1
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
2
|
Call CC, Jouppi RJ, Emery Tavernier RL, Grace JL, Sweeney GM, Conlon RPK, Ferguson EA, Levine MD. Pregnancy Eating Attitudes-Questionnaire (PEA-Q): Exploratory factor analysis and psychometric performance in a pregnant community sample with body mass index ≥ 25. Appetite 2024; 206:107828. [PMID: 39694418 DOI: 10.1016/j.appet.2024.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Pregnancy is characterized by biopsychosocial changes that impact appetite, eating and weight. Understanding pregnant individuals' attitudes toward eating and weight can provide insight into prenatal health behavior. Accordingly, we developed and performed initial psychometric testing of a self-report measure, the Pregnancy Eating Attitudes-Questionnaire (PEA-Q), among individuals with pre-pregnancy BMI≥25. Pregnant participants with pre-pregnancy BMI≥25 (N = 213), who predominantly identified as racially minoritized (51% Black/African American) and lower income (66% ≤$30,000/year), enrolled in a longitudinal study. Participants completed 25 candidate PEA-Q items and eating- and weight-related measures. We conducted exploratory factor analysis to determine PEA-Q factor structure, calculated internal consistency coefficients of the extracted factors, and assessed convergent and discriminant validity. An 11-item, three-factor solution produced excellent model fit. Factors were interpreted as Permissive Eating and Weight Attitudes (e.g., "Pregnancy is a 'free pass' to eat any type of food that I want; " α = .82), Intentional Eating Changes (e.g., "I need to eat more food each day because I am pregnant; " α = .81), and Lack of Worry about Eating and Weight (e.g., "I am not concerned about eating too much now that I am pregnant; " α = .83). Each factor showed small-to-moderate correlations with measures of gestational weight gain and/or dietary intake and was not correlated with eating pathology measures, demonstrating adequate convergent and discriminant validity, respectively. This novel self-report measure seems to adequately capture pregnancy-related attitudes toward eating and weight among pregnant individuals with BMI≥25. Further testing is required to confirm these preliminary findings and determine generalizability.
Collapse
Affiliation(s)
- Christine C Call
- University of Pittsburgh, Department of Psychiatry, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA.
| | - Riley J Jouppi
- University of Pittsburgh, Department of Psychology, 210 South Bouquet Street, Pittsburgh, PA, 15260, USA
| | - Rebecca L Emery Tavernier
- Weitzman Institute, Moses Weitzman Health System, 1575 I St NW, Washington DC, 20005, USA; University of Minnesota Medical School, Department of Family Medicine and Biobehavioral Health, 141 Smed, 1035 University Drive, Duluth, MN, 55812-3031, USA
| | - Jennifer L Grace
- University of Pittsburgh, Department of Psychiatry, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Gina M Sweeney
- University of Pittsburgh, Department of Psychiatry, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Rachel P K Conlon
- University of Pittsburgh, Department of Psychiatry, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Emma A Ferguson
- University of Pittsburgh, Department of Psychiatry, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Michele D Levine
- University of Pittsburgh, Department of Psychiatry, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA; University of Pittsburgh, Department of Psychology, 210 South Bouquet Street, Pittsburgh, PA, 15260, USA
| |
Collapse
|
3
|
Pal T, McQuillan HJ, Wragg L, Brown RSE. Hormonal Actions in the Medial Preoptic Area Governing Parental Behavior: Novel Insights From New Tools. Endocrinology 2024; 166:bqae152. [PMID: 39497459 PMCID: PMC11590663 DOI: 10.1210/endocr/bqae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Indexed: 11/27/2024]
Abstract
The importance of hormones in mediating a behavioral transition in mammals from a virgin or nonparenting state to parental state was established around 50 years ago. Extensive research has since revealed a highly conserved neural circuit that underlies parental behavior both between sexes and between mammalian species. Within this circuit, hormonal action in the medial preoptic area of the hypothalamus (MPOA) has been shown to be key in timing the onset of parental behavior with the birth of offspring. However, the mechanism underlying how hormones act in the MPOA to facilitate this change in behavior has been unclear. Technical advances in neuroscience, including single cell sequencing, novel transgenic approaches, calcium imaging, and optogenetics, have recently been harnessed to reveal new insights into maternal behavior. This review aims to highlight how the use of these tools has shaped our understanding about which aspects of maternal behavior are regulated by specific hormone activity within the MPOA, how hormone-sensitive MPOA neurons integrate within the wider neural circuit that governs maternal behavior, and how maternal hormones drive changes in MPOA neuronal function during different reproductive states. Finally, we review our current understanding of hormonal modulation of MPOA-mediated paternal behavior in males.
Collapse
Affiliation(s)
- Tapasya Pal
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Henry J McQuillan
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Logan Wragg
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Rosemary S E Brown
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
Luo Y, Meng X, Cui L, Wang S. Circadian Regulation of Lipid Metabolism during Pregnancy. Int J Mol Sci 2024; 25:11491. [PMID: 39519044 PMCID: PMC11545986 DOI: 10.3390/ijms252111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
A cluster of metabolic changes occur to provide energy for fetal growth and development during pregnancy. There is a burgeoning body of research highlighting the pivotal role of circadian rhythms in the pathogenesis of metabolic disorders and lipid homeostasis in mammals. Perturbations of the circadian system and lipid metabolism during gestation might be responsible for a variety of adverse reproductive outcomes comprising miscarriage, gestational diabetes mellitus, and preeclampsia. Growing studies have confirmed that resynchronizing circadian rhythms might alleviate metabolic disturbance. However, there is no clear evidence regarding the specific mechanisms by which the diurnal rhythm regulates lipid metabolism during pregnancy. In this review, we summarize previous knowledge on the strong interaction among the circadian clock, lipid metabolism, and pregnancy. Analyzing the circadian clock genes will improve our understanding of how circadian rhythms are implicated in complex lipid metabolic disorders during pregnancy. Exploring the potential of resynchronizing these circadian rhythms to disrupt abnormal lipid metabolism could also result in a breakthrough in reducing adverse pregnancy outcomes.
Collapse
Affiliation(s)
| | | | - Liyuan Cui
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China; (Y.L.); (X.M.)
| | - Songcun Wang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China; (Y.L.); (X.M.)
| |
Collapse
|
5
|
Page AJ. Plasticity of gastrointestinal vagal afferents in terms of feeding-related physiology and pathophysiology. J Physiol 2024; 602:4763-4776. [PMID: 37737742 DOI: 10.1113/jp284075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Gastrointestinal vagal afferents play an important role in communicating food related information from the gut to the brain. This information initiates vago-vagal reflexes essential for gut functions, including gut motility and secretions. These afferents also play a role in energy homeostasis, signalling the arrival, amount and nutrient composition of a meal to the central nervous system where it is processed ultimately leading to termination of a meal. Vagal afferent responses to food related stimuli demonstrate a high degree of plasticity, responding to short term changes in nutritional demand, such as the fluctuations that occur across a 24-hr or in response to a fast, as well as long term changes in energy demand, such as occurs during pregnancy. This plasticity is disrupted in disease states, such as obesity or chronic stress where there is hypo- and hypersensitivity of these afferents, respectively. Improved understanding of the plasticity of these afferents will enable identification of new treatment options for diseases associated with vagal afferent function.
Collapse
Affiliation(s)
- Amanda J Page
- Vagal Afferent Research Group, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Catalbas K, Pattnaik T, Congdon S, Nelson C, Villano LC, Sweeney P. Hypothalamic AgRP neurons regulate the hyperphagia of lactation. Mol Metab 2024; 86:101975. [PMID: 38925247 PMCID: PMC11268337 DOI: 10.1016/j.molmet.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE The lactational period is associated with profound hyperphagia to accommodate the energy demands of nursing. These changes are important for the long-term metabolic health of the mother and children as altered feeding during lactation increases the risk of mothers and offspring developing metabolic disorders later in life. However, the specific behavioral mechanisms and neural circuitry mediating the hyperphagia of lactation are incompletely understood. METHODS Here, we utilized home cage feeding devices to characterize the dynamics of feeding behavior in lactating mice. A combination of pharmacological and behavioral assays were utilized to determine how lactation alters meal structure, circadian aspects of feeding, hedonic feeding, and sensitivity to hunger and satiety signals in lactating mice. Finally, we utilized chemogenetic, immunohistochemical, and in vivo imaging approaches to characterize the role of hypothalamic agouti-related peptide (AgRP) neurons in lactational-hyperphagia. RESULTS The lactational period is associated with increased meal size, altered circadian patterns of feeding, reduced sensitivity to gut-brain satiety signals, and enhanced sensitivity to negative energy balance. Hypothalamic AgRP neurons display increased sensitivity to negative energy balance and altered in vivo activity during the lactational state. Further, using in vivo imaging approaches we demonstrate that AgRP neurons are directly activated by lactation. Chemogenetic inhibition of AgRP neurons acutely reduces feeding in lactating mice, demonstrating an important role for these neurons in lactational-hyperphagia. CONCLUSIONS Together, these results show that lactation collectively alters multiple components of feeding behavior and position AgRP neurons as an important cellular substrate mediating the hyperphagia of lactation.
Collapse
Affiliation(s)
- Kerem Catalbas
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA; University of Illinois Urbana-Champaign Neuroscience Program, USA
| | - Tanya Pattnaik
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Samuel Congdon
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Christina Nelson
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Lara C Villano
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Patrick Sweeney
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA; University of Illinois Urbana-Champaign Neuroscience Program, USA.
| |
Collapse
|
7
|
Mangliar IA, Plante AS, Chabot M, Savard C, Lemieux S, Michaud A, Weisnagel SJ, Camirand Lemyre F, Veilleux A, Morisset AS. GLP-1 response during pregnancy: variations between trimesters and associations with appetite sensations and usual energy intake. Appl Physiol Nutr Metab 2024; 49:428-436. [PMID: 38095168 DOI: 10.1139/apnm-2023-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Further research is required to understand hormonal regulation of food intake during pregnancy and its association with energy intake. The objectives are to (i) compare postprandial responses of plasma glucagon-like peptide-1 (GLP-1) between trimesters, (ii) compare postprandial appetite sensations between trimesters, and (iii) examine trimester-specific associations between GLP-1 levels, appetite sensations, and usual energy intake. At each trimester, participants (n = 26) consumed a standard test meal following a 12 h fast. Plasma GLP-1 levels were measured by enzyme-linked immunosorbent assay method at fasting and at 30, 60, 120, and 180 min postprandial. A visual analogue scale assessing appetite sensations was completed at fasting and at 15, 30, 45, 60, 90, 120, 150, and 180 min postprandial. Mean energy intake was assessed using three web-based 24 h dietary recalls at each trimester. Lower postprandial GLP-1 responses were observed in the 2nd (p = 0.004) and 3rd trimesters (p < 0.001) compared to the 1st trimester. Greater postprandial sensations of desire to eat, hunger, and prospective food consumption were noted in the 3rd trimester compared to the 1st trimester (p < 0.04, for all). Fasting GLP-1 was negatively associated with fasting appetite sensations (except fullness) at the 2nd trimester (p < 0.02, for all). Postprandially, significant associations were observed for incremental areas under the curve from 0 to 30 min between GLP-1 and fullness at the 2nd (p = 0.01) and 3rd trimesters (p = 0.03). No associations between fasting or postprandial GLP-1 and usual energy intake were observed. Overall, GLP-1 and appetite sensation responses significantly differ between trimesters, but few associations were observed between GLP-1, appetite sensations, and usual energy intake.
Collapse
Affiliation(s)
- Inès Auclair Mangliar
- School of Nutrition, Université Laval, Québec, QC, Canada
- Nutrition, Health and Society (NUTRISS) Research Centre, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, Canada
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Anne-Sophie Plante
- Nutrition, Health and Society (NUTRISS) Research Centre, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, Canada
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Myriam Chabot
- Mathematics Department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Claudia Savard
- School of Nutrition, Université Laval, Québec, QC, Canada
- Nutrition, Health and Society (NUTRISS) Research Centre, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, Canada
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Simone Lemieux
- School of Nutrition, Université Laval, Québec, QC, Canada
- Nutrition, Health and Society (NUTRISS) Research Centre, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, Canada
| | - Andréanne Michaud
- School of Nutrition, Université Laval, Québec, QC, Canada
- Nutrition, Health and Society (NUTRISS) Research Centre, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, Canada
- Quebec Heart and Lung Institute, Université Laval, Québec, QC, Canada
| | - S John Weisnagel
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Faculty of Medecine, Université Laval, Québec, QC, Canada
| | - Félix Camirand Lemyre
- Mathematics Department, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Alain Veilleux
- School of Nutrition, Université Laval, Québec, QC, Canada
- Nutrition, Health and Society (NUTRISS) Research Centre, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, Canada
| | - Anne-Sophie Morisset
- School of Nutrition, Université Laval, Québec, QC, Canada
- Nutrition, Health and Society (NUTRISS) Research Centre, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, Canada
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| |
Collapse
|
8
|
Clarke GS, Li H, Ladyman SR, Young RL, Gatford KL, Page AJ. Effect of pregnancy on the expression of nutrient-sensors and satiety hormones in mice. Peptides 2024; 172:171114. [PMID: 37926186 DOI: 10.1016/j.peptides.2023.171114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Small intestinal satiation pathways involve nutrient-induced stimulation of chemoreceptors leading to release of satiety hormones from intestinal enteroendocrine cells (ECCs). Whether adaptations in these pathways contribute to increased maternal food intake during pregnancy is unknown. To determine the expression of intestinal nutrient-sensors and satiety hormone transcripts and proteins across pregnancy in mice. Female C57BL/6J mice (10-12 weeks old) were randomized to mating and then tissue collection at early- (6.5 d), mid- (12.5 d) or late-pregnancy (17.5 d), or to an unmated age matched control group. Relative transcript expression of intestinal fatty acid, peptide and amino acid and carbohydrate chemoreceptors, as well as gut hormones was determined across pregnancy. The density of G-protein coupled receptor 93 (GPR93), free fatty acid receptor (FFAR) 4, cholecystokinin (CCK) and glucagon-like peptide1 (GLP-1) immunopositive cells was then compared between non-pregnant and late-pregnant mice. Duodenal GPR93 expression was lower in late pregnant than non-pregnant mice (P < 0.05). Ileal FFAR1 expression was higher at mid- than at early- or late-pregnancy. Ileal FFAR2 expression was higher at mid-pregnancy than in early pregnancy. Although FFAR4 expression was consistently lower in late-pregnant than non-pregnant mice (P < 0.001), the density of FFAR4 immunopositive cells was higher in the jejunum of late-pregnant than non-pregnant mice. A subset of protein and fatty acid chemoreceptor transcripts undergo region-specific change during murine pregnancy, which could augment hormone release and contribute to increased food intake. Further investigations are needed to determine the functional relevance of these changes.
Collapse
Affiliation(s)
- Georgia S Clarke
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia
| | - Hui Li
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Richard L Young
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia
| | - Kathryn L Gatford
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia
| | - Amanda J Page
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia.
| |
Collapse
|
9
|
Ruggiero-Ruff RE, Le BH, Villa PA, Lainez NM, Athul SW, Das P, Ellsworth BS, Coss D. Single-Cell Transcriptomics Identifies Pituitary Gland Changes in Diet-Induced Obesity in Male Mice. Endocrinology 2024; 165:bqad196. [PMID: 38146776 PMCID: PMC10791142 DOI: 10.1210/endocr/bqad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Obesity is a chronic disease with increasing prevalence worldwide. Obesity leads to an increased risk of heart disease, stroke, and diabetes, as well as endocrine alterations, reproductive disorders, changes in basal metabolism, and stress hormone production, all of which are regulated by the pituitary. In this study, we performed single-cell RNA sequencing of pituitary glands from male mice fed control and high-fat diet (HFD) to determine obesity-mediated changes in pituitary cell populations and gene expression. We determined that HFD exposure is associated with dramatic changes in somatotrope and lactotrope populations, by increasing the proportion of somatotropes and decreasing the proportion of lactotropes. Fractions of other hormone-producing cell populations remained unaffected. Gene expression changes demonstrated that in HFD, somatotropes became more metabolically active, with increased expression of genes associated with cellular respiration, and downregulation of genes and pathways associated with cholesterol biosynthesis. Despite a lack of changes in gonadotrope fraction, genes important in the regulation of gonadotropin hormone production were significantly downregulated. Corticotropes and thyrotropes were the least affected in HFD, while melanotropes exhibited reduced proportion. Lastly, we determined that changes in plasticity and gene expression were associated with changes in hormone levels. Serum prolactin was decreased corresponding to reduced lactotrope fraction, while lower luteinizing hormone and follicle-stimulating hormone in the serum corresponded to a decrease in transcription and translation. Taken together, our study highlights diet-mediated changes in pituitary gland populations and gene expression that play a role in altered hormone levels in obesity.
Collapse
Affiliation(s)
- Rebecca E Ruggiero-Ruff
- Division of Biomedical Sciences; School of Medicine, University of California, Riverside, CA 92521, USA
| | - Brandon H Le
- Institute for Integrative Genome Biology Bioinformatics Core Facility, University of California, Riverside, CA 92521, USA
| | - Pedro A Villa
- Division of Biomedical Sciences; School of Medicine, University of California, Riverside, CA 92521, USA
| | - Nancy M Lainez
- Division of Biomedical Sciences; School of Medicine, University of California, Riverside, CA 92521, USA
| | - Sandria W Athul
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | - Pratyusa Das
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | - Buffy S Ellsworth
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | - Djurdjica Coss
- Division of Biomedical Sciences; School of Medicine, University of California, Riverside, CA 92521, USA
| |
Collapse
|
10
|
Abstract
Eating behaviours are determined by the integration of interoceptive and environmental inputs. During pregnancy, numerous physiological adaptations take place in the maternal organism to provide an adequate environment for embryonic growth. Among them, whole-body physiological remodelling directly influences eating patterns, commonly causing notable taste perception alterations, food aversions and cravings. Recurrent food cravings for and compulsive eating of highly palatable food can contribute to the development and maintenance of gestational overweight and obesity with potential adverse health consequences for the offspring. Although much is known about how maternal eating habits influence offspring health, the mechanisms that underlie changes in taste perception and food preference during pregnancy (which guide and promote feeding) are only just starting to be elucidated. Given the limited and diffuse understanding of the neurobiology of gestational eating patterns, the aim of this Review is to compile, integrate and discuss the research conducted on this topic in both experimental models and humans. This article sheds light on the mechanisms that drive changes in female feeding behaviours during distinct physiological states. Understanding these processes is crucial to improve gestational parent health and decrease the burden of metabolic and food-related diseases in future generations.
Collapse
Affiliation(s)
- Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Wang Y, Chen Y, Gesang Y, Yang Z, Wang Y, Zhao K, Han M, Li C, Ouzhu L, Wang J, Wang H, Jiang Q. Exposure of Tibetan pregnant women to antibiotics in China: A biomonitoring-based study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121439. [PMID: 36921657 DOI: 10.1016/j.envpol.2023.121439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Tibetan people are one Chinese ethnic minority living in Qinghai-Tibet Plateau with an average altitude of more than 4500 m. High altitude could cause a different antibiotic exposure, but relevant information is limited in Tibetan people. We investigated 476 Tibetan pregnant women in Lhasa, Tibet in 2021 and measured 30 antibiotics from five categories in urine, including 13 veterinary antibiotics (VAs), five human antibiotics (HAs), and 12 human/veterinary antibiotics (H/VAs). Food consumption was investigated by a brief food frequency questionnaire. Health risk was assessed by hazard quotient (HQ) and hazard index (HI) based on acceptable daily intakes (ADIs). All antibiotics were overall detected in 34.7% of urine samples with the 75th percentile concentration of 0.19 ng/mL (0.35 μg/g creatinine). HAs, VAs, and H/VAs were respectively detected in 5.3%, 13.0%, and 25.0% of urine samples, with the 95th percentiles of 0.01 ng/mL (0.01 μg/g creatinine), 0.50 ng/mL (0.99 μg/g creatinine), and 3.58 ng/mL (5.02 μg/g creatinine), respectively. Maternal age, smoking of family members, and housework time were associated with detection frequencies of HAs, VAs, or sum of all antibiotics. Pregnant women with a more frequent consumption of fresh milk, egg, yoghourt, poultry meat, and fish had a higher detection frequency of VAs or H/VAs. Only ciprofloxacin and tetracycline had a HQ of larger than one based on microbiological effect in 1.26% and 0.21% of pregnant women, respectively and a HI of larger than one was found in 1.47% of pregnant women. The findings suggested that there was an evident antibiotic exposure from various sources in Tibetan pregnant women with some basic characteristics of pregnant women as potential predictors and several animal-derived food items were important sources of exposure to antibiotic with a fraction of pregnant women in the health risk related to microbiological disruption of gut microbiota.
Collapse
Affiliation(s)
- Yuanping Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1G5Z3, Canada
| | - Yangzong Gesang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zichen Yang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yi Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ke Zhao
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Minghui Han
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Chunxia Li
- Obstetrics and Gynecology Department, Fukang Hospital, Affiliated Hospital of Tibet University, Lhasa, Tibet, 850000, China
| | - Luobu Ouzhu
- Administrative Department, Fukang Hospital, Affiliated Hospital of Tibet University, Lhasa, Tibet, 850000, China
| | - Jiwei Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Hexing Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| |
Collapse
|
12
|
Chen YE, Loy SL, Chen LW. Chrononutrition during Pregnancy and Its Association with Maternal and Offspring Outcomes: A Systematic Review and Meta-Analysis of Ramadan and Non-Ramadan Studies. Nutrients 2023; 15:nu15030756. [PMID: 36771469 PMCID: PMC9921927 DOI: 10.3390/nu15030756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Much evidence suggests that food intakes and eating patterns are major determinants of the phase of peripheral circadian clocks, and desynchronization between them is thought to contribute to the development of metabolic disorders. However, much remains to be understood about how different dimensions of chrononutrition during pregnancy affect pregnant women's and their offspring's health outcomes. Therefore, we systematically reviewed and integrated all emerging evidence on chrononutrition during pregnancy (including meal skipping, meal frequency, night eating, and (Ramadan) fasting) and their relationships with maternal and offspring outcomes. The results suggest that meal skipping and night eating during pregnancy were generally associated with adverse pregnancy and birth outcomes, whereas no strong conclusion could be reached for meal frequency. In our meta-analysis, Ramadan fasting did not seem to be related with birth weight or gestational age at birth, but evidence for other mother-offspring outcomes was inconsistent. To further elucidate the effect of chrononutrition factors on maternal and offspring health outcomes, larger and well-conducted prospective cohort and interventional studies are needed. In addition, information on covariates such as physical activity, sleep, diet quality and quantity, fasting days, fasting period per day, and trimester exposure should also be collected and considered during analysis.
Collapse
Affiliation(s)
- Yu-En Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei 10055, Taiwan
| | - See Ling Loy
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Ling-Wei Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei 10055, Taiwan
- Master of Public Health Program, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei 10055, Taiwan
- Correspondence:
| |
Collapse
|
13
|
Waclawek T, Park SQ. Potential mechanisms and modulators of food intake during pregnancy. Front Nutr 2023; 10:1032430. [PMID: 36742431 PMCID: PMC9895105 DOI: 10.3389/fnut.2023.1032430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Dietary choice during pregnancy is crucial not only for fetal development, but also for long-term health outcomes of both mother and child. During pregnancy, dramatic changes in endocrine, cognitive, and reward systems have been shown to take place. Interestingly, in different contexts, many of these mechanisms play a key role in guiding food intake. Here, we review how food intake may be impacted as a function of pregnancy-induced changes across species. We first summarize changes in endocrine and metabolic signaling in the course of pregnancy. Then, we show how these may be related to cognitive function and reward processing in humans. Finally, we link these to potential drivers of change in eating behavior throughout the course of pregnancy.
Collapse
Affiliation(s)
- Theresa Waclawek
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam, Germany
| | - Soyoung Q. Park
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam, Germany,Charité–Universitätsmedizin Berlin, Neuroscience Research Center, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany,*Correspondence: Soyoung Q. Park,
| |
Collapse
|
14
|
Pang H, Lei D, Guo Y, Yu Y, Liu T, Liu Y, Chen T, Fan C. Three categories of similarities between the placenta and cancer that can aid cancer treatment: Cells, the microenvironment, and metabolites. Front Oncol 2022; 12:977618. [PMID: 36059660 PMCID: PMC9434275 DOI: 10.3389/fonc.2022.977618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the most harmful diseases, while pregnancy is a common condition of females. Placenta is the most important organ for fetal growth, which has not been fully understand. It's well known that placenta and solid tumor have some similar biological behaviors. What's more, decidua, the microenvironment of placenta, and metabolism all undergo adaptive shift for healthy pregnancy. Interestingly, decidua and the tumor microenvironment (TME); metabolism changes during pregnancy and cancer cachexia all have underlying links. However, whether the close link between pregnancy and cancer can bring some new ideas to treat cancer is still unclear. So, in this review we note that pregnancy may offer clues to treat cancer related to three categories: from cell perspective, through the shared development process of the placenta and cancer; from microenvironment perspective, though the shared features of the decidua and TME; and from metabolism perspective, through shared metabolites changes during pregnancy and cancer cachexia. Firstly, comparing gene mutations of both placenta and cancer, which is the underlying mechanism of many similar biological behaviors, helps us understand the origin of cancer and find the key factors to restore tumorigenesis. Secondly, exploring how decidua affect placenta development and similarities of decidua and TME is helpful to reshape TME, then to inhibit cancer. Thirdly, we also illustrate the possibility that the altered metabolites during pregnancy may reverse cancer cachexia. So, some key molecules changed in circulation of pregnancy may help relieve cachexia and make survival with cancer realized.
Collapse
Affiliation(s)
- Huiyuan Pang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Lei
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuping Guo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ying Yu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yujie Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cuifang Fan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Fioravanti M, Di Giorgio G, Amato R, Bossù M, Luzzi V, Ierardo G, Polimeni A, Vozza I. Baby Food and Oral Health: Knowledge of the Existing Interaction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5799. [PMID: 35627333 PMCID: PMC9140504 DOI: 10.3390/ijerph19105799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The purpose of this study is to verify parents' knowledge of child nutrition and their awareness of the interaction between unhealthy sugars in their child's diet and caries formation. METHODS a questionnaire was proposed using Instagram to analyze type of breastfeeding; type of weaning and diet; home oral hygiene maneuvers; bad habits (use of pacifiers, bottles, and sugary substances); knowledge on the usefulness of fluoride; and first dental visit. A total of 200 parents from different regions of Italy with children aged 2 months to 6 years were contacted. Results showed that 66% parents preferred breastfeeding, while the remaining 34% chose artificial breastfeeding. Fifty percent (100 babies) started weaning at six months, 20% (40 babies) at the fifth month, 13.5% (27 babies) at the fourth month, and only 11.5% (23 babies) in a range from the seventh to ninth month of life. Oral hygiene practices were performed only by 25% of parents before eruption of the first tooth. After eruption of the first tooth, there is greater attention to home oral hygiene practices: 59% of parents carry out and teach their children daily home oral hygiene maneuvers. CONCLUSIONS it is possible to raise awareness among parents and caregivers on the importance of food education.
Collapse
Affiliation(s)
- Miriam Fioravanti
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy; (G.D.G.); (R.A.); (M.B.); (V.L.); (G.I.); (A.P.); (I.V.)
| | | | | | | | | | | | | | | |
Collapse
|