1
|
Bernecker M, Lin A, Feuchtinger A, Molenaar A, Schriever SC, Pfluger PT. Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure. J Transl Med 2025; 23:7. [PMID: 39754229 PMCID: PMC11699648 DOI: 10.1186/s12967-024-06039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus. METHODS Chow-fed mice and mice subjected to prolonged high-fat diet (HFD) consumption for 20 weeks, followed by 24 weeks of dietary interventions to either induce weight gain, weight loss, or weight cycling were monitored for perturbations in feeding efficiency and glucose homeostasis. Post-mortem analyses included qPCR, Western Blotting, biochemical and microscopical assessments for hepatic steatosis and insulin resistance, hypothalamic and adipose tissue inflammation, and circulating lipid, leptin and IL-6 levels. RESULTS Weight cycling led to hyperphagia and rapid weight regain, matching the weights of mice continuously on HFD. Despite weight loss, adipose tissue inflammation persisted with elevated pro-inflammatory markers, macrophage infiltration, and impaired Glut4 expression. HFD-induced dysregulation in hypothalamic expression of orexigenic peptides and synaptic plasticity markers persisted also after weight normalization suggesting long-lasting neural alterations. Weight-cycled mice exhibited higher circulating IL-6 and leptin levels, increased hepatic lipid storage, and dysregulated glucose metabolism compared to those with consistent diets, indicating worsened metabolic effects by Yoyo dieting. CONCLUSION In sum, our study highlights significant metabolic risks associated with weight cycling, particularly following prolonged obesity. Persistent adipose tissue inflammation, perturbed neural peptide and plasticity markers and impaired glucose tolerance emphasize the need for effective and sustainable weight loss strategies to mitigate the adverse outcomes of weight regain and improve long-term metabolic health.
Collapse
Affiliation(s)
- Miriam Bernecker
- Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- Division of NeuroBiology of Diabetes, TUM School of Medicine & Health, Technical University of Munich, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Anna Lin
- Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Annette Feuchtinger
- Core Facility Pathology and Tissue Analytics, Helmholtz Munich, Neuherberg, Germany
| | - Anna Molenaar
- Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- Division of NeuroBiology of Diabetes, TUM School of Medicine & Health, Technical University of Munich, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Sonja C Schriever
- Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Paul T Pfluger
- Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany.
- Division of NeuroBiology of Diabetes, TUM School of Medicine & Health, Technical University of Munich, Munich, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
| |
Collapse
|
2
|
Soedono S, Julietta V, Nawaz H, Cho KW. Dynamic Roles and Expanding Diversity of Adipose Tissue Macrophages in Obesity. J Obes Metab Syndr 2024; 33:193-212. [PMID: 39324219 PMCID: PMC11443328 DOI: 10.7570/jomes24030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024] Open
Abstract
Adipose tissue macrophages (ATMs) are key regulators of adipose tissue (AT) inflammation and insulin resistance in obesity, and the traditional M1/M2 characterization of ATMs is inadequate for capturing their diversity in obese conditions. Single-cell transcriptomic profiling has revealed heterogeneity among ATMs that goes beyond the old paradigm and identified new subsets with unique functions. Furthermore, explorations of their developmental origins suggest that multiple differentiation pathways contribute to ATM variety. These advances raise concerns about how to define ATM functions, how they are regulated, and how they orchestrate changes in AT. This review provides an overview of the current understanding of ATMs and their updated categorization in both mice and humans during obesity. Additionally, diverse ATM functions and contributions in the context of obesity are discussed. Finally, potential strategies for targeting ATM functions as therapeutic interventions for obesity-induced metabolic diseases are addressed.
Collapse
Affiliation(s)
- Shindy Soedono
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Vivi Julietta
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Hadia Nawaz
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| |
Collapse
|
3
|
Phuong-Nguyen K, O’Hely M, Kowalski GM, McGee SL, Aston-Mourney K, Connor T, Mahmood MQ, Rivera LR. The Impact of Yoyo Dieting and Resistant Starch on Weight Loss and Gut Microbiome in C57Bl/6 Mice. Nutrients 2024; 16:3138. [PMID: 39339738 PMCID: PMC11435396 DOI: 10.3390/nu16183138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Cyclic weight loss and subsequent regain after dieting and non-dieting periods, a phenomenon termed yoyo dieting, places individuals at greater risk of metabolic complications and alters gut microbiome composition. Resistant starch (RS) improves gut health and systemic metabolism. This study aimed to investigate the effect of yoyo dieting and RS on the metabolism and gut microbiome. C57BL/6 mice were assigned to 6 diets for 20 weeks, including control, high fat (HF), yoyo (alternating HF and control diets every 5 weeks), control with RS, HF with RS, and yoyo with RS. Metabolic outcomes and microbiota profiling using 16S rRNA sequencing were examined. Yoyo dieting resulted in short-term weight loss, which led to improved liver health and insulin tolerance but also a greater rate of weight gain compared to continuous HF feeding, as well as a different microbiota profile that was in an intermediate configuration between the control and HF states. Mice fed HF and yoyo diets supplemented with RS gained less weight than those fed without RS. RS supplementation in yoyo mice appeared to shift the gut microbiota composition closer to the control state. In conclusion, yoyo dieting leads to obesity relapse, and increased RS intake reduces weight gain and might help prevent rapid weight regain via gut microbiome restoration.
Collapse
Affiliation(s)
- Kate Phuong-Nguyen
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Martin O’Hely
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Murdoch Children’s Research Institute, Royal Children’s Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Greg M. Kowalski
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Sean L. McGee
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Kathryn Aston-Mourney
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Timothy Connor
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Malik Q. Mahmood
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Leni R. Rivera
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| |
Collapse
|
4
|
Wang H, He W, Yang G, Zhu L, Liu X. The Impact of Weight Cycling on Health and Obesity. Metabolites 2024; 14:344. [PMID: 38921478 PMCID: PMC11205792 DOI: 10.3390/metabo14060344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Obesity is a systemic and chronic inflammation, which seriously endangers people's health. People tend to diet to control weight, and the short-term effect of dieting in losing weight is significant, but the prognosis is limited. With weight loss and recovery occurring frequently, people focus on weight cycling. The effect of weight cycling on a certain tissue of the body also has different conclusions. Therefore, this article systematically reviews the effects of body weight cycling on the body and finds that multiple weight cycling (1) increased fat deposition in central areas, lean mass decreased in weight loss period, and fat mass increased in weight recovery period, which harms body composition and skeletal muscle mass; (2) enhanced the inflammatory response of adipose tissue, macrophages infiltrated into adipose tissue, and increased the production of pro-inflammatory mediators in adipocytes; (3) blood glucose concentration mutation and hyperinsulinemia caused the increase or decrease in pancreatic β-cell population, which makes β-cell fatigue and leads to β-cell failure; (4) resulted in additional burden on the cardiovascular system because of cardiovascular rick escalation. Physical activity combined with calorie restriction can effectively reduce metabolic disease and chronic inflammation, alleviating the adverse effects of weight cycling on the body.
Collapse
Affiliation(s)
- Huan Wang
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (H.W.); (W.H.); (G.Y.)
| | - Wenbi He
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (H.W.); (W.H.); (G.Y.)
| | - Gaoyuan Yang
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (H.W.); (W.H.); (G.Y.)
| | - Lin Zhu
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (H.W.); (W.H.); (G.Y.)
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, China
| | - Xiaoguang Liu
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (H.W.); (W.H.); (G.Y.)
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, China
| |
Collapse
|
5
|
Sun S, Zhang R, Chen Y, Xu Y, Li X, Liu C, Chen G, Wei X. E4bp4-Cyp3a11 axis in high-fat diet-induced obese mice with weight fluctuation. Nutr Metab (Lond) 2024; 21:30. [PMID: 38802929 PMCID: PMC11131204 DOI: 10.1186/s12986-024-00803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE Weight regain after weight loss is a challenge in obesity management. The metabolic changes and underlying mechanisms in obese people with weight fluctuation remain to be elucidated. In the present study, we aimed to profile the features and clinical significance of liver transcriptome in obese mice with weight regain after weight loss. METHODS The male C57BL/6J mice were fed with standard chow diet or high-fat diet (HFD). After 9 weeks, the HFD-induced obese mice were randomly divided into weight gain (WG), weight loss (WL) and weight regain (WR) group. After 10 weeks of dietary intervention, body weight, fasting blood glucose (FBG), intraperitoneal glucose tolerance, triglycerides (TG), total cholesterol (T-CHO) and low-density lipoprotein cholesterol (LDL-C) were measured. Morphological structure and lipid droplet accumulation in the liver were observed by H&E staining and oil red O staining, respectively. The liver transcriptome was detected by RNA sequencing. Protein expressions of liver cytochrome P450 3a11 (Cyp3a11) and E4 promoter-binding protein 4 (E4bp4) were determined by Western blot. RESULTS After 10 weeks of dietary intervention, the body weight, FBG, glucose area under the curve, T-CHO and LDL-C in WL group were significantly lower than those in WG group (P < 0.05). At 4 weeks of HFD re-feeding, the mice in WR group presented body weight and T-CHO significantly lower than those in WG group, whereas higher than those in WL group (P < 0.05). Hepatic vacuolar degeneration and lipid droplet accumulation in the liver were significantly alleviated in WL group and WR group, compared to those in WG group. The liver transcriptome associated with lipid metabolism was significantly altered during weight fluctuation in obese mice. Compared with those in WG group, Cyp3a11 in the liver was significantly upregulated, and E4bp4 was significantly downregulated in WL and WR groups. CONCLUSION Obese mice experience weight regain after weight loss by HFD re-feeding, but their glucose and lipid metabolism disorders are milder than those induced by the persistence of obesity. Downregulated E4bp4 and upregulated Cyp3a11 are detected in obese mice after weight loss, suggesting that the E4bp4-Cyp3a11 axis may involved in metabolic mechanisms underlying weight regulation.
Collapse
Affiliation(s)
- Shuoshuo Sun
- Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Ruixiang Zhang
- Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Yu Chen
- Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Yijiao Xu
- Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Xingjia Li
- Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Chao Liu
- Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Guofang Chen
- Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China.
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China.
| | - Xiao Wei
- Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China.
| |
Collapse
|
6
|
Inia JA, de Jong JCBC, Keijzer N, Menke AL, Princen HMG, Jukema JW, van den Hoek AM. Effects of repeated weight cycling on non-alcoholic steatohepatitis in diet-induced obese mice. FASEB J 2024; 38:e23579. [PMID: 38568838 DOI: 10.1096/fj.202400167r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Lifestyle interventions remain the treatment of choice for patients with obesity and metabolic complications, yet are difficult to maintain and often lead to cycles of weight loss and regain (weight cycling). Literature on weight cycling remains controversial and we therefore investigated the association between weight cycling and metabolic complications using preexistent obese mice. Ldlr-/-.Leiden mice received a high-fat diet (HFD) for 20 weeks to induce obesity. Subsequently, weight-cycled mice were switched between the healthy chow diet and HFD for four 2-week periods and compared to mice that received HFD for the total study period. Repeated weight cycling tended to decrease body weight and significantly reduced fat mass, whereas adipose tissue inflammation was similar relative to HFD controls. Weight cycling did not significantly affect blood glucose or plasma insulin levels yet significantly reduced plasma free fatty acid and alanine transaminase/aspartate transaminase levels. Hepatic macrovesicular steatosis was similar and microvesicular steatosis tended to be increased upon weight cycling. Weight cycling resulted in a robust decrease in hepatic inflammation compared to HFD controls while hepatic fibrosis and atherosclerosis development were not affected. These results argue against the postulate that repeated weight cycling leads to unfavorable metabolic effects, when compared to a continuous unhealthy lifestyle, and in fact revealed beneficial effects on hepatic inflammation, an important hallmark of non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- José A Inia
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
| | - Jelle C B C de Jong
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Nanda Keijzer
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Aswin L Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Hans M G Princen
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
7
|
Chiang CH, Zhang TR, Hsu PS, Lin SP, Chen CY. Weight regain, but not weight loss exacerbates hepatic fibrosis during multiple weight cycling events in male mice. Eur J Nutr 2024; 63:965-976. [PMID: 38265751 DOI: 10.1007/s00394-024-03326-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
PURPOSE Weight cycling is a phenomenon characterized by fluctuating body weight that is commonly observed in individuals employing intentional weight loss methods. Despite its prevalence, the impact of weight cycling on health remains equivocal. The current investigation aimed to examine the effects of weight cycling on liver health. METHODS The weight cycling model was established by switching the feeding method of mice between ad libitum (AL) and restricted intake (DR or 60% of AL) of the breeding diet to cause weight gain and weight loss, respectively. The weight cycling model comprised two and a half cycles, with one group terminating the experience during the weight-gain period (S-AL) and the other during the weight-loss period (S-DR). Liver tissue was collected to investigate morphology alterations, apoptosis, lipid metabolism, and mitochondrial homeostasis. RESULTS The results demonstrated that the termination point of weight cycling affected body weight and hepatic steatosis. All parameters examined in the S-DR mice exhibited a comparable trend to those observed in the DR mice. Notably, S-AL mice showed a significant increase in lipid metabolism-related proteins in the liver compared to AL-fed mice, along with reduced lipid droplets. Moreover, hepatic apoptosis and fibrosis were exacerbated in the S-AL mice compared to AL mice, whereas mitochondrial fusion, biogenesis, and mitophagy were decreased in the S-AL mice. CONCLUSION Weight cycling ending in weight gain exacerbated hepatic fibrosis, potentially by inducing apoptosis or disrupting mitochondrial homeostasis. Conversely, weight cycling ending in weight loss demonstrated beneficial effects on hepatic health.
Collapse
Affiliation(s)
- Chun-Hsien Chiang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ting-Rui Zhang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pu-Sheng Hsu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Gabriel-Medina P, Ferrer-Costa R, Rodriguez-Frias F, Comas M, Vilallonga R, Ciudin A, Selva DM. Plasma SHBG Levels as an Early Predictor of Response to Bariatric Surgery. Obes Surg 2024; 34:760-768. [PMID: 38183592 PMCID: PMC10899416 DOI: 10.1007/s11695-023-06981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Obesity is a growing global health problem, and currently, bariatric surgery (BS) is the best solution in terms of sustained total weight loss (TWL). However, a significant number of patients present weight regain (WR) in time. There is a lack of biomarkers predicting the response to BS and WR during the follow-up. Plasma SHBG levels, which are low in obesity, increase 1 month after BS but there is no data of plasma SHBG levels at long term. We performed the present study aimed at exploring the SHBG role in predicting TWL and WR after BS. METHODS Prospective study including 62 patients with obesity undergoing BS. Anthropometric and biochemical variables, including SHBG were analyzed at baseline, 1, 6, 12, and 24 months; TWL ≥ 25% was considered as good BS response. RESULTS Weight loss nadir was achieved at 12 months post-BS where maximum SHBG increase was reached. Greater than or equal to 25% TWL patients presented significantly higher SHBG increases at the first and sixth months of follow-up with respect to baseline (100% and 150% respectively, p = 0.025), than < 25% TWL patients (40% and 50% respectively, p = 0.03). Also, these presented 6.6% WR after 24 months. The first month SHBG increase predicted BS response at 24 months (OR = 2.71; 95%CI = [1.11-6.60]; p = 0.028) and TWL in the 12th month (r = 0.330, p = 0.012) and the WR in the 24th (r = - 0.301, p = 0.028). CONCLUSIONS Our results showed for the first time that increase in plasma SHBG levels within the first month after BS is a good predictor of TWL and WR response after 2 years.
Collapse
Affiliation(s)
- P Gabriel-Medina
- Clinical Biochemistry Department, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), 08193, Barcelona, Spain
- Biochemical Chemistry, Drug Delivery & Therapy (BC-DDT) Research Group, Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain
| | - R Ferrer-Costa
- Clinical Biochemistry Department, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
- Biochemical Chemistry, Drug Delivery & Therapy (BC-DDT) Research Group, Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain
| | - F Rodriguez-Frias
- Clinical Biochemistry Department, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), 08193, Barcelona, Spain
- Biochemical Chemistry, Drug Delivery & Therapy (BC-DDT) Research Group, Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - M Comas
- Endocrinology and Nutrition Department, Vall d'Hebron University Hospital, Pg Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - R Vilallonga
- Endocrine, Metabolic and Bariatric Unit, Center of Excellence for the EAC-BC, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Ciudin
- Endocrinology and Nutrition Department, Vall d'Hebron University Hospital, Pg Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Diabetes and Metabolism Research Unit, Diabetes and Metabolism Department, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Pg Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain.
| | - D M Selva
- Diabetes and Metabolism Research Unit, Diabetes and Metabolism Department, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Pg Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain.
| |
Collapse
|
9
|
Bradford BJ, Contreras GA. Adipose Tissue Inflammation: Linking Physiological Stressors to Disease Susceptibility. Annu Rev Anim Biosci 2024; 12:261-281. [PMID: 38064480 DOI: 10.1146/annurev-animal-021122-113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The study of adipose tissue (AT) is enjoying a renaissance. White, brown, and beige adipocytes are being investigated in adult animals, and the critical roles of small depots like perivascular AT are becoming clear. But the most profound revision of the AT dogma has been its cellular composition and regulation. Single-cell transcriptomic studies revealed that adipocytes comprise well under 50% of the cells in white AT, and a substantial portion of the rest are immune cells. Altering the function of AT resident leukocytes can induce or correct metabolic syndrome and, more surprisingly, alter adaptive immune responses to infection. Although the field is dominated by obesity research, conditions such as rapid lipolysis, infection, and heat stress impact AT immune dynamics as well. Recent findings in rodents lead to critical questions that should be explored in domestic livestock as potential avenues for improved animal resilience to stressors, particularly as animals age.
Collapse
Affiliation(s)
- Barry J Bradford
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA;
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
10
|
Gliniak CM, Pedersen L, Scherer PE. Adipose tissue fibrosis: the unwanted houseguest invited by obesity. J Endocrinol 2023; 259:e230180. [PMID: 37855264 PMCID: PMC11648981 DOI: 10.1530/joe-23-0180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
The prevalence of obesity is increasing exponentially across the globe. The lack of effective treatment options for long-term weight loss has magnified the enormity of this problem. Studies continue to demonstrate that adipose tissue holds a biological memory, one of the most important determinant of long-term weight maintenance. This phenomenon is consistent with the metabolically dynamic role of adipose tissue: it adapts and expands to store for excess energy and serves as an endocrine organ capable of synthesizing a number of biologically active molecules that regulate metabolic homeostasis. An important component of the plasticity of adipose tissue is the extracellular matrix, essential for structural support, mechanical stability, cell signaling and function. Chronic obesity upends a delicate balance of extracellular matrix synthesis and degradation, and the ECM accumulates in such a way that prevents the plasticity and function of the diverse cell types in adipose tissue. A series of maladaptive responses among the cells in adipose tissue leads to inflammation and fibrosis, major mechanisms that explain the link between obesity and insulin resistance, risk of type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. Adipose tissue fibrosis persists after weight loss and further enhances adipose tissue dysfunction if weight is regained. Here, we highlight the current knowledge of the cellular events governing adipose tissue ECM remodeling during the development of obesity. Our goal is to delineate the relationship more clearly between adipose tissue ECM and metabolic disease, an important step toward better defining the pathophysiology of dysfunctional adipose tissue.
Collapse
Affiliation(s)
- Christy M Gliniak
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Line Pedersen
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
11
|
Stansbury CM, Dotson GA, Pugh H, Rehemtulla A, Rajapakse I, Muir LA. A lipid-associated macrophage lineage rewires the spatial landscape of adipose tissue in early obesity. JCI Insight 2023; 8:e171701. [PMID: 37651193 PMCID: PMC10619435 DOI: 10.1172/jci.insight.171701] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Adipose tissue macrophage (ATM) infiltration is associated with adipose tissue dysfunction and insulin resistance in mice and humans. Recent single-cell data highlight increased ATM heterogeneity in obesity but do not provide a spatial context for ATM phenotype dynamics. We integrated single-cell RNA-Seq, spatial transcriptomics, and imaging of murine adipose tissue in a time course study of diet-induced obesity. Overall, proinflammatory immune cells were predominant in early obesity, whereas nonresident antiinflammatory ATMs predominated in chronic obesity. A subset of these antiinflammatory ATMs were transcriptomically intermediate between monocytes and mature lipid-associated macrophages (LAMs) and were consistent with a LAM precursor (pre-LAM). Pre-LAMs were spatially associated with early obesity crown-like structures (CLSs), which indicate adipose tissue dysfunction. Spatial data showed colocalization of ligand-receptor transcripts related to lipid signaling among monocytes, pre-LAMs, and LAMs, including Apoe, Lrp1, Lpl, and App. Pre-LAM expression of these ligands in early obesity suggested signaling to LAMs in the CLS microenvironment. Our results refine understanding of ATM diversity and provide insight into the dynamics of the LAM lineage during development of metabolic disease.
Collapse
Affiliation(s)
- Cooper M. Stansbury
- Department of Computational Medicine and Bioinformatics
- The Michigan Institute for Computational Discovery and Engineering
| | | | - Harrison Pugh
- Department of Computational Medicine and Bioinformatics
| | | | - Indika Rajapakse
- Department of Computational Medicine and Bioinformatics
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
12
|
Li W, Chen W. Weight cycling based on altered immune microenvironment as a result of metaflammation. Nutr Metab (Lond) 2023; 20:13. [PMID: 36814270 PMCID: PMC9945679 DOI: 10.1186/s12986-023-00731-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
As a result of the obesity epidemic, more people are concerned about losing weight; however, weight regain is common, leading to repeated weight loss and weight cycling. The health benefits of early weight loss are nullified by weight regain after weight cycling, which has much more severe metabolic consequences. Weight cycling alters body composition, resulting in faster fat recovery and slower muscle reconstruction. This evident fat accumulation, muscle loss, and ectopic fat deposition destroy the intestinal barrier, increase the permeability of the small intestinal epithelium, and cause the lipotoxicity of lipid metabolites and toxins to leak into extraintestinal tissues and circulation. It causes oxidative stress and hypoxia in local tissues and immune cell infiltration in various tissues, all contributing to the adaptation to this metabolic change. Immune cells transmit inflammatory responses in adipose and skeletal muscle tissue by secreting cytokines and adipokines, which mediate immune cell pathways and cause metaflammation and inefficient metabolic degradation. In this review, we focus on the regulatory function of the immunological microenvironment in the final metabolic outcome, with a particular emphasis on the cellular and molecular processes of local and systemic metaflammation induced by weight cycling-induced changes in body composition. Metaflammation in adipose and muscle tissues that is difficult to relieve may cause weight cycling. As this chronic low-grade inflammation spreads throughout the body, metabolic complications associated with weight cycling are triggered. Inhibiting the onset and progression of metabolic inflammation and enhancing the immune microenvironment of adipose and muscle tissues may be the first step in addressing weight cycling.
Collapse
Affiliation(s)
- Wanyang Li
- grid.413106.10000 0000 9889 6335Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Wei Chen
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
13
|
Cornejo MA, Ortiz RM. Body mass cycling and predictors of body mass regain and its impact on cardiometabolic health. Metabolism 2021; 125:154912. [PMID: 34648770 DOI: 10.1016/j.metabol.2021.154912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/31/2021] [Accepted: 10/06/2021] [Indexed: 02/08/2023]
Abstract
Caloric restriction (CR) is the first line intervention to reduce adiposity and total body mass (BM) to improve insulin resistance and ameliorate metabolic derangements. However, the lost adipose mass is difficult to maintain reduced in the long term due to several factors including compensatory changes in orexigenic hormones, adipokine release, pro-inflammatory state, adipose tissue morphology, and resting metabolic rate as a consequence of the caloric deficit. Hence, most patients undergoing a BM reduction intervention ultimately regain the lost mass and too often additional adipose mass overtime, which is hypothesized to have increased deleterious effects chronically. In this mini-review we describe the effects of BM cycling (loss and regain) on insulin resistance and cardiometabolic health and factors that may predict BM regain in clinical studies. We also describe the factors that contribute to the chronic deleterious effects of BM cycling in rodent models of diet-induced obesity (DIO) and other metabolic defects. We conclude that most of the improvements in insulin resistance are observed after a profound loss in BM regardless of the diet and that BM cycling abrogates these beneficial effects. We also suggest that more BM cycling studies are needed in rodent models resembling the development of type 2 diabetes mellitus (T2DM) in humans.
Collapse
Affiliation(s)
- Manuel A Cornejo
- Department of Molecular & Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States of America.
| | - Rudy M Ortiz
- Department of Molecular & Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States of America
| |
Collapse
|
14
|
Lee YH. Body Weight Variability: A Marker for Increased Risk or a Causative Factor for Dementia? J Obes Metab Syndr 2021; 30:191-193. [PMID: 34521779 PMCID: PMC8526286 DOI: 10.7570/jomes21073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Yeung C, Shi IQ, Sung HK. Physiological Responses of Post-Dietary Effects: Lessons from Pre-Clinical and Clinical Studies. Metabolites 2021; 11:metabo11020062. [PMID: 33498462 PMCID: PMC7909542 DOI: 10.3390/metabo11020062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Dieting regimens such as calorie restriction (CR) are among the most commonly practiced interventions for weight management and metabolic abnormalities. Due to its independence from pharmacological agents and considerable flexibility in regimens, many individuals turn to dieting as a form of mitigation and maintenance of metabolic health. While metabolic benefits of CR have been widely studied, weight loss maintenance and metabolic benefits are reported to be lost overtime when the diet regimen has been terminated—referred to as post-dietary effects. Specifically, due to the challenges of long-term adherence and compliance to dieting, post-dietary repercussions such as body weight regain and loss of metabolic benefits pose as major factors in the efficacy of CR. Intermittent fasting (IF) regimens, which are defined by periodic energy restriction, have been deemed as more flexible, compliant, and easily adapted diet interventions that result in many metabolic benefits which resemble conventional CR diets. Many individuals find that IF regimens are easier to adhere to, resulting in fewer post-dietary effects; therefore, IF may be a more effective intervention. Unfortunately, there is a severe gap in current research regarding IF post-dietary effects. We recognize the importance of understanding the sustainability of dieting; as such, we will review the known physiological responses of CR post-dietary effects and its potential mechanisms through synthesizing lessons from both pre-clinical and clinical studies. This review aims to provide insight from a translational medicine perspective to allow for the development of more practical and effective diet interventions. We suggest more flexible and easily practiced dieting regimens such as IF due to its more adaptable and practical nature.
Collapse
Affiliation(s)
- Christy Yeung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.Y.); (I.Q.S.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Irisa Qianwen Shi
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.Y.); (I.Q.S.)
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.Y.); (I.Q.S.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|