1
|
Saad MA, Rastanawi AA, El-Sahar AE, A Z El-Bahy A. Ascorbic acid Mitigates behavioural disturbances associated with letrozole-induced PCOS via switching-off JAK2/STAT5 and JAK2/ERK1/2 pathways in rat hippocampus. Steroids 2025; 213:109528. [PMID: 39528020 DOI: 10.1016/j.steroids.2024.109528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is an endocrine disorder with the highest prevalence among other disorders in sexually-active women. It is associated with broad-spectrum hormonal and metabolic disturbances with behavioural difficulties. Experimentally, letrozole administration causes similar findings. Ascorbic acid is powerful anti-oxidant; and its cellular levels decrease with "hyperglycemic and poor anti-oxidative" status, which is, a main hallmark of PCOS. Thus, ascorbic acid administration may prevent the induction of PCOS and its consequences. BASIC PROCEDURES Forty female rats were divided into four groups (n = 10 in each): normal control (CTRL), ascorbic acid (ASC), letrozole (LTZ), and ascorbic acid + letrozole (ASC + LTZ) group. Behavioural tests (Y-maze spontaneous alteration, tail suspension test, forced swimming test) were performed. In serum, hormones (testosterone, estradiol, progesterone), glycemia (blood glucose, insulin and HOMA-IR) and oxidative stress (SOD activity, GSH) markers were measured. In hippocampus, inflammation and apoptosis indicators (p-JAK2, p-STAT5, p-ERK1/2, NF-κB, BAX, Bcl2, BAX/Bcl2 ratio) and neurotransmitters (DA, 5-HT, NE, BDNF) were determined. Lastly, ovary histopathological investigation was conducted to confirm PCOS induction. PRINCIPAL RESULTS Letrozole induced PCOS with subsequent disturbances. Testosterone levels were augmented while estradiol and progesterone were declined. Fasting blood glucose, insulin, HOMA-IR and oxidative stress markers were elevated. The expression of p-JAK2, p-STAT5, p-ERK1/2, BAX and the levels of NF-κB were increased, but Bcl2 expression, monoamines and BDNF levels were lowered. Importantly, ASC restored the last mentioned parameters markedly. MAJOR CONCLUSIONS Ascorbic acid mitigated the behavioural difficulties of PCOS possibly by switching-off JAK2/STAT5 and JAK2/ERK1/2 pathways in hippocampus along with its neurotransmission-improving, hormonal-normalizing, anti-hyperglycemic and anti-oxidative effects.
Collapse
Affiliation(s)
- Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates.
| | - Alyasaa A Rastanawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Wataniya Private University, Hama, Syria.
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Toxicology, School of Pharmacy, New Giza University, Egypt.
| | - Alshaymaa A Z El-Bahy
- Department of Pharmacology and Toxicology, School of Pharmaceutical Science, University of Hertfordshire (LMS)-Hosted by Global Academic Foundation (UH-GAF), Cairo, Egypt.
| |
Collapse
|
2
|
Yang Q, Jia S, Tao J, Zhang J, Fan Z. Multiple effects of kisspeptin on neuroendocrine, reproduction, and metabolism in polycystic ovary syndrome. J Neuroendocrinol 2024:e13482. [PMID: 39694850 DOI: 10.1111/jne.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a highly prevalent and heterogeneous disease characterized by a combination of reproductive and endocrine abnormalities, often associated with metabolic and mental health disorders. The etiology and pathogenesis of PCOS remain unclear, but recent research has increasingly focused on the upstream mechanisms underlying its development. Among these, kisspeptin (KISS) signaling has emerged as a pivotal component in the regulation of the hypothalamic-pituitary-gonadal axis, with significant roles in reproductive function, energy regulation, and metabolism. Women with PCOS commonly exhibit disruptions in gonadotropin secretion, including elevated luteinizing hormone (LH) levels, imbalanced LH/follicle-stimulating hormone (FSH) ratios, and increased androgen levels, all of which are usually parallel with abnormal KISS signaling. Furthermore, alterations in the KISS/KISS1R system within the central and circulatory systems, as well as peripheral tissues, have been implicated in the development of PCOS. These changes affect multiple pathophysiological domains, including reproductive function, energy regulation, metabolic homeostasis, inflammatory response, and emotional disorders, and are further influenced by lifestyle and environmental factors. This review aims to comprehensively summarize the existing experimental and clinical evidence supporting these roles of KISS in PCOS, with the goal of establishing a foundation for future research and potential clinical applications.
Collapse
Affiliation(s)
- Qiaorui Yang
- Department of Gynecology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengxiao Jia
- Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Jing Tao
- Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Jinfu Zhang
- Department of Gynecology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Gynecology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Zhenliang Fan
- Nephrology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
3
|
Zheng R, Xiang X, Shi Y, Xie J, Xing L, Zhang T, Zhou Z, Zhang D. Gut microbiota and mycobiota change with feeding duration in mice on a high-fat and high-fructose diet. BMC Microbiol 2024; 24:504. [PMID: 39609794 PMCID: PMC11606092 DOI: 10.1186/s12866-024-03663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease (NAFLD), is becoming the most common chronic liver disease. The gut microbiome is regarded to play a crucial role in MAFLD, but the specific changes of gut microbiome, especially fungi, in different stages of MAFLD are not well understood. This study aimed to observe the longitudinal changes of colon bacteria and fungi of mice at different feeding duration of a high-fat and high-fructose diet (HFHFD), and explore the association between the changes and the progression of MAFLD. METHODS Twenty-eight male C57BL6J mice were randomly assigned to the normal diet (ND) group and HFHFD group. At the 8th and 16th weeks, mice were sacrificed to compare the diversity, composition, and co-abundance network of bacteria and fungi in colon contents among groups. RESULTS HFHFD-8W mice exhibited increases in Candida and Dorea, and decreases in Oscillospira and Prevotella in comparison to ND-8W mice, HFHFD-16W mice had increases in Bacteroides, Candida, Desulfovibrio, Dorea, Lactobacillus, and Rhodotorula, and decreases in Akkermansia, Aspergillus, Sterigmatomyces, and Vishniacozyma in comparison to ND-16W mice. And compared to HFHFD-8W mice, HFHFD-16W mice had increases in Desulfovibrio, Lactobacillus, Penicillium, and Rhodotorula, and decreases in Talaromyces and Wallemia. Spearman and GEE correlation analysis revealed that Bacteroides, Candida, Desulfovibrio, and Lactobacillus positively correlated with NAFLD activity score (NAS). CONCLUSION Gut microbiota and mycobiota undergo diverse changes at different stages of MAFLD. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Ruoyi Zheng
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, China
| | - Xingwei Xiang
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Ying Shi
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Junyan Xie
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Lin Xing
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Tao Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Zhijun Zhou
- Medical Animal Center, Xiangya Medical School, Central South University, Changsha, China.
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| |
Collapse
|
4
|
Li J, Zhang Q, Chen H, Xu D, Chen Z, Wen Y. Dynamic changes of fatty acids and (R)-dichlorprop toxicity in Arabidopsis thaliana: correlation, mechanism, and implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55522-55534. [PMID: 39235754 DOI: 10.1007/s11356-024-34888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Plant fatty acids (FAs) are critical components of lipids and play an important role in coping with pollution-induced stress. However, the relationship between the fluctuating changes of FAs and the toxic effects of pollutants is not clear. Here, we analyzed and identified 19 FAs, namely 14 medium and long chain fatty acids (MLCFAs) and 5 very long chain fatty acids (VLCFAs). First, a positive correlation between plant biomass and LCFA content was observed. Changes in unsaturation were inversely related to cell membrane permeability, which serves as an indicator of the toxic effects. In particular, the use of herbicides led to a reduction in total FA content, but caused a significant increase in free fatty acids (FFAs), which facilitate oxidative stress. In addition, supplementation with exogenous FAs, particularly linoleic and alpha-linolenic acids, effectively alleviated the toxic inhibition. (R)-dichlorprop causes abnormal FA metabolism that can be reversed by ferrostatin-1, a ferroptosis inhibitor. Under (R)-dichlorprop exposure, the balance of FA unsaturation in plants is disrupted by inhibition of FA desaturase activity, ultimately leading to ferroptosis and disruption of cell membrane integrity. This study aims to enhance the understanding of the ecotoxic effects of herbicides by examining changes in FAs. The findings will provide a scientific basis for controlling environmental risks associated with hazardous substances.
Collapse
Affiliation(s)
- Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiushui Zhang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Chen
- College of Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Zunwei Chen
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Khobragade NH, Sheth DB, Patel CA, Beladiya JV, Patel S, Dalal M. Polycystic ovary syndrome: Insights into its prevalence, diagnosis, and management with special reference to gut microbial dysbiosis. Steroids 2024; 208:109455. [PMID: 38876407 DOI: 10.1016/j.steroids.2024.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Polycystic ovary syndrome (PCOS) represents major endocrine and metabolic disorder among women largely characterized by hyperandrogenism and oligomenorrhea precipitates serious complications such as type 2 diabetes, early atherosclerosis, infertility, and endometrial cancer. Several etiological theories were proposed to define the exact cause of the PCOS, which is characterized, by the hypothalamic-pituitary axis, ovarian morphology, and release of adrenal steroid hormones, metabolic syndrome, and hereditary factors. The review explored the role of dysbiosis and the mechanisms through which microbial dysbiosis can affect PCOS development. In recent time, various research groups highlighted the role of microbial gut dysbiosis associated with obesity as potential etiological factor for the PCOS. In the present review, we reviewed the mechanisms attributed to the microbial dysbiosis and treatment approaches to deal with the situation.
Collapse
Affiliation(s)
- Nisha H Khobragade
- Research Scholar, Department of Pharmacology, Gujarat Technological University, Ahmedabad, Gujarat, India; Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Devang B Sheth
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India.
| | - Chirag A Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Jayesh V Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Sandip Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Mittal Dalal
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| |
Collapse
|
6
|
Vohra A, Karnik R, Desai M, Vyas H, Kulshrestha S, Upadhyay KK, Koringa P, Devkar R. Melatonin-mediated corrective changes in gut microbiota of experimentally chronodisrupted C57BL/6J mice. Chronobiol Int 2024; 41:548-560. [PMID: 38557404 DOI: 10.1080/07420528.2024.2329205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Chronic consumption of a high-calorie diet coupled with an altered sleep-wake cycle causes disruption of circadian clock that can impact the gut microbiome leading to metabolic syndrome and associated diseases. Herein, we investigate the effects of a high fat high fructose diet (H) alone or in combination with photoperiodic shifts induced chronodisruption (CD) on gut microbiota of C57BL/6J male mice. Further, the merits of daily evening intraperitoneal administration of melatonin in restoring gut microbiota are studied herein. Experimental groups viz. H, CD and HCD mice recorded higher levels of serum pro-inflammatory cytokines (TNF-α and IL-6) and lower levels of the anti-inflammatory cytokine, IL-10. These findings correlate with a concomitant increase in the transcripts of TLR4, TNF-α, and IL-6 in small intestine of the said groups. A decrement in mRNA levels of Ocln, ZO-1 and Vdr in these groups implied towards an altered gut permeability. These results were in agreement with the observed decrement in percentage abundance of total gut microflora and Firmicutes: Bacteroidetes (F/B) ratio. Melatonin administration accounted for lower-level inflammation (serum and gut) along with an improvement in gut permeability markers. The total abundance of gut microflora and F/B ratio showed an improvement in all the melatonin-treated groups and the same is the highlight of this study. Taken together, our study is the first to report perturbations in gut microbiota resulting due to a combination of photoperiodic shifts induced CD and a high fat high calorie diet-induced lifestyle disorder. Further, melatonin-mediated rejuvenation of gut microbiome provides prima facie evidence of its role in improving gut dysbiosis that needs a detailed scrutiny.
Collapse
Affiliation(s)
- Aliasgar Vohra
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Department of Neurology, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Rhydham Karnik
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Dr Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Mansi Desai
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, India
| | - Hitarthi Vyas
- Department of Internal Medicine, Division of Gastroenterology & Hepatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shruti Kulshrestha
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kapil Kumar Upadhyay
- Department of Internal Medicine, Division of Gastroenterology & Hepatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Prakash Koringa
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, India
| | - Ranjitsinh Devkar
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
7
|
Liu H, Tu M, Yin Z, Zhang D, Ma J, He F. Unraveling the complexity of polycystic ovary syndrome with animal models. J Genet Genomics 2024; 51:144-158. [PMID: 37777062 DOI: 10.1016/j.jgg.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a highly familial and heritable endocrine disorder. Over half of the daughters born to women with PCOS may eventually develop their own PCOS-related symptoms. Progress in the treatment of PCOS is currently hindered by the complexity of its clinical manifestations and incomplete knowledge of its etiopathogenesis. Various animal models, including experimentally induced, naturally occurring, and spontaneously arising ones, have been established to emulate a wide range of phenotypical and pathological traits of human PCOS. These studies have led to a paradigm shift in understanding the genetic, developmental, and evolutionary origins of this disorder. Furthermore, emerging evidence suggests that animal models are useful in evaluating state-of-the-art drugs and treatments for PCOS. This review aims to provide a comprehensive summary of recent studies of PCOS in animal models, highlighting the power of these disease models in understanding the biology of PCOS and aiding high-throughput approaches.
Collapse
Affiliation(s)
- Huanju Liu
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Mixue Tu
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Zhiyong Yin
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Dan Zhang
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Clinical Research Center on Birth Defect Prevention and Intervention of Zhejiang Province, Hangzhou, Zhejiang 310006, China.
| | - Jun Ma
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China.
| | - Feng He
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
8
|
Wu N, Sun Y, Qiu T, Liu J, Cao Y, Zang T, Fan X, Bai J, Huang J, Liu Y. Associations of nighttime light exposure during pregnancy with maternal and neonatal gut microbiota: A cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168292. [PMID: 37924882 DOI: 10.1016/j.scitotenv.2023.168292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Nighttime light (NTL) pollution has been reported as a risk factor for human health. However, the relationship between NTL and gut microbiota has not been reported in pregnant women and neonates. This study was conducted to investigate the relationship between NTL and gut microbial diversity and composition in mothers and their neonates. METHODS This study analyzed 44 mothers and 28 newborns. The composition of gut microbiota was evaluated using 16S rRNA V3-V4 sequencing. The monthly mean NTL exposure during pregnancy was respectively calculated based on each participant's residential address (NTLpoint) and a concentric 1 km radius buffer zone around their address (NTL1000m). The relationships between NTL exposure and gut microbiota of mothers and newborns were assessed using generalized linear models. RESULTS NTL exposure during pregnancy was not associated with alpha diversity of mothers or neonates. For mothers, results revealed that after adjusting for covariates, NTLpoint was negatively correlated with Prevotella_2 (p = 0.004, FDR-adjusted p = 0.030) and norank_o__Gastranaerophilales (p = 0.018, FDR-adjusted p = 0.049) at the genus level. In addition, Lachnospira (p = 0.036, FDR-adjusted p = 0.052) and Coprococcus_3 (p = 0.025, FDR-adjusted p = 0.052) were positively correlated with NTLpoint. The association between Coprococcus_3 (p = 0.01, FDR-adjusted p = 0.046) and NTLpoint persisted even after controlling for covariates. For neonates, Thauera was positively associated with NTLpoint (p = 0.015) and NTL1000m (p = 0.028), however, after adjusting for covariates and FDR correction, Thauera was not significantly associated with NTLpoint and NTL1000m. CONCLUSIONS This study found that NTL exposure was associated with maternal gut microbiota composition. Our findings provide a foundation for the potential impact of NTL exposure on maternal gut microbiota from a microbiological perspective. More population-based validation of the effects of NTL exposure on human gut microbiota is needed in future.
Collapse
Affiliation(s)
- Ni Wu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Yu Sun
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Tianlai Qiu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| | - Jun Liu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| | - Yanan Cao
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| | - Tianzi Zang
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| | - Xiaoxiao Fan
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA 30322, USA.
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing 100191, China.
| | - Yanqun Liu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China; Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China.
| |
Collapse
|
9
|
Zhao Y, Ma XM, Ren M, Liu H, Duan HL, Liu XL, Gao ZS, Ma YL. Central blockage of sympathetic nerves inhibits the abnormal vital signs and disturbance of the gut microbiota caused by continuous light exposure. Heliyon 2024; 10:e22742. [PMID: 38192835 PMCID: PMC10772574 DOI: 10.1016/j.heliyon.2023.e22742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024] Open
Abstract
Background Continuous light exposure increases sympathetic excitation in rats, leading to hypertension, left ventricular hypertrophy, and fibrosis. This study was aimed to investigate whether continuous light exposure causes destabilization of vital signs and gut microbiota (GM) in Sprague Dawley (SD) rats and whether clonidine hydrochloride (CH), a central sympathetic depressant drug, could prevent these changes. Methods Eight-week-old male SD rats were divided into three groups with different interventions for 14 weeks: control group (CG), 2-mL pure water gavaged daily while on a normal 12-h light/dark cycle; continuous illumination group (CI), 2-mL pure water gavaged daily while receiving continuous exposure to light (300 lx); and drug administration group (DA), CH (10 μg/kg) gavaged daily while receiving continuous exposure to light (300 lx). Results The results showed that blood pressure, heart rate, and body weight were significantly higher in the CI group than in the CG and DA groups (P < 0.05). Moreover, the Shannon index was higher in the DA group than in the CI group (P = 0.012). The beta diversity index in the CG group was significantly higher in the CI group (P = 0.039). The pairwise comparison results of the linear discriminant analysis effect size showed that Oscillospirales were enriched in the DA group, whereas the Prevotellaceae lineage (family level) > Prevotella (genus level) > Prevotellaceae_bacterium (species level) were enriched in the CI group. The Muribaculaceae family was more abundant in the CG group than in the CI group. Conclusion Sympathetic nerve inhibition restored the abnormal vital signs and GM changes under continuous light exposure.
Collapse
Affiliation(s)
- Yi Zhao
- Qinghai University, Xining 810001, China
| | - Xu-ming Ma
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Ming Ren
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810001, China
| | - Huiqin Liu
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810001, China
| | | | | | | | - Yu-lan Ma
- Qinghai Cardio-Cerebrovascular Specialty Hospital, Qinghai High Altitude Medical Research Institute, Xining, 810012, China
| |
Collapse
|
10
|
Shirolapov IV, Gribkova OV, Kovalev AM, Shafigullina LR, Ulivanova VA, Kozlov AV, Ereshchenko AA, Lyamin AV, Zakharov AV. [The interactions along the microbiota-gut-brain axis in the regulation of circadian rhythms, sleep mechanisms and disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:79-86. [PMID: 38934670 DOI: 10.17116/jnevro202412405279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The bidirectional relationship between cerebral structures and the gastrointestinal tract involving the microbiota embraces the scientific concept of the microbiota-gut-brain axis. The gut microbiome plays an important role in many physiological and biochemical processes of the human body, in the immune response and maintenance of homeostasis, as well as in the regulation of circadian rhythms. There is a relationship between the higher prevalence of a number of neurological disorders, sleep disorders and changes in the intestinal microbiota, which actualizes the study of the complex mechanisms of such correlation for the development of new treatment and prevention strategies. Environmental factors associated with excessive light exposure can aggravate the gut dysbiosis of intestinal microflora, and as a result, lead to sleep disturbances. This review examines the integrative mechanisms of sleep regulation associated with the gut microbiota (the role of neurotransmitters, short-chain fatty acids, unconjugated bile acids, bacterial cell wall components, cytokines). Taking into account the influence of gut dysbiosis as a risk factor in the development of various diseases, the authors systematize key aspects and modern scientific data on the importance of microflora balance to ensure optimal interaction along the microbiota-gut-brain axis in the context of the regulatory role of the sleep-wake cycle and its disorders.
Collapse
Affiliation(s)
| | | | - A M Kovalev
- Samara State Medical University, Samara, Russia
| | | | | | - A V Kozlov
- Samara State Medical University, Samara, Russia
| | | | - A V Lyamin
- Samara State Medical University, Samara, Russia
| | | |
Collapse
|
11
|
Zhu Z, Zhang J, Yuan G, Jiang M, Zhang X, Zhang K, Lu X, Guo H, Yang H, Jin G, Shi H, Du J, Xu W, Wang S, Guo H, Jiang K, Zhang Z. Association between mobile phone addiction, sleep disorder and the gut microbiota: a short-term prospective observational study. Front Microbiol 2023; 14:1323116. [PMID: 38169804 PMCID: PMC10758492 DOI: 10.3389/fmicb.2023.1323116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Bidirectional communication between the gut microbiota and the brain has sparked interest in exploring the link between mobile phone addiction (MPA) and sleep disorders (SD) in microbiome research. However, investigating the role of gut microbiota in this relationship using animal models presents challenges due to the unique nature of MPA, and human research in this area is scarce. We recruited 99 healthy college students to evaluate the gut microbiome using 16S rRNA gene amplicon sequencing and assess MPA and SD at baseline and after a two-month follow-up. Multiple covariate-adjusted statistical models, including linear regression, permutational multivariate analysis of variance and so on, were employed to determine microbiome associations with MPA at baseline and changes in SD at follow-up. Our findings revealed negative associations between MPA and three alpha diversity metrics, along with alterations in bacterial composition. MPA showed negative associations with the relative abundance of Bacteroidetes, while displaying positive associations with Actinobacteria and Bifidobacteriales. Conversely, Actinobacteria exhibited a negative association with increased SD. This study has established a significant link between MPA and a decrease in the alpha diversity of the gut microbiota. Actinobacteria was associated with MPA and SD, respectively. Additional investigation is needed to fully comprehend the relationship between comorbid behavioral disorders and the gut microbiota.
Collapse
Affiliation(s)
- Zhihui Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jianghui Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guojing Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Meng Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Business Development Department, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xueqing Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Kexin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiaoyan Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Haiyun Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Huayu Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Guifang Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Haiyan Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jun Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Wenzhuo Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Sainan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Hao Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Kele Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Zhihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Lipo-nutritional quality of pork: the lipid composition, regulation, and molecular mechanisms of fatty acid deposition. ANIMAL NUTRITION 2023; 13:373-385. [DOI: 10.1016/j.aninu.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/13/2022] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
|
13
|
Zhang L, Fernando T, Liu Y, Liu Y, Zhu X, Li M, Shi Y. Neurokinin 3 receptor antagonist-induced adipocyte activation improves obesity and metabolism in PCOS-like mice. Life Sci 2022; 310:121078. [DOI: 10.1016/j.lfs.2022.121078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
|