1
|
Duft RG, Bonfante ILP, Palma-Duran SA, Chacon-Mikahil MPT, Griffin JL, Cavaglieri CR. Moderate-intensity Combined Training Induces Lipidomic Changes in Individuals With Obesity and Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:2182-2198. [PMID: 38488044 PMCID: PMC11318996 DOI: 10.1210/clinem/dgae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 06/01/2024]
Abstract
CONTEXT Alterations in the lipid metabolism are linked to metabolic disorders such as insulin resistance (IR), obesity and type 2 diabetes (T2D). Regular exercise, particularly combined training (CT), is a well-known nonpharmacological treatment that combines aerobic (AT) and resistance (RT) training benefits. However, it is unclear whether moderate-intensity exercise without dietary intervention induces changes in lipid metabolism to promote a "healthy lipidome." OBJECTIVE The study aimed to investigate the effect of 16 weeks of CT on plasma and white adipose tissue in both sexes, middle-aged individuals with normal weight, obesity (OB), and T2D using an ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) untargeted lipidomics approach. METHODS Body composition, maximum oxygen consumption (VO2max), strength, and biochemical markers were evaluated before and after the control/training period and correlated with lipid changes. CT consisted of 8 to 10 RT exercises, followed by 35 minutes of AT (45%-70% VO2max), 3 times a week for 16 weeks. RESULTS The CT significantly reduced the levels of saturated and monounsaturated fatty acid side-chains (SFA/MUFA) in sphingolipids, glycerolipids (GL) and glycerophospholipids (GP) as well as reducing fat mass, circumferences and IR. Increased levels of polyunsaturated fatty acids in GPs and GLs were also observed, along with increased fat-free mass, VO2 max, and strength (all P < .05) after training. CONCLUSION Our study revealed that 16 weeks of moderate-intensity CT remodeled the lipid metabolism in OB, and T2D individuals, even without dietary intervention, establishing a link between exercise-modulated lipid markers and mechanisms that reduce IR and obesity-related comorbidities.
Collapse
Affiliation(s)
- Renata Garbellini Duft
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London SW7 2AZ, UK
- Laboratory of Exercise Physiology, Faculty of Physical Education, University of Campinas, 13083-851, São Paulo, Brazil
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Ivan Luiz Padilha Bonfante
- Laboratory of Exercise Physiology, Faculty of Physical Education, University of Campinas, 13083-851, São Paulo, Brazil
| | - Susana Alejandra Palma-Duran
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London SW7 2AZ, UK
- Department of Food Science, Research Centre in Food and Development AC, Hermosillo, 83304, Mexico
| | | | - Julian Leether Griffin
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London SW7 2AZ, UK
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Cláudia Regina Cavaglieri
- Laboratory of Exercise Physiology, Faculty of Physical Education, University of Campinas, 13083-851, São Paulo, Brazil
| |
Collapse
|
2
|
Šarac I, Debeljak-Martačić J, Takić M, Stevanović V, Milešević J, Zeković M, Popović T, Jovanović J, Vidović NK. Associations of fatty acids composition and estimated desaturase activities in erythrocyte phospholipids with biochemical and clinical indicators of cardiometabolic risk in non-diabetic Serbian women: the role of level of adiposity. Front Nutr 2023; 10:1065578. [PMID: 37545582 PMCID: PMC10397414 DOI: 10.3389/fnut.2023.1065578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Fatty acids (FAs) composition and desaturase activities can be altered in different metabolic conditions, but the adiposity-independent associations with clinical and biochemical indicators of cardiometabolic risk are still unclear. This study aimed to analyze the associations of FAs composition and estimated desaturase activities with anthropometric, clinical, and biochemical cardiometabolic risk indicators in non-diabetic Serbian women, and to investigate if these associations were independent of the level of adiposity and other confounders. Methods In 76 non-diabetic, otherwise healthy Serbian women, aged 24-68 years, with or without metabolic syndrome or obesity (BMI=23.6±5.6 kg/m2), FA composition in erythrocyte phospholipids was measured by gas-liquid chromatography. Desaturase activities were estimated from product/precursor FAs ratios (D9D:16:1n-7/16:0; D6D:20:3n-6/18:2n-6; D5D:20:4n-6/20:3n-6). Correlations were made with anthropometric, biochemical (serum glucose, triacylglycerols, LDL-C, HDL-C, ALT, AST, and their ratios) and clinical (blood pressure) indicators of cardiometabolic risk. Linear regression models were performed to test the independence of these associations. Results Estimated desaturase activities and certain FAs were associated with anthropometric, clinical and biochemical indicators of cardiometabolic risk: D9D, D6D, 16:1n-7 and 20:3n-6 were directly associated, while D5D and 18:0 were inversely associated. However, the associations with clinical and biochemical indicators were not independent of the associations with the level of adiposity, since they were lost after controlling for anthropometric indices. After controlling for multiple confounders (age, postmenopausal status, education, smoking, physical activity, dietary macronutrient intakes, use of supplements, alcohol consumption), the level of adiposity was the most significant predictor of desaturase activities and aforementioned FAs levels, and mediated their association with biochemical/clinical indicators. Vice versa, desaturase activities predicted the level of adiposity, but not other components of cardiometabolic risk (if the level of adiposity was accounted). While the associations of anthropometric indices with 16:1n-7, 20:3n-6, 18:0 and D9D and D6D activities were linear, the associations with D5D activity were the inverse U-shaped. The only adiposity-independent association of FAs profiles with the indicators of cardiometabolic risk was a positive association of 20:5n-3 with ALT/AST ratio, which requires further exploration. Discussion Additional studies are needed to explore the mechanisms of the observed associations.
Collapse
Affiliation(s)
- Ivana Šarac
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasmina Debeljak-Martačić
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Takić
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vuk Stevanović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Milešević
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Zeković
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Popović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jovica Jovanović
- Department of Occupational Health, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Nevena Kardum Vidović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Goedecke JH, Mendham AE. Pathophysiology of type 2 diabetes in sub-Saharan Africans. Diabetologia 2022; 65:1967-1980. [PMID: 36166072 PMCID: PMC9630207 DOI: 10.1007/s00125-022-05795-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/12/2022] [Indexed: 01/11/2023]
Abstract
Sub-Saharan Africa (SSA) is the region with the highest projected rates of increase in type 2 diabetes (129% by 2045), which will exacerbate the already high prevalence of type 2 diabetes complications and comorbidities in SSA. In addition, SSA is grappling with poverty-related health problems and infectious diseases and is also undergoing the most rapid rates of urbanisation globally. These socioenvironmental and lifestyle factors may interact with genetic factors to alter the pathophysiological sequence leading to type 2 diabetes in sub-Saharan African populations. Indeed, current evidence from SSA and the diaspora suggests that the pathophysiology of type 2 diabetes in Black Africans is different from that in their European counterparts. Studies from the diaspora suggest that insulin clearance is the primary defect underlying the development of type 2 diabetes. We propose that, among Black Africans from SSA, hyperinsulinaemia due to a combination of both increased insulin secretion and reduced hepatic insulin clearance is the primary defect, which promotes obesity and insulin resistance, exacerbating the hyperinsulinaemia and eventually leading to beta cell failure and type 2 diabetes. Nonetheless, the current understanding of the pathogenesis of type 2 diabetes and the clinical guidelines for preventing and managing the disease are largely based on studies including participants of predominately White European ancestry. In this review, we summarise the existing knowledge base and data from the only non-pharmacological intervention that explores the pathophysiology of type 2 diabetes in SSA. We also highlight factors that may influence the pathogenesis of type 2 diabetes in SSA, such as social determinants, infectious diseases and genetic and epigenetic influences.
Collapse
Affiliation(s)
- Julia H Goedecke
- Biomedical Research and Innovation Platform and Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa.
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit (DPHRU), Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Health through Physical Activity, Lifestyle and Sport Research Centre (HPALS), FIMS International Collaborating Centre of Sports Medicine, Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - Amy E Mendham
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit (DPHRU), Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Health through Physical Activity, Lifestyle and Sport Research Centre (HPALS), FIMS International Collaborating Centre of Sports Medicine, Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Takic M, Pokimica B, Petrovic-Oggiano G, Popovic T. Effects of Dietary α-Linolenic Acid Treatment and the Efficiency of Its Conversion to Eicosapentaenoic and Docosahexaenoic Acids in Obesity and Related Diseases. Molecules 2022; 27:molecules27144471. [PMID: 35889342 PMCID: PMC9317994 DOI: 10.3390/molecules27144471] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
The essential fatty acid alpha-linolenic acid (ALA) is present in high amounts in oils such as flaxseed, soy, hemp, rapeseed, chia, and perilla, while stearidonic acid is abundant in echium oil. ALA is metabolized to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) by desaturases and elongases in humans. The conversion of ALA to EPA and DHA is limited, and these long-chain n−3 polyunsaturated fatty acids (PUFAs) are mainly provided from dietary sources (fish and seafood). This review provides an overview of studies that explored the effects of dietary supplementation with ALA in obesity and related diseases. The obesity-associated changes of desaturase and elongase activities are summarized, as they could influence the metabolic conversion of ALA. Generally, supplementation with ALA or ALA-rich oils leads to an increase in EPA levels and has no effect on DHA or omega-3 index. According to the literature data, stearidonic acid could enhance conversion of ALA to long-chain n−3 PUFA in obesity. Recent studies confirm that EPA and DHA intake should be considered as a primary dietary treatment strategy for improving the omega-3 index in obesity and related diseases.
Collapse
|
5
|
Bifidobacterium animalis ssp. lactis MG741 Reduces Body Weight and Ameliorates Nonalcoholic Fatty Liver Disease via Improving the Gut Permeability and Amelioration of Inflammatory Cytokines. Nutrients 2022; 14:nu14091965. [PMID: 35565930 PMCID: PMC9104482 DOI: 10.3390/nu14091965] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Diet-induced obesity is one of the major causes of the development of metabolic disorders such as insulin resistance and nonalcoholic fatty liver disease (NAFLD). Recently, specific probiotic strains have been found to improve the symptoms of NAFLD. We examined the effects of Bifidobacterium animalis ssp. lactis MG741 (MG741) on NAFLD and weight gain, using a mouse model of high-fat-diet (HFD)-induced obesity. HFD-fed mice were supplemented daily with MG741. After 12 weeks, MG741-administered mice exhibited reduced fat deposition, and serum metabolic alterations, including fasting hyperinsulinemia, were modulated. In addition, MG741 regulated Acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), sterol regulatory element-binding protein 1 (SREBP-1), and carbohydrate-responsive element-binding protein (ChREBP) expression and lipid accumulation in the liver, thereby reducing the hepatic steatosis score. To determine whether the effects of MG741 were related to improvements in gut health, MG741 improved the HFD-induced deterioration in gut permeability by reducing toxic substances and inflammatory cytokine expression, and upregulating tight junctions. These results collectively demonstrate that the oral administration of MG741 could prevent NAFLD and obesity, thereby improving metabolic health.
Collapse
|
6
|
Vieyra-Alberto R, Zetina-Martínez RE, Olivares-Pérez J, Galicia-Aguilar HH, Rojas-Hernández S, Ángeles-Hernández JC. Effect of soybean grain (Glycine max L.) supplementation on the production and fatty acid profile in milk of grazing cows in the dry tropics of Mexico. Trop Anim Health Prod 2022; 54:52. [PMID: 35024962 DOI: 10.1007/s11250-022-03056-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/04/2022] [Indexed: 11/30/2022]
Abstract
Improving the lipid profile in milk of cows with the use of soybean grain (Glycine max L.) can be favored in the grazing systems in the dry tropics of Mexico. The objective was to evaluate the milk production, the chemical composition, and the fatty acids profile (FAs) of the milk of cows in continuous grazing and supplemented with and without ground roasted soybean in the dry tropics of Mexico. Ten cows randomly distributed in two equal groups were used. Daily during confinement for milking, the cows individually received the treatments on dry basis T0: supplement with 4.6 kg commercial concentrate® without soybean, T1: supplement with 3.7 kg commercial concentrate® with 380 g of soybean. During the 78 days of the experiment, milk production was measured in all cows, and samples were collected to determine the chemical composition and FAs profile. Milk production, protein, milk total fat, lactose, and non-fat solids did not vary with treatment (p >0.05). Linoleic acid content (C18: 2, cis, cis-∆9, ∆12) increased by 22% in milk fat of cows of the T1 (p ˂0.05). The sum of the mono- and polyunsaturated FAs 29.1%, the ratio of saturated-unsaturated FAs (1.65), and the atherogenicity index (1.71) also improved in the milk of cows supplemented with T1 (p ˂0.05). It was concluded that ground roasted soybean supplement in the diet of grazing dairy cows did not affect production and did improve the lipid profile in milk fat with favorable index to promote human health.
Collapse
Affiliation(s)
- Rodolfo Vieyra-Alberto
- Instituto de Ciencias Agropecuarias (ICAP), Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n km 1, CP43760, Tulancingo, Hidalgo, México.
| | - Reyna Elizabeth Zetina-Martínez
- Programa de Maestría en Ciencias Agropecuarias y Gestión Local, Universidad Autónoma de Guerrero, Iguala de la Independencia, CP 40101, Guerrero, México
| | - Jaime Olivares-Pérez
- Programa de Maestría en Ciencias Agropecuarias y Gestión Local, Universidad Autónoma de Guerrero, Iguala de la Independencia, CP 40101, Guerrero, México.
| | | | - Saúl Rojas-Hernández
- Programa de Maestría en Ciencias Agropecuarias y Gestión Local, Universidad Autónoma de Guerrero, Iguala de la Independencia, CP 40101, Guerrero, México
| | - Juan Carlos Ángeles-Hernández
- Instituto de Ciencias Agropecuarias (ICAP), Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n km 1, CP43760, Tulancingo, Hidalgo, México
| |
Collapse
|
7
|
Thomas T, Cendali F, Fu X, Gamboni F, Morrison EJ, Beirne J, Nemkov T, Antonelou MH, Kriebardis A, Welsby I, Hay A, Dziewulska KH, Busch MP, Kleinman S, Buehler PW, Spitalnik SL, Zimring JC, D'Alessandro A. Fatty acid desaturase activity in mature red blood cells and implications for blood storage quality. Transfusion 2021; 61:1867-1883. [PMID: 33904180 DOI: 10.1111/trf.16402] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Increases in the red blood cell (RBC) degree of fatty acid desaturation are reported in response to exercise, aging, or diseases associated with systemic oxidant stress. However, no studies have focused on the presence and activity of fatty acid desaturases (FADS) in the mature RBC. STUDY DESIGN AND METHODS Steady state metabolomics and isotope-labeled tracing experiments, immunofluorescence approaches, and pharmacological interventions were used to determine the degree of fatty acid unsaturation, FADS activity as a function of storage, oxidant stress, and G6PD deficiency in human and mouse RBCs. RESULTS In 250 blood units from the REDS III RBC Omics recalled donor population, we report a storage-dependent accumulation of free mono-, poly-(PUFAs), and highly unsaturated fatty acids (HUFAs), which occur at a faster rate than saturated fatty acid accumulation. Through a combination of immunofluorescence, pharmacological inhibition, tracing experiments with stable isotope-labeled fatty acids, and oxidant challenge with hydrogen peroxide, we demonstrate the presence and redox-sensitive activity of FADS2, FADS1, and FADS5 in the mature RBC. Increases in PUFAs and HUFAs in human and mouse RBCs correlate negatively with storage hemolysis and positively with posttransfusion recovery. Inhibition of these enzymes decreases accumulation of free PUFAs and HUFAs in stored RBCs, concomitant to increases in pyruvate/lactate ratios. Alterations of this ratio in G6PD deficient patients or units supplemented with pyruvate-rich rejuvenation solutions corresponded to decreased PUFA and HUFA accumulation. CONCLUSION Fatty acid desaturases are present and active in mature RBCs. Their activity is sensitive to oxidant stress, storage duration, and alterations of the pyruvate/lactate ratio.
Collapse
Affiliation(s)
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington, USA
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Evan J Morrison
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan Beirne
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Ian Welsby
- Duke University, Durham, North Carolina, USA
| | - Ariel Hay
- Department of Pathology, University of Virginia, Charloteseville, Virginia, USA
| | | | | | | | | | | | - James C Zimring
- Department of Pathology, University of Virginia, Charloteseville, Virginia, USA
| | | |
Collapse
|
8
|
Goedecke JH, Chorell E, van Jaarsveld PJ, Risérus U, Olsson T. Fatty Acid Metabolism and Associations with Insulin Sensitivity Differs Between Black and White South African Women. J Clin Endocrinol Metab 2021; 106:e140-e151. [PMID: 32995848 DOI: 10.1210/clinem/dgaa696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/28/2020] [Indexed: 01/22/2023]
Abstract
PURPOSE Genetic differences in desaturase genes and consequently fatty acid metabolism have been reported. The aims were to examine ethnic differences in serum fatty acid composition and desaturase indices, and assess the ethnic-specific associations with insulin sensitivity (IS) and liver fat in black and white South African (SA) women. METHODS In this cross-sectional study including 92 premenopausal black (n = 46) and white (n = 46) SA women, serum fatty acid composition was measured in cholesteryl ester (CE) and nonesterified fatty acid (NEFA) fractions. Desaturase activities were estimated as product-to-precursor ratios: stearoyl-CoA desaturase-1 (SCD1-16, 16:1n-7/16:0); δ-5 desaturase (D5D, 20:4n-6/20:3n-6), and δ-6 desaturase (D6D, 18:3n-6/18:2n-6). Whole-body IS was estimated from an oral glucose tolerance test using the Matsuda index. In a subsample (n = 30), liver fat and hepatic IS were measured by 1H-magnetic resonance spectroscopy and hyperinsulinemic euglycemic clamp, respectively. RESULTS Despite lower whole-body IS (P = .006), black women had higher CE D5D and lower D6D and SCD1-16 indices than white women (P < .01). CE D6D index was associated with lower IS in white women only (r = -0.31, P = .045), whereas D5D index was associated with higher IS in black women only (r = 0.31, P = .041). In the subsample, D6D and SCD1-16 indices were positively and D5D was negatively associated with liver fat (P < .05). Conversely, CE SCD1-16 was negatively associated with hepatic IS (P < .05), but not independently of liver fat. CONCLUSIONS Ethnic differences in fatty acid-derived desaturation indices were observed, with insulin-resistant black SA women paradoxically showing a fatty acid pattern typical for higher insulin sensitivity in European populations.
Collapse
Affiliation(s)
- Julia H Goedecke
- Non-communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Elin Chorell
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Paul J van Jaarsveld
- Non-communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Remodeling Lipids in the Transition from Chronic Liver Disease to Hepatocellular Carcinoma. Cancers (Basel) 2020; 13:cancers13010088. [PMID: 33396945 PMCID: PMC7795670 DOI: 10.3390/cancers13010088] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) has poor prognosis. We studied blood lipids by comparing healthy volunteers to patients with chronic liver disease (CLD), and to patients with HCC caused by viral infections. We contrasted our findings in blood to lipid alterations in liver tumor and nontumor tissue samples from HCC patients. In blood, most lipid species were found at increased levels in CLD patients compared to healthy volunteers. This trend was mostly reversed in HCC versus CLD patients. In liver tumor tissues, levels of many lipids were decreased compared to paired nontumor liver tissues. Differences in lipid levels were further defined by alterations in the degree of saturation in the fatty acyl chains. Some lipids, including free fatty acids, saturated lysophosphatidylcholines and saturated triacylglycerides, showed a continuous trend in the transition from the blood of healthy controls to CLD and HCC patients. For HCC patients, phosphatidylglycerides showed similar alterations in both blood and tissues. Abstract Hepatocellular carcinoma (HCC) is a worldwide health problem. HCC patients show a 50% mortality within two years of diagnosis. To better understand the molecular pathogenesis at the level of lipid metabolism, untargeted UPLC MS—QTOF lipidomics data were acquired from resected human HCC tissues and their paired nontumor hepatic tissues (n = 46). Blood samples of the same HCC subjects (n = 23) were compared to chronic liver disease (CLD) (n = 15) and healthy control (n = 15) blood samples. The participants were recruited from the National Liver Institute in Egypt. The lipidomics data yielded 604 identified lipids that were divided into six super classes. Five-hundred and twenty-four blood lipids were found as significantly differentiated (p < 0.05 and qFDR p < 0.1) between the three study groups. In the blood of CLD patients compared to healthy control subjects, almost all lipid classes were significantly upregulated. In CLD patients, triacylglycerides were found as the most significantly upregulated lipid class at qFDR p = 1.3 × 10−56, followed by phosphatidylcholines at qFDR p = 3.3 × 10−51 and plasmalogens at qFDR p = 1.8 × 10-46. In contrast, almost all blood lipids were significantly downregulated in HCC patients compared to CLD patients, and in HCC tissues compared to nontumor hepatic tissues. Ceramides were found as the most significant lipid class (qFDR p = 1 × 10−14) followed by phosphatidylglycerols (qFDR p = 3 × 10−9), phosphatidylcholines and plasmalogens. Despite these major differences, there were also common trends in the transitions between healthy controls, CLD and HCC patients. In blood, several mostly saturated triacylglycerides showed a continued increase in the trajectory towards HCC, accompanied by reduced levels of saturated free fatty acids and saturated lysophospatidylcholines. In contrast, the largest overlaps of lipid alterations that were found in both HCC tissue and blood comparisons were decreased levels of phosphatidylglycerols and sphingolipids. This study highlights the specific impact of HCC tumors on the circulating lipids. Such data may be used to target lipid metabolism for prevention, early detection and treatment of HCC in the background of viral-related CLD etiology.
Collapse
|