Wu
- Department of Science and Technology, Guangzhou Customs, Guangzhou, China
| | - HuiLian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - LiJun Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Wegermann K, Howe C, Henao R, Wang Y, Guy CD, Abdelmalek MF, Diehl AM, Moylan CA. Serum Bile Acid, Vitamin E, and Serotonin Metabolites Are Associated With Future Liver-Related Events in Nonalcoholic Fatty Liver Disease. Hepatol Commun 2021; 5:608-617. [PMID: 33860119 PMCID: PMC8034573 DOI: 10.1002/hep4.1665] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 01/04/2023] Open
Abstract
Identifying patients at higher risk for poor outcomes from nonalcoholic fatty liver disease (NAFLD) remains challenging. Metabolomics, the comprehensive measurement of small molecules in biological samples, has the potential to reveal novel noninvasive biomarkers. The aim of this study was to determine if serum metabolite profiles in patients with NAFLD associate with future liver-related events. We performed a retrospective single-center cohort study of 187 participants with biopsy-proven NAFLD. Metabolomic analysis was performed on serum using ultrahigh performance liquid chromatography/tandem mass spectrometry and gas chromatography/mass spectrometry. We identified liver-related events (variceal bleeding, ascites, spontaneous bacterial peritonitis, hepatic encephalopathy, hepatocellular carcinoma, hepatopulmonary or hepatorenal syndrome) by manual chart review between index biopsy (2007-2013) and April 1, 2018. Generalized linear models and Cox proportional hazards models were used to test the association of metabolites with liver-related events and time to first liver-related event, controlling for covariates and fibrosis stage. Over a mean ± SD follow-up of 6.9 ± 3.2 years, 11 participants experienced 22 liver-related events. Generalized linear models revealed 53 metabolites significantly associated with liver-related events (P < 0.05). In Cox proportional hazards modeling, 69 metabolites were significantly associated with time to future liver-related events (P < 0.05), seven of which met the false discovery rate threshold of 0.10: vitamin E metabolites gamma-carboxyethyl-hydroxychroman (gamma-CEHC) and gamma-CEHC glucuronide; primary bile acid metabolite taurochenodeoxycholate; serotonin metabolite 5-hydroxyindoleacetate; and lipid metabolites (i) 2-hydroxyglutarate, (ii) 3beta,17beta-diol disulfate 1, and (iii) eicosenoyl sphingomyelin. Conclusion: Metabolites of a primary bile acid, vitamin E, and serotonin were associated with future liver-related events. Our results suggest metabolite pathways may be useful for predicting which patients with NAFLD are at higher risk for hepatic decompensation.
Collapse
Affiliation(s)
- Kara Wegermann
- Division of GastroenterologyDepartment of MedicineDuke University HospitalDurhamNCUSA
| | - Catherine Howe
- Division of GastroenterologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Ricardo Henao
- Department of Biostatistics and BioinformaticsDuke UniversityDurhamNCUSA
| | - Ying Wang
- Division of GastroenterologyDepartment of MedicineDuke University HospitalDurhamNCUSA
| | - Cynthia D Guy
- Department of PathologyDuke University HospitalDurhamNCUSA
| | - Manal F Abdelmalek
- Division of GastroenterologyDepartment of MedicineDuke University HospitalDurhamNCUSA
| | - Anna Mae Diehl
- Division of GastroenterologyDepartment of MedicineDuke University HospitalDurhamNCUSA
| | - Cynthia A Moylan
- Division of GastroenterologyDepartment of MedicineDuke University HospitalDurhamNCUSA.,Department of MedicineDurham Veterans Affairs Medical CenterDurhamNCUSA
| |
Collapse
|
26
|
Hepatic Senescence Accompanies the Development of NAFLD in Non-Aged Mice Independently of Obesity. Int J Mol Sci 2021; 22:ijms22073446. [PMID: 33810566 PMCID: PMC8037476 DOI: 10.3390/ijms22073446] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 01/21/2023] Open
Abstract
Senescence is considered to be a cardinal player in several chronic inflammatory and metabolic pathologies. The two dominant mechanisms of senescence include replicative senescence, predominantly depending on age-induced telomere shortening, and stress-induced senescence, triggered by external or intracellular harmful stimuli. Recent data indicate that hepatocyte senescence is involved in the development of nonalcoholic fatty liver disease (NAFLD). However, previous studies have mainly focused on age-related senescence during NAFLD, in the presence or absence of obesity, while information about whether the phenomenon is characterized by replicative or stress-induced senescence, especially in non-aged organisms, is scarce. Herein, we subjected young mice to two different diet-induced NAFLD models which differed in the presence of obesity. In both models, liver fat accumulation and increased hepatic mRNA expression of steatosis-related genes were accompanied by hepatic senescence, indicated by the increased expression of senescence-associated genes and the presence of a robust hybrid histo-/immunochemical senescence-specific staining in the liver. Surprisingly, telomere length and global DNA methylation did not differ between the steatotic and the control livers, while malondialdehyde, a marker of oxidative stress, was upregulated in the mouse NAFLD livers. These findings suggest that senescence accompanies NAFLD emergence, even in non-aged organisms, and highlight the role of stress-induced senescence during steatosis development independently of obesity.
Collapse
|
27
|
The Role of the Transsulfuration Pathway in Non-Alcoholic Fatty Liver Disease. J Clin Med 2021; 10:jcm10051081. [PMID: 33807699 PMCID: PMC7961611 DOI: 10.3390/jcm10051081] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing and approximately 25% of the global population may have NAFLD. NAFLD is associated with obesity and metabolic syndrome, but its pathophysiology is complex and only partly understood. The transsulfuration pathway (TSP) is a metabolic pathway regulating homocysteine and cysteine metabolism and is vital in controlling sulfur balance in the organism. Precise control of this pathway is critical for maintenance of optimal cellular function. The TSP is closely linked to other pathways such as the folate and methionine cycles, hydrogen sulfide (H2S) and glutathione (GSH) production. Impaired activity of the TSP will cause an increase in homocysteine and a decrease in cysteine levels. Homocysteine will also be increased due to impairment of the folate and methionine cycles. The key enzymes of the TSP, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), are highly expressed in the liver and deficient CBS and CSE expression causes hepatic steatosis, inflammation, and fibrosis in animal models. A causative link between the TSP and NAFLD has not been established. However, dysfunctions in the TSP and related pathways, in terms of enzyme expression and the plasma levels of the metabolites (e.g., homocysteine, cystathionine, and cysteine), have been reported in NAFLD and liver cirrhosis in both animal models and humans. Further investigation of the TSP in relation to NAFLD may reveal mechanisms involved in the development and progression of NAFLD.
Collapse
|
28
|
Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication. Signal Transduct Target Ther 2020; 5:280. [PMID: 33273451 PMCID: PMC7714782 DOI: 10.1038/s41392-020-00349-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/30/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the bicyclic metabolic pathways of one-carbon metabolism, methionine metabolism is the pivot linking the folate cycle to the transsulfuration pathway. In addition to being a precursor for glutathione synthesis, and the principal methyl donor for nucleic acid, phospholipid, histone, biogenic amine, and protein methylation, methionine metabolites can participate in polyamine synthesis. Methionine metabolism disorder can aggravate the damage in the pathological state of a disease. In the occurrence and development of chronic liver diseases (CLDs), changes in various components involved in methionine metabolism can affect the pathological state through various mechanisms. A methionine-deficient diet is commonly used for building CLD models. The conversion of key enzymes of methionine metabolism methionine adenosyltransferase (MAT) 1 A and MAT2A/MAT2B is closely related to fibrosis and hepatocellular carcinoma. In vivo and in vitro experiments have shown that by intervening related enzymes or downstream metabolites to interfere with methionine metabolism, the liver injuries could be reduced. Recently, methionine supplementation has gradually attracted the attention of many clinical researchers. Most researchers agree that adequate methionine supplementation can help reduce liver damage. Retrospective analysis of recently conducted relevant studies is of profound significance. This paper reviews the latest achievements related to methionine metabolism and CLD, from molecular mechanisms to clinical research, and provides some insights into the future direction of basic and clinical research.
Collapse
|
29
|
Hyun J, Jung Y. DNA Methylation in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:ijms21218138. [PMID: 33143364 PMCID: PMC7662478 DOI: 10.3390/ijms21218138] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a widespread hepatic disorder in the United States and other Westernized countries. Nonalcoholic steatohepatitis (NASH), an advanced stage of NAFLD, can progress to end-stage liver disease, including cirrhosis and liver cancer. Poor understanding of mechanisms underlying NAFLD progression from simple steatosis to NASH has limited the development of effective therapies and biomarkers. An accumulating body of studies has suggested the importance of DNA methylation, which plays pivotal roles in NAFLD pathogenesis. DNA methylation signatures that can affect gene expression are influenced by environmental and lifestyle experiences such as diet, obesity, and physical activity and are reversible. Hence, DNA methylation signatures and modifiers in NAFLD may provide the basis for developing biomarkers indicating the onset and progression of NAFLD and therapeutics for NAFLD. Herein, we review an update on the recent findings in DNA methylation signatures and their roles in the pathogenesis of NAFLD and broaden people’s perspectives on potential DNA methylation-related treatments and biomarkers for NAFLD.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Cell and Matter Institute, Dankook University, Cheonan 31116, Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2262
| |
Collapse
|
30
|
Jonscher KR, Abrams J, Friedman JE. Maternal Diet Alters Trained Immunity in the Pathogenesis of Pediatric NAFLD. JOURNAL OF CELLULAR IMMUNOLOGY 2020; 2:315-325. [PMID: 33426540 PMCID: PMC7793570 DOI: 10.33696/immunology.2.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pediatric nonalcoholic fatty liver disease (NAFLD) affects 1 in 10 children in the US, increases risk of cirrhosis and transplantation in early adulthood, and shortens lifespan, even after transplantation. Exposure to maternal obesity and/or a diet high in fat, sugar and cholesterol is strongly associated with development of NAFLD in offspring. However, mechanisms by which "priming" of the immune system in early life increases susceptibility to NAFLD are poorly understood. Recent studies have focused on the role "non-reparative" macrophages play in accelerating inflammatory signals promoting fibrogenesis. In this Commentary, we review evidence that the pioneering gut bacteria colonizing the infant intestinal tract remodel the naïve immune system in the offspring. Epigenetic changes in hematopoietic stem and progenitor cells, induced by exposure to an obesogenic diet in utero, may skew lineage commitment of myeloid cells during gestation. Further, microbial dysbiosis in neonatal life contributes to training innate immune cell responsiveness in the gut, bone marrow, and liver, leading to developmental programming of pediatric NAFLD. Comprehensive understanding of how different gut bacteria and their byproducts shape development of the early innate immune system and microbiome will uncover early interventions to prevent NAFLD pathophysiology.
Collapse
Affiliation(s)
- Karen R. Jonscher
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, USA
| | - Jesse Abrams
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, USA
- Departments of Physiology and Pediatrics, University of Oklahoma Health Sciences Center, USA
| |
Collapse
|