1
|
van Solinge TS, Oh J, Abels E, Koch P, Breakefield XO, Weissleder R, Broekman MLD. Probing the glioma micro-environment: Analysis using biopsy in combination with ultra-fast cyclic immunolabeling. Neoplasia 2024; 57:101051. [PMID: 39270598 PMCID: PMC11415813 DOI: 10.1016/j.neo.2024.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The interaction between gliomas and the immune system is poorly understood and thus hindering development of effective immunotherapies for glioma patients. The immune response is highly variable during tumor development, and affected by therapies such as surgery, radiation, and chemotherapy. Currently, analysis of these local changes is difficult due to poor accessibility of the tumor and high-morbidity of sampling. In this study, we developed a model for repeat-biopsy in mice to study these local immunological changes over time. Using fine needle biopsy we were able to safely and repeatedly collect cells from intracranial tumors in mice. Ultra-fast cycling technology (FAST) was used for multi-cycle immunofluorescence of retrieved cells, and provided insights in the changing immune response over time. The combination of these techniques can be utilized to study changes in the immune response in glioma or other intracranial diseases over time, and in response to treatment within the same animal.
Collapse
Affiliation(s)
- Thomas S van Solinge
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Erik Abels
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Koch
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Marike L D Broekman
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands; Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands.
| |
Collapse
|
2
|
Suvarnapathaki S, Serrano-Farias A, Dudley JC, Bettegowda C, Rincon-Torroella J. Unlocking the Potential of Circulating miRNAs as Biomarkers in Glioblastoma. Life (Basel) 2024; 14:1312. [PMID: 39459612 PMCID: PMC11509808 DOI: 10.3390/life14101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Using microRNAs (miRNAs) as potential circulating biomarkers in diagnosing and treating glioblastoma (GBM) has garnered a lot of scientific and clinical impetus in the past decade. As an aggressive primary brain tumor, GBM poses challenges in early detection and effective treatment with significant current diagnostic constraints and limited therapeutic strategies. MiRNA dysregulation is present in GBM. The intricate involvement of miRNAs in altering cell proliferation, invasion, and immune escape makes them prospective candidates for identifying and monitoring GBM diagnosis and response to treatment. These miRNAs could play a dual role, acting as both potential diagnostic markers and targets for therapy. By modulating the activity of various oncogenic and tumor-suppressive proteins, miRNAs create opportunities for precision medicine and targeted therapies in GBM. This review centers on the critical role and function of circulating miRNA biomarkers in GBM diagnosis and treatment. It highlights their significance in providing insights into disease progression, aiding in early diagnosis, and potential use as targets for novel therapeutic interventions. Ultimately, the study of miRNA would contribute to improving patient outcomes in the challenging landscape of GBM management.
Collapse
Affiliation(s)
- Sanika Suvarnapathaki
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Antolin Serrano-Farias
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Jonathan C. Dudley
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| |
Collapse
|
3
|
Jun Wei JL, Kamarudin AA, Hong Soon B, Palaniandy K, Bakar AA, Thanabalan J, Athi Kumar RK, Jaafar AS, Paramasvaran S, Fadzil F, Abu N. Profiling of autoantibodies in the sera of glioblastoma patients. Immunotherapy 2024; 16:1049-1056. [PMID: 39263942 PMCID: PMC11492691 DOI: 10.1080/1750743x.2024.2390350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Aim: This study aimed to determine the expression pattern of autoantibody proteins from the serum of grade IV glioblastoma patients.Materials & methods: We performed high throughput antibody profiling via the Sengenics i-Ome® Protein Array to determine the differentially expressed autoantibodies.Results: The results portrayed that anti-COL4A3BP and anti-HSP90AA1 were among the upregulated autoantibodies in glioblastoma sera.Conclusion: The selected autoantibodies offer promising targets for future glioblastoma pathogenesis. However, further validation is required to elucidate the autoantibody signature in glioblastoma patients.
Collapse
Affiliation(s)
- Johannes Low Jun Wei
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Ammar Akram Kamarudin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Bee Hong Soon
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Kamalanathan Palaniandy
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Azizi Abu Bakar
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Jegan Thanabalan
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Ramesh Kumar Athi Kumar
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Ainul Syahrilfazli Jaafar
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Sanmugarajah Paramasvaran
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Farizal Fadzil
- Neurosurgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Joyce T, Tasci E, Jagasia S, Shephard J, Chappidi S, Zhuge Y, Zhang L, Cooley Zgela T, Sproull M, Mackey M, Camphausen K, Krauze AV. Serum CD133-Associated Proteins Identified by Machine Learning Are Connected to Neural Development, Cancer Pathways, and 12-Month Survival in Glioblastoma. Cancers (Basel) 2024; 16:2740. [PMID: 39123468 PMCID: PMC11311306 DOI: 10.3390/cancers16152740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Glioma is the most prevalent type of primary central nervous system cancer, while glioblastoma (GBM) is its most aggressive variant, with a median survival of only 15 months when treated with maximal surgical resection followed by chemoradiation therapy (CRT). CD133 is a potentially significant GBM biomarker. However, current clinical biomarker studies rely on invasive tissue samples. These make prolonged data acquisition impossible, resulting in increased interest in the use of liquid biopsies. Our study, analyzed 7289 serum proteins from 109 patients with pathology-proven GBM obtained prior to CRT using the aptamer-based SOMAScan® proteomic assay technology. We developed a novel methodology that identified 24 proteins linked to both serum CD133 and 12-month overall survival (OS) through a multi-step machine learning (ML) analysis. These identified proteins were subsequently subjected to survival and clustering evaluations, categorizing patients into five risk groups that accurately predicted 12-month OS based on their protein profiles. Most of these proteins are involved in brain function, neural development, and/or cancer biology signaling, highlighting their significance and potential predictive value. Identifying these proteins provides a valuable foundation for future serum investigations as validation of clinically applicable GBM biomarkers can unlock immense potential for diagnostics and treatment monitoring.
Collapse
Affiliation(s)
- Thomas Joyce
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; (T.J.); (S.J.); (J.S.); (S.C.); (Y.Z.); (L.Z.); (T.C.Z.); (M.S.); (M.M.); (K.C.)
| | - Erdal Tasci
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; (T.J.); (S.J.); (J.S.); (S.C.); (Y.Z.); (L.Z.); (T.C.Z.); (M.S.); (M.M.); (K.C.)
| | - Sarisha Jagasia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; (T.J.); (S.J.); (J.S.); (S.C.); (Y.Z.); (L.Z.); (T.C.Z.); (M.S.); (M.M.); (K.C.)
| | - Jason Shephard
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; (T.J.); (S.J.); (J.S.); (S.C.); (Y.Z.); (L.Z.); (T.C.Z.); (M.S.); (M.M.); (K.C.)
| | - Shreya Chappidi
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; (T.J.); (S.J.); (J.S.); (S.C.); (Y.Z.); (L.Z.); (T.C.Z.); (M.S.); (M.M.); (K.C.)
- Department of Computer Science and Technology, University of Cambridge, 15 JJ Thomson Ave, Cambridge CB3 0FD, UK
| | - Ying Zhuge
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; (T.J.); (S.J.); (J.S.); (S.C.); (Y.Z.); (L.Z.); (T.C.Z.); (M.S.); (M.M.); (K.C.)
| | - Longze Zhang
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; (T.J.); (S.J.); (J.S.); (S.C.); (Y.Z.); (L.Z.); (T.C.Z.); (M.S.); (M.M.); (K.C.)
| | - Theresa Cooley Zgela
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; (T.J.); (S.J.); (J.S.); (S.C.); (Y.Z.); (L.Z.); (T.C.Z.); (M.S.); (M.M.); (K.C.)
| | - Mary Sproull
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; (T.J.); (S.J.); (J.S.); (S.C.); (Y.Z.); (L.Z.); (T.C.Z.); (M.S.); (M.M.); (K.C.)
| | - Megan Mackey
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; (T.J.); (S.J.); (J.S.); (S.C.); (Y.Z.); (L.Z.); (T.C.Z.); (M.S.); (M.M.); (K.C.)
| | - Kevin Camphausen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; (T.J.); (S.J.); (J.S.); (S.C.); (Y.Z.); (L.Z.); (T.C.Z.); (M.S.); (M.M.); (K.C.)
| | - Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; (T.J.); (S.J.); (J.S.); (S.C.); (Y.Z.); (L.Z.); (T.C.Z.); (M.S.); (M.M.); (K.C.)
| |
Collapse
|
5
|
Rackles E, Zaccheroni E, Lopez PH, Faletti S, Bene MD, DiMeco F, Pelicci G, Falcon‐Perez JM. Increased levels of circulating cell-free double-stranded nucleic acids in the plasma of glioblastoma patients. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e168. [PMID: 39100684 PMCID: PMC11294885 DOI: 10.1002/jex2.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Circulating cell-free nucleic acids are considered a promising source of biomarkers for diseases and cancer. Liquid biopsy biomarkers for brain tumours represent a major, still unmet, clinical need. In plasma, nucleic acids can be free or be associated with extracellular vesicles (EVs). Here we report an easy and reproducible method to analyse cell-free nucleic acids in plasma and EVs by conventional flow cytometry easy to translate into the clinics. Nucleic acids associated with the EVs or present in plasma samples are stained by Pyronin Y, which is a fluorescent dye that is preferably binding double-stranded nucleic acids. Fluorescent staining of EVs isolated from cell-conditioned media is suitable for DNA and RNA detection by flow cytometry. The nucleic acids are partially protected from degradation by the EVs' membrane. Additionally, DNA and RNA can be stained in plasma samples and plasma-derived EVs. Remarkably, analysis of plasma from patients and healthy individuals reveals a difference in their nucleic acid profiles. Taken together, our results indicate that the proposed methodology, which is based on conventional direct flow cytometry, is a promising easy tool for plasma nucleic acid analysis.
Collapse
Affiliation(s)
- Elisabeth Rackles
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioSpain
| | - Elena Zaccheroni
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)IRCCSMilanItaly
| | - Patricia Hernandez Lopez
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioSpain
| | - Stefania Faletti
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)IRCCSMilanItaly
| | - Massimiliano Del Bene
- Department of NeurosurgeryFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Francesco DiMeco
- Department of NeurosurgeryFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- Department of Neurological SurgeryJohns Hopkins Medical SchoolBaltimoreMarylandUSA
| | - Giuliana Pelicci
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)IRCCSMilanItaly
- Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Juan M Falcon‐Perez
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd)MadridSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
6
|
Seyhan AA. Circulating Liquid Biopsy Biomarkers in Glioblastoma: Advances and Challenges. Int J Mol Sci 2024; 25:7974. [PMID: 39063215 PMCID: PMC11277426 DOI: 10.3390/ijms25147974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gliomas, particularly glioblastoma (GBM), represent the most prevalent and aggressive tumors of the central nervous system (CNS). Despite recent treatment advancements, patient survival rates remain low. The diagnosis of GBM traditionally relies on neuroimaging methods such as magnetic resonance imaging (MRI) or computed tomography (CT) scans and postoperative confirmation via histopathological and molecular analysis. Imaging techniques struggle to differentiate between tumor progression and treatment-related changes, leading to potential misinterpretation and treatment delays. Similarly, tissue biopsies, while informative, are invasive and not suitable for monitoring ongoing treatments. These challenges have led to the emergence of liquid biopsy, particularly through blood samples, as a promising alternative for GBM diagnosis and monitoring. Presently, blood and cerebrospinal fluid (CSF) sampling offers a minimally invasive means of obtaining tumor-related information to guide therapy. The idea that blood or any biofluid tests can be used to screen many cancer types has huge potential. Tumors release various components into the bloodstream or other biofluids, including cell-free nucleic acids such as microRNAs (miRNAs), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), proteins, extracellular vesicles (EVs) or exosomes, metabolites, and other factors. These factors have been shown to cross the blood-brain barrier (BBB), presenting an opportunity for the minimally invasive monitoring of GBM as well as for the real-time assessment of distinct genetic, epigenetic, transcriptomic, proteomic, and metabolomic changes associated with brain tumors. Despite their potential, the clinical utility of liquid biopsy-based circulating biomarkers is somewhat constrained by limitations such as the absence of standardized methodologies for blood or CSF collection, analyte extraction, analysis methods, and small cohort sizes. Additionally, tissue biopsies offer more precise insights into tumor morphology and the microenvironment. Therefore, the objective of a liquid biopsy should be to complement and enhance the diagnostic accuracy and monitoring of GBM patients by providing additional information alongside traditional tissue biopsies. Moreover, utilizing a combination of diverse biomarker types may enhance clinical effectiveness compared to solely relying on one biomarker category, potentially improving diagnostic sensitivity and specificity and addressing some of the existing limitations associated with liquid biomarkers for GBM. This review presents an overview of the latest research on circulating biomarkers found in GBM blood or CSF samples, discusses their potential as diagnostic, predictive, and prognostic indicators, and discusses associated challenges and future perspectives.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
7
|
van Solinge TS, Oh J, Abels E, Koch P, Breakefield XO, Weissleder R, Broekman MLD. Probing the glioma micro-environment: analysis using biopsy in combination with ultra-fast cyclic immunolabeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599078. [PMID: 38948851 PMCID: PMC11212862 DOI: 10.1101/2024.06.15.599078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The interaction between gliomas and the immune system is poorly understood and thus hindering development of effective immunotherapies for glioma patients. The immune response is highly variable during tumor development, and affected by therapies such as surgery, radiation, and chemotherapy. Currently, analysis of these local changes is difficult due to poor accessibility of the tumor and high-morbidity of sampling. In this study, we developed a model for repeat-biopsy in mice to study these local immunological changes over time. Using fine needle biopsy we were able to safely and repeatedly collect cells from intracranial tumors in mice. Ultra-fast cycling technology (FAST) was used for multi-cycle immunofluorescence of retrieved cells, and provided insights in the changing immune response over time. The combination of these techniques can be utilized to study changes in the immune response in glioma or other intracranial diseases over time, and in response to treatment within the same animal.
Collapse
Affiliation(s)
- Thomas S van Solinge
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Juhyun Oh
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Systems Biology, Massachusetts General Hospital, Boston , Massachusetts, USA
| | - Erik Abels
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Koch
- Center for Systems Biology, Massachusetts General Hospital, Boston , Massachusetts, USA
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston , Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marike L D Broekman
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|
8
|
Indira Chandran V, Gopala S, Venkat EH, Kjolby M, Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol 2024; 8:103. [PMID: 38760427 PMCID: PMC11101656 DOI: 10.1038/s41698-024-00600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Glioblastoma is a highly heterogeneous tumor whose pathophysiological complexities dictate both the diagnosis of disease severity as well as response to therapy. Conventional diagnostic tools and standard treatment regimens have only managed to achieve limited success in the management of patients suspected of glioblastoma. Extracellular vesicles are an emerging liquid biopsy tool that has shown great promise in resolving the limitations presented by the heterogeneous nature of glioblastoma. Here we discuss the contrasting yet interdependent dual role of extracellular vesicles as communication agents that contribute to the progression of glioblastoma by creating a heterogeneous microenvironment and as a liquid biopsy tool providing an opportunity to accurately identify the disease severity and progression.
Collapse
Affiliation(s)
- Vineesh Indira Chandran
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Easwer Hariharan Venkat
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Mads Kjolby
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology and Steno Diabetes Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Roda D, Veiga P, Melo JB, Carreira IM, Ribeiro IP. Principles in the Management of Glioblastoma. Genes (Basel) 2024; 15:501. [PMID: 38674436 PMCID: PMC11050118 DOI: 10.3390/genes15040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma, the most aggressive and common malignant primary brain tumour, is characterized by infiltrative growth, abundant vascularization, and aggressive clinical evolution. Patients with glioblastoma often face poor prognoses, with a median survival of approximately 15 months. Technological progress and the subsequent improvement in understanding the pathophysiology of these tumours have not translated into significant achievements in therapies or survival outcomes for patients. Progress in molecular profiling has yielded new omics data for a more refined classification of glioblastoma. Several typical genetic and epigenetic alterations in glioblastoma include mutations in genes regulating receptor tyrosine kinase (RTK)/rat sarcoma (RAS)/phosphoinositide 3-kinase (PI3K), p53, and retinoblastoma protein (RB) signalling, as well as mutation of isocitrate dehydrogenase (IDH), methylation of O6-methylguanine-DNA methyltransferase (MGMT), amplification of epidermal growth factor receptor vIII, and codeletion of 1p/19q. Certain microRNAs, such as miR-10b and miR-21, have also been identified as prognostic biomarkers. Effective treatment options for glioblastoma are limited. Surgery, radiotherapy, and alkylating agent chemotherapy remain the primary pillars of treatment. Only promoter methylation of the gene MGMT predicts the benefit from alkylating chemotherapy with temozolomide and it guides the choice of first-line treatment in elderly patients. Several targeted strategies based on tumour-intrinsic dominant signalling pathways and antigenic tumour profiles are under investigation in clinical trials. This review explores the potential genetic and epigenetic biomarkers that could be deployed as analytical tools in the diagnosis and prognostication of glioblastoma. Recent clinical advancements in treating glioblastoma are also discussed, along with the potential of liquid biopsies to advance personalized medicine in the field of glioblastoma, highlighting the challenges and promises for the future.
Collapse
Affiliation(s)
- Domingos Roda
- Algarve Radiation Oncology Unit—Joaquim Chaves Saúde (JCS), 8000-316 Faro, Portugal;
| | - Pedro Veiga
- Institute of Cellular and Molecular Biology, Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (P.V.); (J.B.M.)
| | - Joana Barbosa Melo
- Institute of Cellular and Molecular Biology, Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (P.V.); (J.B.M.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Marques Carreira
- Institute of Cellular and Molecular Biology, Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (P.V.); (J.B.M.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ilda Patrícia Ribeiro
- Institute of Cellular and Molecular Biology, Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (P.V.); (J.B.M.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
10
|
Vatankhahan H, Esteki F, Jabalameli MA, Kiani P, Ehtiati S, Movahedpour A, Vakili O, Khatami SH. Electrochemical biosensors for early diagnosis of glioblastoma. Clin Chim Acta 2024; 557:117878. [PMID: 38493942 DOI: 10.1016/j.cca.2024.117878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive and life-threatening neurological malignancy of predominant astrocyte origin. This type of neoplasm can develop in either the brain or the spine and is also known as glioblastoma multiforme. Although current diagnostic methods such as magnetic resonance imaging (MRI) and positron emission tomography (PET) facilitate tumor location, these approaches are unable to assess disease severity. Furthermore, interpretation of imaging studies requires significant expertise which can have substantial inter-observer variability, thus challenging diagnosis and potentially delaying treatment. In contrast, biosensing systems offer a promising alternative to these traditional approaches. These technologies can continuously monitor specific molecules, providing valuable real-time data on treatment response, and could significantly improve patient outcomes. Among various types of biosensors, electrochemical systems are preferred over other types, as they do not require expensive or complex equipment or procedures and can be made with readily available materials and methods. Moreover, electrochemical biosensors can detect very small amounts of analytes with high accuracy and specificity by using various signal amplification strategies and recognition elements. Considering the advantages of electrochemical biosensors compared to other biosensing methods, we aim to highlight the potential application(s) of these sensors for GBM theranostics. The review's innovative insights are expected to antecede the development of novel biosensors and associated diagnostic platforms, ultimately restructuring GBM detection strategies.
Collapse
Affiliation(s)
- Hamid Vatankhahan
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Esteki
- Department of Medical Laboratory Sciences, School of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Amin Jabalameli
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Wang H, Wang Y, Zhang D, Li P. Circulating nucleosomes as potential biomarkers for cancer diagnosis and treatment monitoring. Int J Biol Macromol 2024; 262:130005. [PMID: 38331061 DOI: 10.1016/j.ijbiomac.2024.130005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Nucleosomes play a crucial role in regulating gene expression through their composition and post-translational modifications. When cells die, intracellular endonucleases are activated and cleave chromatin into oligo- and mono-nucleosomes, which are then released into the body fluids. Studies have shown that the levels of nucleosomes are increased in serum and plasma in various cancer types, suggesting that analysis of circulating nucleosomes can provide an initial assessment of carcinogenesis. However, it should be noted that elevated serum nucleosome levels may not accurately diagnose certain tumor types, as increased cell death may occur in different pathological conditions. Nevertheless, detection of circulating nucleosomes and their histone modifications, along with specific tumor markers, can help diagnose certain types of cancer. Furthermore, monitoring changes in circulating nucleosome levels during chemotherapy or radiotherapy in patients with malignancies can provide valuable insights into clinical outcomes and therapeutic efficacy. The utilization of circulating nucleosomes as biomarkers is an exciting and emerging area of research, with the potential for early detection of various diseases and monitoring of treatment response. Integrating nucleosome-based biomarkers with existing ones may improve the specificity and sensitivity of current assays, offering the possibility of personalized precision medical treatment for patients.
Collapse
Affiliation(s)
- Huawei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
12
|
Nikolova E, Laleva L, Milev M, Spiriev T, Stoyanov S, Ferdinandov D, Mitev V, Todorova A. miRNAs and related genetic biomarkers according to the WHO glioma classification: From diagnosis to future therapeutic targets. Noncoding RNA Res 2024; 9:141-152. [PMID: 38035044 PMCID: PMC10686814 DOI: 10.1016/j.ncrna.2023.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023] Open
Abstract
In the 2021 WHO classification of Tumors of the Central Nervous System, additional molecular characteristics have been included, defining the following adult-type diffuse glioma entities: Astrocytoma IDH-mutant, Oligodendroglioma IDH-mutant and 1p/19q-codeleted, and Glioblastoma IDH-wildtype. Despite advances in genetic analysis, precision oncology, and targeted therapy, malignant adult-type diffuse gliomas remain "hard-to-treat tumors", indicating an urgent need for better diagnostic and therapeutic strategies. In the last decades, miRNA analysis has been a hotspot for researching and developing diagnostic, prognostic, and predictive biomarkers for various disorders, including brain cancer. Scientific interest has recently been directed towards therapeutic applications of miRNAs, with encouraging results. Databases such as NCBI, PubMed, and Medline were searched for a selection of articles reporting the relationship between deregulated miRNAs and genetic aberrations used in the latest WHO CNS classification. The current review discussed the recommended molecular biomarkers and genetic aberrations based on the 2021 WHO classification in adult-type diffuse gliomas, along with associated deregulated miRNAs. Additionally, the study highlights miRNA-based treatment advancements in adults with gliomas.
Collapse
Affiliation(s)
- Emiliya Nikolova
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
- Independent Medico-Diagnostic Laboratory Genome Center Bulgaria, Sofia, 1612, Bulgaria
| | - Lili Laleva
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Milko Milev
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Toma Spiriev
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Stoycho Stoyanov
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Dilyan Ferdinandov
- Department of Neurosurgery, Medical University – Sofia, Sofia, 1431, Bulgaria
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
- Independent Medico-Diagnostic Laboratory Genome Center Bulgaria, Sofia, 1612, Bulgaria
| |
Collapse
|
13
|
Eugene T, Roy Sg J, S N, Rappai M. Assessment of the Efficacy of Circulating Tumor Cells by Liquid Biopsy in the Diagnosis and Prediction of Tumor Behavior of Gliomas: A Systematic Review. Cureus 2024; 16:e54101. [PMID: 38357405 PMCID: PMC10865163 DOI: 10.7759/cureus.54101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/13/2024] [Indexed: 02/16/2024] Open
Abstract
In the realm of glioma management, the ability to accurately diagnose and predict tumor behavior remains a formidable task. Emerging as a beacon of hope, liquid biopsy (LB), with its potential to detect circulating tumor (CT) cells, offers a novel and promising avenue for addressing these challenges. This systematic review delves into the effectiveness of LB in transforming the landscape of glioma analysis as well as prognosis, shedding light on its clinical significance and implications. We conducted a comprehensive literature search from 2015 to 2023, using multiple sources. We assessed titles and abstracts first, followed by full-text review if they met our criteria. We included those studies that fulfill the inclusion criteria of the study. For bias assessment, we used a two-part tool for specific domains and a quality assessment tool for diagnostic accuracy studies. In this review, we incorporated eight studies. A total of 498 patients were identified across eight studies. The average sensitivity was 72.28% in seven of these studies, while the average specificity was 91.52% in the same seven studies. Our review revealed a sensitivity of 72.28% and an impressive specificity of 91.52%. This underscores the potential of LB as a valuable prognostic tool for detecting CT cells. However, the early detection of tumor cells and the prediction of tumor behavior in gliomas continue to be topics of debate, necessitating further research for more precise and reliable outcomes.
Collapse
Affiliation(s)
- Teena Eugene
- Pathology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Jano Roy Sg
- Pathology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Nivethitha S
- Pathology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Meethu Rappai
- Pathology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| |
Collapse
|
14
|
Sacdalan DB, Ul Haq S, Lok BH. Plasma Cell-Free Tumor Methylome as a Biomarker in Solid Tumors: Biology and Applications. Curr Oncol 2024; 31:482-500. [PMID: 38248118 PMCID: PMC10814449 DOI: 10.3390/curroncol31010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
DNA methylation is a fundamental mechanism of epigenetic control in cells and its dysregulation is strongly implicated in cancer development. Cancers possess an extensively hypomethylated genome with focal regions of hypermethylation at CPG islands. Due to the highly conserved nature of cancer-specific methylation, its detection in cell-free DNA in plasma using liquid biopsies constitutes an area of interest in biomarker research. The advent of next-generation sequencing and newer computational technologies have allowed for the development of diagnostic and prognostic biomarkers that utilize methylation profiling to diagnose disease and stratify risk. Methylome-based predictive biomarkers can determine the response to anti-cancer therapy. An additional emerging application of these biomarkers is in minimal residual disease monitoring. Several key challenges need to be addressed before cfDNA-based methylation biomarkers become fully integrated into practice. The first relates to the biology and stability of cfDNA. The second concerns the clinical validity and generalizability of methylation-based assays, many of which are cancer type-specific. The third involves their practicability, which is a stumbling block for translating technologies from bench to clinic. Future work on developing pan-cancer assays with their respective validities confirmed using well-designed, prospective clinical trials is crucial in pushing for the greater use of these tools in oncology.
Collapse
Affiliation(s)
- Danielle Benedict Sacdalan
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| | - Sami Ul Haq
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
- Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada
| | - Benjamin H. Lok
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Room 15-701, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
15
|
Di Giulio S, Carata E, Muci M, Mariano S, Panzarini E. Impact of hypoxia on the molecular content of glioblastoma-derived exosomes. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:1-15. [PMID: 39698411 PMCID: PMC11648508 DOI: 10.20517/evcna.2023.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/28/2023] [Accepted: 01/04/2024] [Indexed: 12/20/2024]
Abstract
Hypoxia is a pathologic condition characterized by a tissue oxygen deficiency due to either decreased oxygen intake from outside and/or disruption of oxygen utilization in cells. This condition may arise when the oxygen demand exceeds its supply or the partial pressure of oxygen is below 10 mmHg. This situation poses a significant problem for glioblastoma (GBM) patients as it can activate angiogenesis, increase invasiveness and metastatic risk, prolong tumor survival, and suppress anti-tumor immunity, making hypoxic cells resistant to radiotherapy and chemotherapy. Low oxygen levels in tumors can cause severe cellular changes that can affect the release of extracellular vesicles (EVs), especially exosomes (EXOs), altering their proteomic profile both qualitatively and quantitatively. EXOs represent an adaptive response to hypoxic stress; therefore, they can be used to determine oxygen levels in cancer and assess its aggressiveness. They not only release signaling molecules to attract cells that promote the formation of small vessel walls but also send signals to other tumor cells that trigger their migration, which in turn plays a crucial role in the formation of metastases under hypoxia. This review investigates how the molecular profile of GBM-derived exosomes changes under hypoxic conditions, offering future possibilities for noninvasive diagnosis and monitoring of brain tumor patients.
Collapse
Affiliation(s)
| | - Elisabetta Carata
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce 73100, Italy
| | | | | | - Elisa Panzarini
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce 73100, Italy
| |
Collapse
|
16
|
Premachandran S, Dhinakaran AK, Das S, Venkatakrishnan K, Tan B, Sharma M. Detection of lung cancer metastasis from blood using L-MISC nanosensor: Targeting circulating metastatic cues for improved diagnosis. Biosens Bioelectron 2024; 243:115782. [PMID: 37890388 DOI: 10.1016/j.bios.2023.115782] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Metastatic lung cancers are considered one of the most clinically significant malignancies, comprising about 40% of deaths caused by cancers. Detection of lung cancer metastasis prior to symptomatic relapse is critical for timely diagnosis and clinical management. The onset of cancer metastasis is indicated by the manifestation of tumor-shed signatures from the primary tumor in peripheral circulation. A subset of this population, characterized as the metastasis-initiating stem cells, are capable of invasion, tumor initiation, and propagation of metastasis at distant sites. In this study, we have developed a SERS-functionalised L-MISC (Lung-Metastasis Initiating Stem Cells) nanosensor to accurately capture the trace levels of metastatic signatures directly from patient blood. We investigated the signatures of cancer stem cell enriched heterogenous population of primary and metastatic lung cancer cells to establish a metastatic profile unique to lung cancer. Multivariate statistical analyses revealed statistically significant differences in the molecular profiles of healthy, primary, and metastatic cell populations. The single-cell sensitivity of L-MISC nanosensor enabled a label-free detection of MISCs with high sensitivity and specificity. By employing a robust machine learning model, our diagnostic methodology can accurately detect metastatic lung cancer from not more than 5 μl of blood. A pilot validation of our study was carried out using clinical samples for the prediction of metastatic lung cancers resulting in 100% diagnostic sensitivity. The L-MISC nanosensor is a potential tool for highly rapid, non-invasive, and accurate diagnosis of lung cancer metastasis.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Ashok Kumar Dhinakaran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Sunit Das
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Nano Characterization Laboratory, Department of Aerospace Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada; Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Mansi Sharma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
17
|
Xiang Z, Xie Q, Yu Z. Exosomal DNA: Role in Reflecting Tumor Genetic Heterogeneity, Diagnosis, and Disease Monitoring. Cancers (Basel) 2023; 16:57. [PMID: 38201485 PMCID: PMC10778000 DOI: 10.3390/cancers16010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs), with exosomes at the forefront, are key in transferring cellular information and assorted biological materials, including nucleic acids. While exosomal RNA has been thoroughly examined, exploration into exosomal DNA (exoDNA)-which is stable and promising for cancer diagnostics-lags behind. This hybrid genetic material, combining contributions from both nuclear and mitochondrial DNA (mtDNA), is rooted in the cytoplasm. The enigmatic process concerning its cytoplasmic encapsulation continues to captivate researchers. Covering the entire genetic landscape, exoDNA encases significant oncogenic alterations in genes like TP53, ALK, and IDH1, which is vital for clinical assessment. This review delves into exosomal origins, the ins and outs of DNA encapsulation, and exoDNA's link to tumor biology, underscoring its superiority to circulating tumor DNA in the biomarker arena for both detection and therapy. Amidst scientific progress, there are complexities in the comprehension and practical application of the exoDNA surface. Reflecting on these nuances, we chart the prospective research terrain and potential pitfalls, forging a path for future inquiry. By illuminating both the known and unknown facets of exoDNA, the objective of this review is to provide guidance to the field of liquid biopsy (LB) while minimizing the occurrence of avoidable blind spots and detours.
Collapse
Affiliation(s)
- Ziyi Xiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Qihui Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Zili Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
18
|
Sone JY, Koskimäki J, Girard R. Editorial for "The Consistence of Dynamic-Contrast-Enhanced MRI and Filter-Exchange Imaging in Measuring Water Exchange Across the Blood-Brain Barrier in High-Grade Glioma". J Magn Reson Imaging 2023; 58:1861-1862. [PMID: 37052208 DOI: 10.1002/jmri.28726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 04/14/2023] Open
Affiliation(s)
- Je Yeong Sone
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Janne Koskimäki
- Department of Neurosurgery, Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
- Department of Neurosurgery, Oulu University Hospital, Neurocenter, Oulu, Finland
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| |
Collapse
|
19
|
Kang W, Mo Z, Li W, Ma H, Zhang Q. Heterogeneity and individualized treatment of microenvironment in glioblastoma (Review). Oncol Rep 2023; 50:217. [PMID: 37888767 PMCID: PMC10636722 DOI: 10.3892/or.2023.8654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
The heterogeneity of glioblastoma can suppress immune cell function and lead to immune evasion, which presents a challenge in developing effective molecular therapies for tumor cells. However, the study of tumor immune heterogeneity holds great potential for clinical immunotherapy. Liquid biopsy is a useful tool for accurately monitoring dynamic changes in tumor immune heterogeneity and the tumor microenvironment. This paper explores the heterogeneity of glioblastoma and the immune microenvironment, providing a therapeutic basis for individualized treatment. Using liquid biopsy technology as a new diagnostic method, innovative treatment strategies may be implemented for patients with glioblastoma to improve their outcomes.
Collapse
Affiliation(s)
- Wei Kang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810001, P.R. China
| | - Zhixiao Mo
- Department of Neurosurgery, Qinghai Cardio-Cerebrovascular Hospital, Xining, Qinghai 810099, P.R. China
| | - Wenshan Li
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810001, P.R. China
- Key Laboratory of Neurology of Gansu Province, Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Haifeng Ma
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810001, P.R. China
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810001, P.R. China
| |
Collapse
|
20
|
Zhang J, Rima XY, Wang X, Nguyen LTH, Huntoon K, Ma Y, Palacio PL, Nguyen KT, Albert K, Duong-Thi MD, Walters N, Kwak KJ, Yoon MJ, Li H, Doon-Ralls J, Hisey CL, Lee D, Wang Y, Ha J, Scherler K, Fallen S, Lee I, Palmer AF, Jiang W, Magaña SM, Wang K, Kim BYS, Lee LJ, Reátegui E. Engineering a tunable micropattern-array assay to sort single extracellular vesicles and particles to detect RNA and protein in situ. J Extracell Vesicles 2023; 12:e12369. [PMID: 37908159 PMCID: PMC10618633 DOI: 10.1002/jev2.12369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
The molecular heterogeneity of extracellular vesicles (EVs) and the co-isolation of physically similar particles, such as lipoproteins (LPs), confounds and limits the sensitivity of EV bulk biomarker characterization. Herein, we present a single-EV and particle (siEVP) protein and RNA assay (siEVP PRA) to simultaneously detect mRNAs, miRNAs, and proteins in subpopulations of EVs and LPs. The siEVP PRA immobilizes and sorts particles via positive immunoselection onto micropatterns and focuses biomolecular signals in situ. By detecting EVPs at a single-particle resolution, the siEVP PRA outperformed the sensitivities of bulk-analysis benchmark assays for RNA and protein. To assess the specificity of RNA detection in complex biofluids, EVs from various glioma cell lines were processed with small RNA sequencing, whereby two mRNAs and two miRNAs associated with glioblastoma multiforme (GBM) were chosen for cross-validation. Despite the presence of single-EV-LP co-isolates in serum, the siEVP PRA detected GBM-associated vesicular RNA profiles in GBM patient siEVPs. The siEVP PRA effectively examines intravesicular, intervesicular, and interparticle heterogeneity with diagnostic promise.
Collapse
Affiliation(s)
- Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xilal Y Rima
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xinyu Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Luong T H Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yifan Ma
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Paola Loreto Palacio
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kim Truc Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Karunya Albert
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Minh-Dao Duong-Thi
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Nicole Walters
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | | | - Min Jin Yoon
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Hong Li
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Jacob Doon-Ralls
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Colin L Hisey
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Daeyong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jonghoon Ha
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Inyoul Lee
- Institute for Systems Biology, Seattle, Washington, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Setty M Magaña
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kai Wang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - L James Lee
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Spot Biosystems Ltd., Palo Alto, California, USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
21
|
Premachandran S, Haldavnekar R, Ganesh S, Das S, Venkatakrishnan K, Tan B. Self-Functionalized Superlattice Nanosensor Enables Glioblastoma Diagnosis Using Liquid Biopsy. ACS NANO 2023; 17:19832-19852. [PMID: 37824714 DOI: 10.1021/acsnano.3c04118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Glioblastoma (GBM), the most aggressive and lethal brain cancer, is detected only in the advanced stage, resulting in a median survival rate of 15 months. Therefore, there is an urgent need to establish GBM diagnosis tools to identify the tumor accurately. The clinical relevance of the current liquid biopsy techniques for GBM diagnosis remains mostly undetermined, owing to the challenges posed by the blood-brain barrier (BBB) that restricts biomarkers entering the circulation, resulting in the unavailability of clinically validated circulating GBM markers. GBM-specific liquid biopsy for diagnosis and prognosis of GBM has not yet been developed. Here, we introduce extracellular vesicles of GBM cancer stem cells (GBM CSC-EVs) as a previously unattempted, stand-alone GBM diagnosis modality. As GBM CSCs are fundamental building blocks of tumor initiation and recurrence, it is desirable to investigate these reliable signals of malignancy in circulation for accurate GBM diagnosis. So far, there are no clinically validated circulating biomarkers available for GBM. Therefore, a marker-free approach was essential since conventional liquid biopsy relying on isolation methodology was not viable. Additionally, a mechanism capable of trace-level detection was crucial to detecting the rare GBM CSC-EVs from the complex environment in circulation. To break these barriers, we applied an ultrasensitive superlattice sensor, self-functionalized for surface-enhanced Raman scattering (SERS), to obtain holistic molecular profiling of GBM CSC-EVs with a marker-free approach. The superlattice sensor exhibited substantial SERS enhancement and ultralow limit of detection (LOD of attomolar 10-18 M concentration) essential for trace-level detection of invisible GBM CSC-EVs directly from patient serum (without isolation). We detected as low as 5 EVs in 5 μL of solution, achieving the lowest LOD compared to existing SERS-based studies. We have experimentally demonstrated the crucial role of the signals of GBM CSC-EVs in the precise detection of glioblastoma. This was evident from the unique molecular profiles of GBM CSC-EVs demonstrating significant variation compared to noncancer EVs and EVs of GBM cancer cells, thus adding more clarity to the current understanding of GBM CSC-EVs. Preliminary validation of our approach was undertaken with a small amount of peripheral blood (5 μL) derived from GBM patients with 100% sensitivity and 97% specificity. Identification of the signals of GBM CSC-EV in clinical sera specimens demonstrated that our technology could be used for accurate GBM detection. Our technology has the potential to improve GBM liquid biopsy, including real-time surveillance of GBM evolution in patients upon clinical validation. This demonstration of liquid biopsy with GBM CSC-EV provides an opportunity to introduce a paradigm potentially impacting the current landscape of GBM diagnosis.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Swarna Ganesh
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Sunit Das
- Scientist, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Institute of Medical Sciences, Neurosurgery, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
22
|
Phillips KA, Kamson DO, Schiff D. Disease Assessments in Patients with Glioblastoma. Curr Oncol Rep 2023; 25:1057-1069. [PMID: 37470973 DOI: 10.1007/s11912-023-01440-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/21/2023]
Abstract
PURPOSE OF REVIEW The neuro-oncology team faces a unique challenge when assessing treatment response in patients diagnosed with glioblastoma. Magnetic resonance imaging (MRI) remains the standard imaging modality for measuring therapeutic response in both clinical practice and clinical trials. However, even for the neuroradiologist, MRI interpretations are not straightforward because of tumor heterogeneity, as evidenced by varying degrees of enhancement, infiltrating tumor patterns, cellular densities, and vasogenic edema. The situation is even more perplexing following therapy since treatment-related changes can mimic viable tumor. Additionally, antiangiogenic therapies can dramatically decrease contrast enhancement giving the false impression of decreasing tumor burden. Over the past few decades, several approaches have emerged to augment and improve visual interpretation of glioblastoma response to therapeutics. Herein, we summarize the state of the art for evaluating the response of glioblastoma to standard therapies and investigational agents as well as challenges and future directions for assessing treatment response in neuro-oncology. RECENT FINDINGS Monitoring glioblastoma responses to standard therapy and novel agents has been fraught with many challenges and limitations over the past decade. Excitingly, new promising methods are emerging to help address these challenges. Recently, the Response Assessment in Neuro-Oncology (RANO) working group proposed an updated response criteria (RANO 2.0) for the evaluation of all grades of glial tumors regardless of IDH status or therapies being evaluated. In addition, advanced neuroimaging techniques, such as histogram analysis, parametric response maps, morphometric segmentation, radio pharmacodynamics approaches, and the integrating of amino acid radiotracers in the tumor evaluation algorithm may help resolve equivocal lesion interpretations without operative intervention. Moreover, the introduction of other techniques, such as liquid biopsy and artificial intelligence could complement conventional visual assessment of glioblastoma response to therapies. Neuro-oncology has evolved over the past decade and has achieved significant milestones, including the establishment of new standards of care, emerging therapeutic options, and novel clinical, translational, and basic research. More recently, the integration of histopathology with molecular features for tumor classification has marked an important paradigm shift in brain tumor diagnosis. In a similar manner, treatment response monitoring in neuro-oncology has made considerable progress. While most techniques are still in their inception, there is an emerging body of evidence for clinical application. Further research will be critically important for the development of impactful breakthroughs in this area of the field.
Collapse
Affiliation(s)
- Kester A Phillips
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment at Swedish Neuroscience Institute, 550 17Th Ave Suite 540, Seattle, WA, 98122, USA
| | - David O Kamson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 201 North Broadway, Skip Viragh Outpatient Cancer Building, 9Th Floor, Room 9177, Mailbox #3, Baltimore, MD, 21218, USA
| | - David Schiff
- Division of Neuro-Oncology, University of Virginia Health System, 1300 Jefferson Park Avenue, West Complex, Room 6225, Charlottesville, VA, 22903, USA.
| |
Collapse
|
23
|
Wu Y, Wang X, Zhang M, Wu D. Molecular Biomarkers and Recent Liquid Biopsy Testing Progress: A Review of the Application of Biosensors for the Diagnosis of Gliomas. Molecules 2023; 28:5660. [PMID: 37570630 PMCID: PMC10419986 DOI: 10.3390/molecules28155660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Gliomas are the most common primary central nervous system tumors, with a high mortality rate. Early and accurate diagnosis of gliomas is critical for successful treatment. Biosensors are significant in the detection of molecular biomarkers because they are simple to use, portable, and capable of real-time analysis. This review discusses several important molecular biomarkers as well as various biosensors designed for glioma diagnosis, such as electrochemical biosensors and optical biosensors. We present our perspectives on the existing challenges and hope that this review can promote the improvement of biosensors.
Collapse
Affiliation(s)
- Yuanbin Wu
- Department of Emergency Medicine, The Seventh Medical Center, Chinese PLA General Hospital, Beijing 100700, China;
| | - Xuning Wang
- Department of General Surgery, The Air Force Hospital of Northern Theater PLA, Shenyang 110042, China
| | - Meng Zhang
- Department of Neurosurgery, The Second Hospital of Southern Theater of Chinese Navy, Sanya 572000, China
| | - Dongdong Wu
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
24
|
Masood AB, Batool S, Bhatti SN, Ali A, Valko M, Jomova K, Kuca K. Plasma PD-L1 as a biomarker in the clinical management of glioblastoma multiforme-a retrospective cohort study. Front Immunol 2023; 14:1202098. [PMID: 37529045 PMCID: PMC10387524 DOI: 10.3389/fimmu.2023.1202098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Background and objectives Glioblastoma multiforme (GBM) is the most aggressive, malignant, and therapy-resistant tumor of the brain. Blockade therapy targeting the programmed cell death protein 1 (PD-1)/programmed death ligand (PD-L1) axis is currently under investigation for the clinical management of the GBM. This study has quantified the plasma levels of PD-L1 as a biomarker for the clinical management of GBM. Methods A cohort (n = 128) of Pakistani adult glioblastoma patients together with age- and sex-matched healthy controls was used for quantification of pre-surgery levels of plasma PD-L1. PD-L1 protein and mRNA were measured by PD-L1 platinum enzyme-linked immunosorbent assay and quantitative real-time PCR, respectively. Receiver operating characteristic (ROC) curve analysis was used to compute area under the curve (AUC) for specificity and sensitivity analyses. The Kaplan-Meier survival analysis was employed to compute overall survival. Results PD-L1 protein and mRNA were significantly higher in GBM compared to the healthy controls (p < 0.0001). Mean PD-L1 concentration for the GBM was found to be 48.98 ± 2.290 pg/ml compared to 27.63 ± 1.281 pg/ml for controls. Gene expression analysis showed statistically significant upregulation (p < 0.0001) of PD-L1 in blood of GBM compared to healthy controls. Plasma PD-L1 showed an AUC of 0.840 (p < 0.0001; 95% CI = 0.7716 to 0.9090) where a cutoff value higher than 46 pg/ml demonstrated 100% specificity and 57.81% sensitivity. Higher pre-surgery levels of PD-L1 were found to be associated with overall poor survival [p < 0.0001; HR (log-rank) = 0.08; 95% CI = 0.04 to 0.15]. Age, gender, and ethnic background were not found to be associated with plasma PD-L1 levels. Conclusion The study concludes that blood-based measurements of PD-L1 in GBM can be a promising prognostic marker and therapeutic target besides a rapid and relatively non-invasive screening tool for routine clinical management. Future work extending the analysis to larger cohorts through multi-center collaborations involving pre-treatment and post-treatment groups is required to fully explore the usefulness of circulating PD-L1 for effective clinical applications.
Collapse
Affiliation(s)
- Aetsam Bin Masood
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sajida Batool
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sajid Nazir Bhatti
- Neurosurgery Department, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Asad Ali
- Department of Medical Lab Technology, Muslim Youth University, Islamabad, Pakistan
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine The Philosopher University in Nitra, Nitra, Slovakia
| | - Kamil Kuca
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Slovakia
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
25
|
Lessi F, Morelli M, Franceschi S, Aretini P, Menicagli M, Marranci A, Pasqualetti F, Gambacciani C, Pieri F, Grimod G, Zucchi V, Cupini S, Di Stefano AL, Santonocito OS, Mazzanti CM. Innovative Approach to Isolate and Characterize Glioblastoma Circulating Tumor Cells and Correlation with Tumor Mutational Status. Int J Mol Sci 2023; 24:10147. [PMID: 37373295 DOI: 10.3390/ijms241210147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Circulating tumor cells (CTCs) are one of the most important causes of tumor recurrence and distant metastases. Glioblastoma (GBM) has been considered restricted to the brain for many years. Nevertheless, in the past years, several pieces of evidence indicate that hematogenous dissemination is a reality, and this is also in the caseof GBM. Our aim was to optimize CTCs' detection in GBM and define the genetic background of single CTCs compared to the primary GBM tumor and its recurrence to demonstrate that CTCs are indeed derived from the parental tumor. We collected blood samples from a recurrent IDH wt GBM patient. We genotyped the parental recurrent tumor tissue and the respective primary GBM tissue. CTCs were analyzed using the DEPArray system. CTCs Copy Number Alterations (CNAs) and sequencing analyses were performed to compare CTCs' genetic background with the same patient's primary and recurrent GBM tissues. We identified 210 common mutations in the primary and recurrent tumors. Among these, three somatic high-frequency mutations (in PRKCB, TBX1, and COG5 genes) were selected to investigate their presence in CTCs. Almost all sorted CTCs (9/13) had at least one of the mutations tested. The presence of TERT promoter mutations was also investigated and C228T variation was found in parental tumors and CTCs (C228T heterozygous and homozygous, respectively). We were able to isolate and genotype CTCs from a patient with GBM. We found common mutations but also exclusive molecular characteristics.
Collapse
Affiliation(s)
- Francesca Lessi
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| | - Mariangela Morelli
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| | - Sara Franceschi
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| | - Paolo Aretini
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| | - Michele Menicagli
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| | - Andrea Marranci
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| | - Francesco Pasqualetti
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56122 Pisa, Italy
| | - Carlo Gambacciani
- Division of Neurosurgery, Spedali Riuniti di Livorno-USL Toscana Nord-Ovest, 57124 Livorno, Italy
| | - Francesco Pieri
- Division of Neurosurgery, Spedali Riuniti di Livorno-USL Toscana Nord-Ovest, 57124 Livorno, Italy
| | - Gianluca Grimod
- Division of Neurosurgery, Spedali Riuniti di Livorno-USL Toscana Nord-Ovest, 57124 Livorno, Italy
| | - Vanna Zucchi
- Division of Pathology, Spedali Riuniti di Livorno-USL Toscana Nord-Ovest, 57124 Livorno, Italy
| | - Samanta Cupini
- Division of Oncology, Spedali Riuniti di Livorno-USL Toscana Nord-Ovest, 57124 Livorno, Italy
| | - Anna Luisa Di Stefano
- Division of Neurosurgery, Spedali Riuniti di Livorno-USL Toscana Nord-Ovest, 57124 Livorno, Italy
- Neurology Department, Foch Hospital, 92150 Suresnes, France
| | - Orazio Santo Santonocito
- Division of Neurosurgery, Spedali Riuniti di Livorno-USL Toscana Nord-Ovest, 57124 Livorno, Italy
| | - Chiara Maria Mazzanti
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| |
Collapse
|
26
|
Halawa T, Baeesa S, Fadul MM, Badahdah AA, Enani M, Fathaddin AA, Kawass D, Alkhotani A, Bahakeem B, Kurdi M. The Role of Liquid Biopsy in the Diagnosis and Prognosis of WHO Grade 4 Astrocytoma. Cureus 2023; 15:e41221. [PMID: 37525780 PMCID: PMC10387356 DOI: 10.7759/cureus.41221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/02/2023] Open
Abstract
Liquid biopsy, as a non-invasive diagnostic tool, has recently gained significant attention in the field of oncology. It involves the analysis of various biomarkers present in bodily fluids, such as blood or cerebrospinal fluid, to provide information about the underlying cancer. In the case of WHO grade 4 astrocytomas, liquid biopsy has the potential to significantly impact the diagnosis and prognosis of this aggressive malignant brain tumor. By detecting specific genetic mutations, such as IDH1 or EGFR, and monitoring levels of circulating tumor DNA, liquid biopsy can aid in the early detection and monitoring of disease progression. This innovative approach is gradually being acknowledged as a less invasive and cost-effective procedure for cancer diagnosis and management to improve patient outcomes and quality of life. Various kinds of biomarkers circulating in cerebrospinal fluid (CSF), such as circulating tumor cells (CTC) and different types of nucleic acids like cell-free DNA (cfDNA), cell-free RNA (ctRNA), and microRNAs (miRNA), have been identified. These biomarkers, which require dependable detection methods, are comparatively simple to obtain and allow for repeated measurements, making them significantly superior for disease monitoring. This review aims to compare the latest liquid biopsy analysis tools for both CSF and plasma in the central nervous system.
Collapse
Affiliation(s)
- Taher Halawa
- Department of Pediatrics, Faculty of Medicine King Abdulaziz University, Rabigh, SAU
| | - Saleh Baeesa
- Department of Neuroscience, King Faisal Specialist Hospital and Research Centre, Jeddah, SAU
| | - Motaz M Fadul
- Department of Pathology, Faculty of Medicine King Abdulaziz University, Rabigh, SAU
| | - Adnan A Badahdah
- Department of Internal Medicine, University of Jeddah, Jeddah, SAU
| | - Maryam Enani
- Department of Surgery, King Abdulaziz University Hospital, Jeddah, SAU
| | - Amany A Fathaddin
- Department of Pathology, College of Medicine, King Saud University, Riyadh, SAU
- Department of Pathology, King Saud University Medical City, Riyadh, SAU
| | - Dania Kawass
- Department of Family Medicine, Faculty of Medicine King Abdulaziz University, Jeddah, SAU
| | - Alaa Alkhotani
- Department of Pathology, Umm Al-Qura University, Makkah, SAU
| | - Basem Bahakeem
- Department of Internal Medicine, Umm Al-Qura University, Makkah, SAU
| | - Maher Kurdi
- Department of Pathology, Faculty of Medicine King Abdulaziz University, Rabigh, SAU
| |
Collapse
|
27
|
Gaitsch H, Franklin RJM, Reich DS. Cell-free DNA-based liquid biopsies in neurology. Brain 2023; 146:1758-1774. [PMID: 36408894 PMCID: PMC10151188 DOI: 10.1093/brain/awac438] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
This article reviews recent developments in the application of cell-free DNA-based liquid biopsies to neurological diseases. Over the past few decades, an explosion of interest in the use of accessible biofluids to identify and track molecular disease has revolutionized the fields of oncology, prenatal medicine and others. More recently, technological advances in signal detection have allowed for informative analysis of biofluids that are typically sparse in cells and other circulating components, such as CSF. In parallel, advancements in epigenetic profiling have allowed for novel applications of liquid biopsies to diseases without characteristic mutational profiles, including many degenerative, autoimmune, inflammatory, ischaemic and infectious disorders. These events have paved the way for a wide array of neurological conditions to benefit from enhanced diagnostic, prognostic, and treatment abilities through the use of liquid biomarkers: a 'liquid biopsy' approach. This review includes an overview of types of liquid biopsy targets with a focus on circulating cell-free DNA, methods used to identify and probe potential liquid biomarkers, and recent applications of such biomarkers to a variety of complex neurological conditions including CNS tumours, stroke, traumatic brain injury, Alzheimer's disease, epilepsy, multiple sclerosis and neuroinfectious disease. Finally, the challenges of translating liquid biopsies to use in clinical neurology settings-and the opportunities for improvement in disease management that such translation may provide-are discussed.
Collapse
Affiliation(s)
- Hallie Gaitsch
- NIH-Oxford-Cambridge Scholars Program, Wellcome-MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | | | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Qi D, Li J, Quarles CC, Fonkem E, Wu E. Assessment and prediction of glioblastoma therapy response: challenges and opportunities. Brain 2023; 146:1281-1298. [PMID: 36445396 PMCID: PMC10319779 DOI: 10.1093/brain/awac450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma is the most aggressive type of primary adult brain tumour. The median survival of patients with glioblastoma remains approximately 15 months, and the 5-year survival rate is <10%. Current treatment options are limited, and the standard of care has remained relatively constant since 2011. Over the last decade, a range of different treatment regimens have been investigated with very limited success. Tumour recurrence is almost inevitable with the current treatment strategies, as glioblastoma tumours are highly heterogeneous and invasive. Additionally, another challenging issue facing patients with glioblastoma is how to distinguish between tumour progression and treatment effects, especially when relying on routine diagnostic imaging techniques in the clinic. The specificity of routine imaging for identifying tumour progression early or in a timely manner is poor due to the appearance similarity of post-treatment effects. Here, we concisely describe the current status and challenges in the assessment and early prediction of therapy response and the early detection of tumour progression or recurrence. We also summarize and discuss studies of advanced approaches such as quantitative imaging, liquid biomarker discovery and machine intelligence that hold exceptional potential to aid in the therapy monitoring of this malignancy and early prediction of therapy response, which may decisively transform the conventional detection methods in the era of precision medicine.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
| | - Jing Li
- School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - C Chad Quarles
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ekokobe Fonkem
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Medical Education, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Medical Education, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX 77843, USA
- Department of Oncology and LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
29
|
Tichà V, Patelli G, Basso G, Prino A, Repetti E, Grugni M, Damascelli B. Case Report: Potential role of selective venous sampling for liquid biopsy in complex clinical settings: Three case presentations. Front Genet 2023; 14:1065537. [PMID: 37056288 PMCID: PMC10086121 DOI: 10.3389/fgene.2023.1065537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Tumor mutation profiling from a blood sample, known as liquid biopsy, is a reality that has already been approved for some cancers. This molecular diagnostic method complements tissue biopsy but is less invasive and therefore more easily applied, especially during tumor evolution. Its use should allow detection of residual disease, evaluation of treatment response or resistance, and selection of targeted treatments. However, implementation of liquid biopsy in routine clinical practice is hindered by unsolved issues, one of which is the scarcity of circulating tumor DNA in blood samples drawn from peripheral veins. To address this problem, we propose minimally invasive selective venous sampling from the region of interest, as used for some hormonal studies and for mapping of endocrine tumors. Intuitively, selective sampling should improve the sensitivity of liquid biopsy by avoiding the dilution of tumor biomarkers that occurs in the peripheral circulation. We report three cases that illustrate the potential utility of selective liquid biopsy in complex clinical settings, providing implications for diagnosis and treatment as well as for monitoring over time, disease localization, identification of drug resistance, and differential diagnosis.
Collapse
Affiliation(s)
- Vladimira Tichà
- Department of Interventional Oncology, EMO GVM Centrocuore Columbus, Milan, Italy
| | - Gianluigi Patelli
- Department of Radiology, ASST Bergamo Est-Bolognini Hospital, Seriate, Italy
| | - Gianpaolo Basso
- School of Medicine and Surgery, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Aurelio Prino
- Palliative Care Department and Hospice, University Hospital Maggiore Della Carità, Novara, Italy
| | - Elena Repetti
- TOMA Advanced Biomedical Assays S.p.A, Busto Arsizio, Varese, Italy
| | - Maria Grugni
- TOMA Advanced Biomedical Assays S.p.A, Busto Arsizio, Varese, Italy
| | - Bruno Damascelli
- Department of Interventional Oncology, EMO GVM Centrocuore Columbus, Milan, Italy
- *Correspondence: Bruno Damascelli,
| |
Collapse
|
30
|
Díaz Méndez AB, Sacconi A, Tremante E, Lulli V, Caprara V, Rosanò L, Goeman F, Carosi M, Di Giuliani M, Vari G, Silvani A, Pollo B, Garufi C, Ramponi S, Simonetti G, Ciusani E, Mandoj C, Scalera S, Villani V, Po A, Ferretti E, Regazzo G, Rizzo MG. A diagnostic circulating miRNA signature as orchestrator of cell invasion via TKS4/TKS5/EFHD2 modulation in human gliomas. J Exp Clin Cancer Res 2023; 42:66. [PMID: 36932446 PMCID: PMC10022260 DOI: 10.1186/s13046-023-02639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Altered microRNA profiles have been observed not only in tumour tissues but also in biofluids, where they circulate in a stable form thus representing interesting biomarker candidates. This study aimed to identify a microRNA signature as a non-invasive biomarker and to investigate its impact on glioma biology. METHODS MicroRNAs were selected using a global expression profile in preoperative serum samples from 37 glioma patients. Comparison between serum samples from age and gender-matched controls was performed by using the droplet digital PCR. The ROC curve and Kaplan-Meier survival analyses were used to evaluate the diagnostic/prognostic values. The functional role of the identified signature was assessed by gain/loss of function strategies in glioma cells. RESULTS A three-microRNA signature (miR-1-3p/-26a-1-3p/-487b-3p) was differentially expressed in the serum of patients according to the isocitrate dehydrogenase (IDH) genes mutation status and correlated with both patient Overall and Progression Free Survival. The identified signature was also downregulated in the serum of patients compared to controls. Consistent with these results, the signature expression and release in the conditioned medium of glioma cells was lower in IDH-wild type cells compared to the mutated counterpart. Furthermore, in silico analysis of glioma datasets showed a consistent deregulation of the signature according to the IDH mutation status in glioma tumour tissues. Ectopic expression of the signature negatively affects several glioma functions. Notably, it impacts the glioma invasive phenotype by directly targeting the invadopodia-related proteins TKS4, TKS5 and EFHD2. CONCLUSIONS We identified a three microRNA signature as a promising complementary or even an independent non-invasive diagnostic/prognostic biomarker. The signature displays oncosuppressive functions in glioma cells and impacts on proteins crucial for migration and invasion, providing potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ana Belén Díaz Méndez
- grid.417520.50000 0004 1760 5276Department of Research, Advanced Diagnostics and Technological Innovation, Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Andrea Sacconi
- grid.417520.50000 0004 1760 5276Biostatistics and Bioinformatics Unit, Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Elisa Tremante
- grid.417520.50000 0004 1760 5276Department of Research, Advanced Diagnostics and Technological Innovation, Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Valentina Lulli
- grid.416651.10000 0000 9120 6856Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina Caprara
- grid.417520.50000 0004 1760 5276Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- grid.417520.50000 0004 1760 5276Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- grid.5326.20000 0001 1940 4177Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, Italy
| | - Frauke Goeman
- grid.417520.50000 0004 1760 5276SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mariantonia Carosi
- grid.417520.50000 0004 1760 5276Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Di Giuliani
- grid.417520.50000 0004 1760 5276Department of Research, Advanced Diagnostics and Technological Innovation, Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Giulia Vari
- grid.417520.50000 0004 1760 5276Department of Research, Advanced Diagnostics and Technological Innovation, Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
- grid.7841.aPhD Program in Molecular Medicine, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Silvani
- grid.417894.70000 0001 0707 5492Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Bianca Pollo
- grid.417894.70000 0001 0707 5492Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carlo Garufi
- grid.416308.80000 0004 1805 3485Medical-Oncology Unit, San Camillo Forlanini Hospital, Rome, Italy
| | - Sara Ramponi
- grid.416308.80000 0004 1805 3485Medical-Oncology Unit, San Camillo Forlanini Hospital, Rome, Italy
| | - Giorgia Simonetti
- grid.417894.70000 0001 0707 5492Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emilio Ciusani
- grid.417894.70000 0001 0707 5492Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Mandoj
- grid.417520.50000 0004 1760 5276Clinical Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Scalera
- grid.417520.50000 0004 1760 5276SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- grid.6530.00000 0001 2300 0941PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Veronica Villani
- grid.417520.50000 0004 1760 5276Neuro-Oncology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Agnese Po
- grid.7841.aDepartment of Experimental Medicine, Sapienza University, Rome, Italy
| | - Elisabetta Ferretti
- grid.7841.aDepartment of Experimental Medicine, Sapienza University, Rome, Italy
| | - Giulia Regazzo
- grid.417520.50000 0004 1760 5276Department of Research, Advanced Diagnostics and Technological Innovation, Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Maria Giulia Rizzo
- grid.417520.50000 0004 1760 5276Department of Research, Advanced Diagnostics and Technological Innovation, Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| |
Collapse
|
31
|
Mustafov D, Karteris E, Braoudaki M. Deciphering the Role of microRNA Mediated Regulation of Coronin 1C in Glioblastoma Development and Metastasis. Noncoding RNA 2023; 9:4. [PMID: 36649032 PMCID: PMC9844418 DOI: 10.3390/ncrna9010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly heterogenic and malignant brain tumour with a median survival of 15 months. The initial identification of primary glioblastomas is often challenging. Coronin 1C (CORO1C) is a key player in actin rearrangement and cofilin dynamics, as well as enhancing the processes of neurite overgrowth and migration of brain tumour cells. Different bioinformatic databases were accessed to measure CORO1C expression at the mRNA and protein level in normal and malignant brains. CORO1C expression was observed in brain regions which have retained high synaptic plasticity and myelination properties. CORO1C was also expressed mainly within the hippocampus formation, including the Cornu Ammonis (CA) fields: CA1-CA4. Higher expression was also noticed in paediatric GBM in comparison to their adult counterparts. Pediatric cell populations were observed to have an increased log2 expression of CORO1C. Furthermore, 62 miRNAs were found to target the CORO1C gene. Of these, hsa-miR-34a-5p, hsa-miR-512-3p, hsa-miR-136-5p, hsa-miR-206, hsa-miR-128-3p, and hsa-miR-21-5p have shown to act as tumour suppressors or oncomiRs in different neoplasms, including GBM. The elevated expression of CORO1C in high grade metastatic brain malignancies, including GBM, suggests that this protein could have a clinical utility as a biomarker linked to an unfavorable outcome.
Collapse
Affiliation(s)
- Denis Mustafov
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Emmanouil Karteris
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Maria Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
32
|
Eibl RH, Schneemann M. Liquid biopsy and glioblastoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:28-41. [PMID: 36937320 PMCID: PMC10017188 DOI: 10.37349/etat.2023.00121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 02/27/2023] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor. Despite a century of research efforts, the survival of patients has not significantly improved. Currently, diagnosis is based on neuroimaging techniques followed by histopathological and molecular analysis of resected or biopsied tissue. A recent paradigm shift in diagnostics ranks the molecular analysis of tissue samples as the new gold standard over classical histopathology, thus correlating better with the biological behavior of glioblastoma and clinical prediction, especially when a tumor lacks the typical hallmarks for glioblastoma. Liquid biopsy aims to detect and quantify tumor-derived content, such as nucleic acids (DNA/RNA), circulating tumor cells (CTCs), or extracellular vesicles (EVs) in biofluids, mainly blood, cerebrospinal fluid (CSF), or urine. Liquid biopsy has the potential to overcome the limitations of both neuroimaging and tissue-based methods to identify early recurrence and to differentiate tumor progression from pseudoprogression, without the risks of repeated surgical biopsies. This review highlights the origins and time-frame of liquid biopsy in glioblastoma and points to recent developments, limitations, and challenges of adding liquid biopsy to support the clinical management of glioblastoma patients.
Collapse
Affiliation(s)
- Robert H. Eibl
- c/o M. Schneemann, Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
- Correspondence: Robert H. Eibl, c/o M. Schneemann, Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland.
| | - Markus Schneemann
- Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| |
Collapse
|
33
|
Timofeeva AV, Asaturova AV, Sannikova MV, Khabas GN, Chagovets VV, Fedorov IS, Frankevich VE, Sukhikh GT. Search for New Participants in the Pathogenesis of High-Grade Serous Ovarian Cancer with the Potential to Be Used as Diagnostic Molecules. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122017. [PMID: 36556382 PMCID: PMC9784419 DOI: 10.3390/life12122017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022]
Abstract
Recent studies have attempted to develop molecular signatures of epithelial ovarian cancer (EOC) based on the quantitation of protein-coding and non-coding RNAs to predict disease prognosis. Due to the heterogeneity of EOC, none of the developed prognostic signatures were directly applied in clinical practice. Our work focuses on high-grade serous ovarian carcinoma (HGSOC) due to the highest mortality rate relative to other types of EOC. Using deep sequencing of small non-coding RNAs in combination with quantitative real-time PCR, we confirm the dualistic classification of epithelial ovarian cancers based on the miRNA signature of HGSOC (type 2), which differs from benign cystadenoma and borderline cystadenoma-precursors of low-grade serous ovarian carcinoma (type 1)-and identified two subtypes of HGSOC, which significantly differ in the level of expression of the progesterone receptor in the tumor tissue, the secretion of miR-16-5p, miR-17-5p, miR-93-5p, miR-20a-5p, the level of serum CA125, tumor size, surgical outcome (optimal or suboptimal cytoreduction), and response to chemotherapy. It was found that the combined determination of the level of miR-16-5p, miR-17-5p, miR-20a-5p, and miR-93-5p circulating in blood plasma of patients with primary HGSOC tumors makes it possible to predict optimal cytoreduction with 80.1% sensitivity and 70% specificity (p = 0.022, TPR = 0.8, FPR = 0.3), as well as complete response to adjuvant chemotherapy with 77.8% sensitivity and 90.9% specificity (p = 0.001, TPR = 0.78, FPR = 0.09). After the additional verification of the obtained data in a larger HGSOC patient cohort, the combined quantification of these four miRNAs is proposed to be used as a criterion for selecting patients either for primary cytoreduction or neoadjuvant chemotherapy followed by interval cytoreduction.
Collapse
Affiliation(s)
- Angelika V. Timofeeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
- Correspondence: or ; Tel.: +7-495-531-4444
| | - Aleksandra V. Asaturova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Maya V. Sannikova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Grigory N. Khabas
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Vitaliy V. Chagovets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Ivan S. Fedorov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Vladimir E. Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Gennady T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| |
Collapse
|
34
|
Stankunaite R, Marshall LV, Carceller F, Chesler L, Hubank M, George SL. Liquid biopsy for children with central nervous system tumours: Clinical integration and technical considerations. Front Pediatr 2022; 10:957944. [PMID: 36467471 PMCID: PMC9709284 DOI: 10.3389/fped.2022.957944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) analysis has the potential to revolutionise the care of patients with cancer and is already moving towards standard of care in some adult malignancies. Evidence for the utility of cfDNA analysis in paediatric cancer patients is also accumulating. In this review we discuss the limitations of blood-based assays in patients with brain tumours and describe the evidence supporting cerebrospinal fluid (CSF) cfDNA analysis. We make recommendations for CSF cfDNA processing to aid the standardisation and technical validation of future assays. We discuss the considerations for interpretation of cfDNA analysis and highlight promising future directions. Overall, cfDNA profiling shows great potential as an adjunct to the analysis of biopsy tissue in paediatric cancer patients, with the potential to provide a genetic molecular profile of the tumour when tissue biopsy is not feasible. However, to fully realise the potential of cfDNA analysis for children with brain tumours larger prospective studies incorporating serial CSF sampling are required.
Collapse
Affiliation(s)
- Reda Stankunaite
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Clinical Genomics, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Evolutionary Genomics and Modelling, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Lynley V. Marshall
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Fernando Carceller
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Louis Chesler
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Michael Hubank
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Clinical Genomics, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Sally L. George
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
35
|
Noushmehr H, Herrgott G, Morosini NS, Castro AV. Noninvasive approaches to detect methylation-based markers to monitor gliomas. Neurooncol Adv 2022; 4:ii22-ii32. [PMID: 36380867 PMCID: PMC9650474 DOI: 10.1093/noajnl/vdac021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
In this review, we summarize the current approaches used to detect glioma tissue-derived DNA methylation markers in liquid biopsy specimens with the aim to diagnose, prognosticate and potentially track treatment response and evolution of patients with gliomas.
Collapse
Affiliation(s)
- Houtan Noushmehr
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| | - Grayson Herrgott
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| | - Natalia S Morosini
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| | - Ana Valeria Castro
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
36
|
Pasqualetti F, Rizzo M, Franceschi S, Lessi F, Paiar F, Buffa FM. New perspectives in liquid biopsy for glioma patients. Curr Opin Oncol 2022; 34:705-712. [PMID: 36093876 DOI: 10.1097/cco.0000000000000902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Gliomas are the most common primary tumors of the central nervous system. They are characterized by a disappointing prognosis and ineffective therapy that has shown no substantial improvements in the past 20 years. The lack of progress in treating gliomas is linked with the inadequacy of suitable tumor samples to plan translational studies and support laboratory developments. To overcome the use of tumor tissue, this commentary review aims to highlight the potential for the clinical application of liquid biopsy (intended as the study of circulating biomarkers in the blood), focusing on circulating tumor cells, circulating DNA and circulating noncoding RNA. RECENT FINDINGS Thanks to the increasing sensitivity of sequencing techniques, it is now possible to analyze circulating nucleic acids and tumor cells (liquid biopsy). SUMMARY Although studies on the use of liquid biopsy are still at an early stage, the potential clinical applications of liquid biopsy in the study of primary brain cancer are many and have the potential to revolutionize the approach to neuro-oncology, and importantly, they offer the possibility of gathering information on the disease at any time during its history.
Collapse
Affiliation(s)
- Francesco Pasqualetti
- Department of Oncology, University of Oxford, Oxford, UK
- Radiation Oncology Unit, Pisa University Hospital
| | - Milena Rizzo
- Noncoding RNA group, Functional Genetics and Genomics Lab, Institute of Clinical Physiology (IFC), CNR, Pisa
| | | | | | | | - Francesca M Buffa
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Computing Sciences, Bocconi University, Milan, Italy
| |
Collapse
|
37
|
Verdugo E, Puerto I, Medina MÁ. An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1083-1111. [PMID: 36129048 DOI: 10.1002/cac2.12361] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/07/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and common malignant primary brain tumor. Patients with GBM often have poor prognoses, with a median survival of ∼15 months. Enhanced understanding of the molecular biology of central nervous system tumors has led to modifications in their classifications, the most recent of which classified these tumors into new categories and made some changes in their nomenclature and grading system. This review aims to give a panoramic view of the last 3 years' findings in glioblastoma characterization, its heterogeneity, and current advances in its treatment. Several molecular parameters have been used to achieve an accurate and personalized characterization of glioblastoma in patients, including epigenetic, genetic, transcriptomic and metabolic features, as well as age- and sex-related patterns and the involvement of several noncoding RNAs in glioblastoma progression. Astrocyte-like neural stem cells and outer radial glial-like cells from the subventricular zone have been proposed as agents involved in GBM of IDH-wildtype origin, but this remains controversial. Glioblastoma metabolism is characterized by upregulation of the PI3K/Akt/mTOR signaling pathway, promotion of the glycolytic flux, maintenance of lipid storage, and other features. This metabolism also contributes to glioblastoma's resistance to conventional therapies. Tumor heterogeneity, a hallmark of GBM, has been shown to affect the genetic expression, modulation of metabolic pathways, and immune system evasion. GBM's aggressive invasion potential is modulated by cell-to-cell crosstalk within the tumor microenvironment and altered expressions of specific genes, such as ANXA2, GBP2, FN1, PHIP, and GLUT3. Nevertheless, the rising number of active clinical trials illustrates the efforts to identify new targets and drugs to treat this malignancy. Immunotherapy is still relevant for research purposes, given the amount of ongoing clinical trials based on this strategy to treat GBM, and neoantigen and nucleic acid-based vaccines are gaining importance due to their antitumoral activity by inducing the immune response. Furthermore, there are clinical trials focused on the PI3K/Akt/mTOR axis, angiogenesis, and tumor heterogeneity for developing molecular-targeted therapies against GBM. Other strategies, such as nanodelivery and computational models, may improve the drug pharmacokinetics and the prognosis of patients with GBM.
Collapse
Affiliation(s)
- Elena Verdugo
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain
| | - Iker Puerto
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain.,Biomedical Research Institute of Málaga (IBIMA-Plataforma Bionand), Málaga, Málaga, E-29071, Spain.,Spanish Biomedical Research Network Center for Rare Diseases (CIBERER), Spanish Health Institute Carlos III (ISCIII), Málaga, Málaga, E-29071, Spain
| |
Collapse
|
38
|
Functional Precision Oncology: The Next Frontier to Improve Glioblastoma Outcome? Int J Mol Sci 2022; 23:ijms23158637. [PMID: 35955765 PMCID: PMC9369403 DOI: 10.3390/ijms23158637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma remains the most malignant and intrinsically resistant brain tumour in adults. Despite intensive research over the past few decades, through which numerous potentially druggable targets have been identified, virtually all clinical trials of the past 20 years have failed to improve the outcome for the vast majority of GBM patients. The observation that small subgroups of patients displayed a therapeutic response across several unsuccessful clinical trials suggests that the GBM patient population probably consists of multiple subgroups that probably all require a distinct therapeutic approach. Due to extensive inter- and intratumoral heterogeneity, assigning the right therapy to each patient remains a major challenge. Classically, bulk genetic profiling would be used to identify suitable therapies, although the success of this approach remains limited due to tumor heterogeneity and the absence of direct relationships between mutations and therapy responses in GBM. An attractive novel strategy aims at implementing methods for functional precision oncology, which refers to the evaluation of treatment efficacies and vulnerabilities of (ex vivo) living tumor cells in a highly personalized way. Such approaches are currently being implemented for other cancer types by providing rapid, translatable information to guide patient-tailored therapeutic selections. In this review, we discuss the current state of the art of transforming technologies, tools and challenges for functional precision oncology and how these could improve therapy selection for GBM patients.
Collapse
|
39
|
Liquid Biopsy in Glioblastoma. Cancers (Basel) 2022; 14:cancers14143394. [PMID: 35884454 PMCID: PMC9323318 DOI: 10.3390/cancers14143394] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Glioblastoma is the most common and malignant primary brain tumor. Despite intensive research for new treatments, the survival of patients has not significantly improved in recent decades. Currently, glioblastoma is mainly diagnosed by neuroimaging techniques followed by histopathological and molecular analysis of the resected or biopsied tissue. Both imaging and tissue-based methods have, despite their advantages, some important limitations highlighting the necessity for alternative techniques such as liquid biopsy. It appears as an attractive and non-invasive alternative to support the diagnosis and the follow-up of patients with glioblastoma and to identify early recurrence. Liquid biopsy, primarily through blood tests, involves the detection and quantification of tumoral content released by tumors into the biofluids. The aim of the present review is to discuss the biological bases, the advantages, and the disadvantages of the most important circulating biomarkers so far proposed for glioblastoma. Abstract Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Despite recent advances in therapy modalities, the overall survival of GBM patients remains poor. GBM diagnosis relies on neuroimaging techniques. However, confirmation via histopathological and molecular analysis is necessary. Given the intrinsic limitations of such techniques, liquid biopsy (mainly via blood samples) emerged as a non-invasive and easy-to-implement alternative that could aid in both the diagnosis and the follow-up of GBM patients. Cancer cells release tumoral content into the bloodstream, such as circulating tumor DNA, circulating microRNAs, circulating tumor cells, extracellular vesicles, or circulating nucleosomes: all these could serve as a marker of GBM. In this narrative review, we discuss the current knowledge, the advantages, and the disadvantages of each circulating biomarker so far proposed.
Collapse
|
40
|
Gatto L, Franceschi E, Tosoni A, Nunno VD, Bartolini S, Brandes AA. Hypermutation as a potential predictive biomarker of immunotherapy efficacy in high-grade gliomas: a broken dream? Immunotherapy 2022; 14:799-813. [PMID: 35670093 DOI: 10.2217/imt-2021-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A high tumor mutational burden and mismatch repair deficiency are observed in 'hypermutated' high-grade gliomas (HGGs); however, the molecular characterization of this distinct subtype and whether it predicts the response to immune checkpoint inhibitors (ICIs) are largely unknown. Pembrolizumab is a valid therapeutic option for the treatment of hypermutated cancers of diverse origin, but only a few clinical trials have explored the activity of ICIs in hypermutated HGGs. HGGs appear to differ from other cancers, likely due to the prevalence of subclonal versus clonal neoantigens, which are unable to elicit an immune response with ICIs. The main aim of this review is to summarize the current knowledge on hypermutation in HGGs, focusing on the broken promises of tumor mutational burden and mismatch repair deficiency as potential biomarkers of response to ICIs.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
41
|
Balana C, Castañer S, Carrato C, Moran T, Lopez-Paradís A, Domenech M, Hernandez A, Puig J. Preoperative Diagnosis and Molecular Characterization of Gliomas With Liquid Biopsy and Radiogenomics. Front Neurol 2022; 13:865171. [PMID: 35693015 PMCID: PMC9177999 DOI: 10.3389/fneur.2022.865171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are a heterogenous group of central nervous system tumors with different outcomes and different therapeutic needs. Glioblastoma, the most common subtype in adults, has a very poor prognosis and disabling consequences. The World Health Organization (WHO) classification specifies that the typing and grading of gliomas should include molecular markers. The molecular characterization of gliomas has implications for prognosis, treatment planning, and prediction of treatment response. At present, gliomas are diagnosed via tumor resection or biopsy, which are always invasive and frequently risky methods. In recent years, however, substantial advances have been made in developing different methods for the molecular characterization of tumors through the analysis of products shed in body fluids. Known as liquid biopsies, these analyses can potentially provide diagnostic and prognostic information, guidance on choice of treatment, and real-time information on tumor status. In addition, magnetic resonance imaging (MRI) is another good source of tumor data; radiomics and radiogenomics can link the imaging phenotypes to gene expression patterns and provide insights to tumor biology and underlying molecular signatures. Machine and deep learning and computational techniques can also use quantitative imaging features to non-invasively detect genetic mutations. The key molecular information obtained with liquid biopsies and radiogenomics can be useful not only in the diagnosis of gliomas but can also help predict response to specific treatments and provide guidelines for personalized medicine. In this article, we review the available data on the molecular characterization of gliomas using the non-invasive methods of liquid biopsy and MRI and suggest that these tools could be used in the future for the preoperative diagnosis of gliomas.
Collapse
Affiliation(s)
- Carmen Balana
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
- *Correspondence: Carmen Balana
| | - Sara Castañer
- Diagnostic Imaging Institute (IDI), Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Cristina Carrato
- Department of Pathology, Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Teresa Moran
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Assumpció Lopez-Paradís
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Marta Domenech
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Ainhoa Hernandez
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Josep Puig
- Department of Radiology IDI [Girona Biomedical Research Institute] IDIBGI, Hospital Universitari Dr Josep Trueta, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Comparative Medicine and Bioimage of Catalonia, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| |
Collapse
|
42
|
Katzendobler S, Do A, Weller J, Dorostkar MM, Albert NL, Forbrig R, Niyazi M, Egensperger R, Thon N, Tonn JC, Quach S. Diagnostic Yield and Complication Rate of Stereotactic Biopsies in Precision Medicine of Gliomas. Front Neurol 2022; 13:822362. [PMID: 35432168 PMCID: PMC9005817 DOI: 10.3389/fneur.2022.822362] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/23/2022] [Indexed: 12/27/2022] Open
Abstract
BackgroundAn integrated diagnosis consisting of histology and molecular markers is the basis of the current WHO classification system of gliomas. In patients with suspected newly diagnosed or recurrent glioma, stereotactic biopsy is an alternative in cases in which microsurgical resection is deemed to not be safely feasible or indicated. In this retrospective study, we aimed to analyze both the diagnostic yield and the safety of a standardized biopsy technique.Material and MethodsThe institutional database was screened for frame-based biopsy procedures (January 2016 until March 2021). Only patients with a suspected diagnosis of glioma based on imaging were included. All tumors were classified according to the current WHO grading system. The clinical parameters, procedural complications, histology, and molecular signature of the tissues obtained were assessed.ResultsBetween January 2016 and March 2021, 1,214 patients underwent a stereotactic biopsy: 617 (50.8%) for a newly diagnosed lesion and 597 (49.2%) for a suspected recurrence. The median age was 56.9 years (range 5 months−94.4 years). Magnetic resonance imaging (MRI)-guidance was used in 99.3% of cases and additional positron emission tomography (PET)-guidance in 34.3% of cases. In total, stereotactic serial biopsy provided an integrated diagnosis in 96.3% of all procedures. The most frequent diagnoses were isocitrate dehydrogenase (IDH) wildtype glioblastoma (n = 596; 49.2%), oligodendroglioma grade 2 (n = 109; 9%), astrocytoma grade 3 (n = 108; 8.9%), oligodendroglioma grade 3 (n = 76; 6.3%), and astrocytoma grade 2 (n = 66; 5.4%). A detailed determination was successful for IDH 1/2 mutation in 99.4% of cases, for 1p/19q codeletion in 97.4% of cases, for TERT mutation in 98.9% of cases, and for MGMT promoter methylation in 99.1% of cases. Next-generation sequencing was evaluable in 64/67 (95.5%) of cases and DNA methylome analysis in 41/44 (93.2%) of cases. Thirteen (1.1%) cases showed glial tumors that could not be further specified. Seventy-three tumors were different non-glioma entities, e.g., of infectious or inflammatory nature. Seventy-five out of 597 suspected recurrences turned out to be post-therapeutic changes only. The rate of post-procedural complications with clinical symptoms of the Common Terminology Criteria for Adverse Events (CTCAE) grade 3 or higher was 1.2% in overall patients and 2.6% in the subgroup of brainstem biopsies. There was no fatal outcome in the entire series.ConclusionImage-guided stereotactic serial biopsy enables obtaining reliable histopathological and molecular diagnoses with a very low complication rate even in tumors with critical localization. Thus, in patients not undergoing microsurgical resection, this is a valuable tool for precision medicine of patients with glioma.
Collapse
Affiliation(s)
- Sophie Katzendobler
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Anna Do
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Jonathan Weller
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Mario M. Dorostkar
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Rupert Egensperger
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Joerg Christian Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
- *Correspondence: Stefanie Quach
| |
Collapse
|
43
|
Bonosi L, Ferini G, Giammalva GR, Benigno UE, Porzio M, Giovannini EA, Musso S, Gerardi RM, Brunasso L, Costanzo R, Paolini F, Graziano F, Scalia G, Umana GE, Di Bonaventura R, Sturiale CL, Iacopino DG, Maugeri R. Liquid Biopsy in Diagnosis and Prognosis of High-Grade Gliomas; State-of-the-Art and Literature Review. Life (Basel) 2022; 12:life12030407. [PMID: 35330158 PMCID: PMC8950809 DOI: 10.3390/life12030407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
Gliomas, particularly high-grade gliomas, represent the most common and aggressive tumors of the CNS and are still burdened by high mortality and a very poor prognosis, regardless of the type of therapy. Their diagnosis and monitoring rely on imaging techniques and direct biopsy of the pathological tissue; however, both procedures have inherent limitations. To address these limitations, liquid biopsies have been proposed in this field. They could represent an innovative tool that could help clinicians in the early diagnosis, monitoring, and prognosis of these tumors. Furthermore, the rapid development of next-generation sequencing (NGS) technologies has led to a significant reduction in sequencing cost, with improved accuracy, providing a molecular profile of cancer and leading to better survival results and less disease burden. This paper focuses on the current clinical application of liquid biopsy in the early diagnosis and prognosis of cancer, introduces NGS-related methods, reviews recent progress, and summarizes challenges and future perspectives.
Collapse
Affiliation(s)
- Lapo Bonosi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
- Correspondence: ; Tel.: +39-0916554656
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia srl, 95125 Catania, Italy;
| | - Giuseppe Roberto Giammalva
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Umberto Emanuele Benigno
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Massimiliano Porzio
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Evier Andrea Giovannini
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Sofia Musso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Rosa Maria Gerardi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Lara Brunasso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Roberta Costanzo
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Federica Paolini
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Francesca Graziano
- Unit of Neurosurgery, Garibaldi Hospital, 95124 Catania, Italy; (F.G.); (G.S.)
| | - Gianluca Scalia
- Unit of Neurosurgery, Garibaldi Hospital, 95124 Catania, Italy; (F.G.); (G.S.)
| | - Giuseppe Emmanuele Umana
- Trauma Center, Gamma Knife Center, Department of Neurosurgery, Cannizzaro Hospital, 95125 Catania, Italy;
| | - Rina Di Bonaventura
- Department of Neurosurgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.D.B.); (C.L.S.)
| | - Carmelo Lucio Sturiale
- Department of Neurosurgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.D.B.); (C.L.S.)
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Rosario Maugeri
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| |
Collapse
|
44
|
Yang Z, Gong W, Zhang T, Gao H. Molecular Features of Glioma Determined and Validated Using Combined TCGA and GTEx Data Analyses. Front Oncol 2021; 11:729137. [PMID: 34660294 PMCID: PMC8516354 DOI: 10.3389/fonc.2021.729137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Gliomas are among the most common intracranial tumors which originated from neuroepithelial cells. Increasing evidence has revealed that long noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA module regulation and tumor-infiltrating immune cells play important regulatory roles in the occurrence and progression of gliomas. However, the precise underlying molecular mechanisms remain largely unknown. Data on gliomas in The Cancer Genome Atlas lack normal control samples; to overcome this limitation, we combined 665 The Cancer Genome Atlas glioma RNA sequence datasets with 188 Genotype-Tissue Expression normal brain RNA sequences to construct an expression matrix profile after normalization. We systematically analyzed the expression of mRNAs, lncRNAs, and miRNAs between gliomas and normal brain tissues. Kaplan–Meier survival analyses were conducted to screen differentially expressed mRNAs, lncRNAs, and miRNAs. A prognostic miRNA-related competitive endogenous RNA network was constructed, and the core subnetworks were filtered using 6 miRNAs, 3 lncRNAs, and 11 mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to investigate the biological functions of significantly dysregulated mRNAs. Co-expression network analysis was performed to analyze and screen the core genes. Furthermore, single-sample Gene Set Enrichment Analysis and immune checkpoint gene expression analysis were performed, as co-expression analysis indicated immune gene dysregulation in glioma. Finally, the expression of representative dysregulated genes was validated in U87 cells at the transcriptional level, establishing a foundation for further research. We identified 7017 mRNAs, 437 lncRNAs, and 9 miRNAs that were differentially expressed in gliomas. Kaplan–Meier survival analysis revealed 5684 mRNAs, 61 lncRNAs, and 7 miRNAs with potential as prognostic signatures in patients with glioma. The hub subnetwork of the competing endogenous RNA network between PART1-hsa-mir-25-SLC12A5/TACC2/BSN/TLN2/ZDHHC8 was screened out. Gene co-expression network, single-sample Gene Set Enrichment Analysis, and immune checkpoint expression analysis demonstrated that tumor-infiltrating immune cells are closely related to gliomas. We identified novel potential biomarkers to predict survival and therapeutic targets for patients with gliomas based on a large-scale sample. Importantly, we filtered pivotal genes that provide valuable information for further exploration of the molecular mechanisms underlying glioma tumorigenesis and progression.
Collapse
Affiliation(s)
- Zijiang Yang
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Weiyi Gong
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Ting Zhang
- Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical College, Jiangyin, China
| | - Heng Gao
- Department of Neurosurgery, Jiangyin Clinical College of Xuzhou Medical College, Jiangyin, China
| |
Collapse
|
45
|
Hutóczki G, Virga J, Birkó Z, Klekner A. Novel Concepts of Glioblastoma Therapy Concerning Its Heterogeneity. Int J Mol Sci 2021; 22:ijms221810005. [PMID: 34576168 PMCID: PMC8470251 DOI: 10.3390/ijms221810005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Although treatment outcomes of glioblastoma, the most malignant central nervous system (CNS) tumor, has improved in the past decades, it is still incurable, and survival has only slightly improved. Advances in molecular biology and genetics have completely transformed our understanding of glioblastoma. Multiple classifications and different diagnostic methods were made according to novel molecular markers. Discovering tumor heterogeneity only partially explains the ineffectiveness of current anti-proliferative therapies. Dynamic heterogeneity secures resistance to combined oncotherapy. As tumor growth proceeds, new therapy-resistant sub clones emerge. Liquid biopsy is a new and promising diagnostic tool that can step up with the dynamic genetic change. Getting a 'real-time' picture of a specific tumor, anti-invasion and multi-target treatment can be designed. During invasion to the peri-tumoral brain tissue, glioma cells interact with the extracellular matrix components. The expressional levels of these matrix molecules give a characteristic pattern, the invasion spectrum, which possess vast diagnostical, predictive and prognostic information. It is a huge leap forward combating tumor heterogeneity and searching for novel therapies. Using the invasion spectrum of a tumor sample is a novel tool to distinguish between histological subtypes, specifying the tumor grades or different prognostic groups. Moreover, new therapeutic methods and their combinations are under trial. These are crucial steps towards personalized oncotherapy.
Collapse
Affiliation(s)
- Gábor Hutóczki
- Department of Neurosurgery, University of Debrecen, H-4032 Debrecen, Hungary;
- Correspondence:
| | - József Virga
- Department of Oncology, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Zsuzsanna Birkó
- Department of Human Genetics, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, H-4032 Debrecen, Hungary;
| |
Collapse
|