1
|
Britton D, Sun J, Faizi HA, Yin L, Gao W, Montclare JK. Recombinant Fibrous Protein Gels as Rheological Modifiers in Skin Ointments. ACS APPLIED POLYMER MATERIALS 2024; 6:12832-12841. [PMID: 39479344 PMCID: PMC11519833 DOI: 10.1021/acsapm.4c02468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024]
Abstract
Rheological modifiers are an important component in the development of skin cream (SC) chassis for personal skin care products (PSCPs). The viscous behavior of a PSCP is critical to its effectiveness where its uniformity and material strength impact its processing, storage, and delivery of active ingredients. Due to the mildly acidic environment of the skin, PSCPs require a SC that will assist in maintaining their material strength at low pHs. We have investigated a coiled-coil protein hydrogel system for the ability to possess pH-responsiveness, where physical cross-linking and material strength is controlled by pH relative to the isoelectric point (pI) of the protein. We recently designed a coiled-coil protein hydrogel variant, Q5, which possesses a relatively low pI that we hypothesized to have improved supramolecular assembly into a hydrogel at acidic conditions. We demonstrate that Q5 can retain a partial solution-to-gel transition at pH 6.0 and acts as a soft hydrogel by rheology. We further tested Q5 to act as a rheological modifier in a standard SC at pH 6.0 and pH 8.0 to test conditions mediated by pH changes in the skin environment. Q5 reveals the ability to uniquely increase material strength at low pH in comparison to a standard rheological modifier like hydroxyethyl cellulose (HEC), suggesting modular protein-based coiled-coil rheological modifiers can be used in PSCPs.
Collapse
Affiliation(s)
- Dustin Britton
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jonathan Sun
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department
of Chemistry, New York University, New York, New York 10012, United States
| | - Hammad Ali Faizi
- The
Dow Chemical Company, Home and Personal Care, Midland, Michigan 48611, United States
| | - Ligeng Yin
- The
Dow Chemical Company, Home and Personal Care, Collegeville, Pennsylvania 19426, United States
| | - Wei Gao
- The
Dow Chemical Company, Analytical Science, Collegeville, Pennsylvania 19426, United States
| | - Jin Kim Montclare
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department
of Chemistry, New York University, New York, New York 10012, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department
of Biomaterials, New York University College
of Dentistry, New York, New York 10010, United States
- Department
of Biomedical Engineering, New York University, New York, New York 11201, United States
| |
Collapse
|
2
|
Schilling J, Schmid J. Comprehensive rheological analysis of structurally related acetan-like heteroexopolysaccharides from two Kozakia baliensis strains in surfactants and galactomannan blends. N Biotechnol 2024; 82:75-84. [PMID: 38750817 DOI: 10.1016/j.nbt.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Natural biopolymers become increasingly attractive as bio-based alternatives to petrol-based rheological modifiers, especially in personal care applications. However, many polysaccharides exhibit undesired properties in cosmetic applications such as limited viscosifying characteristics, unpleasant sensory properties, or incompatibility with certain formulation compounds. Here, a comprehensive rheological analysis of non-decorated acetan-like heteroexopolysaccharides derived from two Kozakia baliensis strains was performed in selected surfactant formulations. The results were compared to native xanthan gum and a genetically engineered xanthan variant, Xan∆gumFGL, which lacks any acetyl- and pyruvyl moieties and whose rheological properties are unaffected by saline environments. All four polysaccharides displayed a highly similar rheological performance in the non-ionic surfactant lauryl glucoside, while the rheological properties differed in amphoteric and anionic surfactants cocamidopropyl betaine and sodium laureth sulfate due to minor changes in side chain composition. Polysaccharide precipitation was observed in the presence of the cationic surfactant. Nevertheless, the native heteroexopolysaccharide derived from K. baliensis LMG 27018 shows significant potential as a salt-independent rheological modifier compared to the genetically engineered Xan∆gumFGL variant. In addition, blends of heteroexopolysaccharides from K. baliensis and several galactomannans displayed synergistic effects which were comparable to native xanthan gum-galactomannan blends. This study shows that heteroexopolysaccharides of K. baliensis are capable of further extending the portfolio of bio-based rheological modifiers.
Collapse
Affiliation(s)
- Julia Schilling
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149 Münster, Germany
| | - Jochen Schmid
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149 Münster, Germany.
| |
Collapse
|
3
|
Akanny E, Kohlmann C. Predicting tactile sensory attributes of personal care emulsions based on instrumental characterizations: A review. Int J Cosmet Sci 2024. [PMID: 39049783 DOI: 10.1111/ics.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Emulsions in the form of creams, lotions, gels or foams are the most widely used personal care formulations to improve the condition and feel of the skin. Achieving an optimal balance between their performance, effectiveness and sensory profile is essential, with the sensory profile being a key factor in consumer satisfaction and the success of these products in the market. Well-established methods using highly trained and semi-trained panels (e.g. Spectrum descriptive analysis, Flash Profile method, Quantitative Descriptive Analysis method and 'Check-all-that-apply') are available and commonly used for the sensory assessment of personal care products. Nevertheless, a common drawback among all these methods is their inherent cost, both in terms of financial resources and time requirements. In recent years, research studies have emerged to address this limitation by investigating potential correlations between tactile sensory attributes and instrumental data associated with the physical characteristics of topical formulations. In other words, significant efforts have been invested in the development of robust instrumental methods specifically designed to accurately predict the sensory description that a panel of assessors could establish. These methods are not only faster, cheaper and more objective compared to traditional sensory testing, but they can also be applied to formulations that have not undergone extensive safety and toxicological testing. This review summarizes the most relevant findings, trends and current challenges in predicting tactile sensory attributes of personal care emulsions based on instrumental parameters.
Collapse
Affiliation(s)
- Elie Akanny
- BASF Personal Care and Nutrition GmbH, Duesseldorf, Germany
| | | |
Collapse
|
4
|
Gradzielski M. Polymer-Surfactant Interaction for Controlling the Rheological Properties of Aqueous Surfactant Solutions. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Bhat B, Pahari S, Liu S, Lin YT, Kwon J, Akbulut M. Nanostructural and Rheological Transitions of pH-Responsive Supramolecular Systems Involving a Zwitterionic Amphiphile and a Triamine. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Quienne B, Pinaud J, Caillol S. Synthesis of hydrophobically modified ethoxylated non-isocyanate urethanes (HENIURs) and their use as rheology additives. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Water-Soluble Starch-Based Copolymers Synthesized by Electron Beam Irradiation: Physicochemical and Functional Characterization. MATERIALS 2022; 15:ma15031061. [PMID: 35161009 PMCID: PMC8839537 DOI: 10.3390/ma15031061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023]
Abstract
Modification of natural polymers for applications in the treatment of waste and surface waters is a continuous concern of researchers and technologists in close relation to the advantages they provide as related to classical polymeric flocculants. In this work, copolymers of starch-graft-polyacrylamide (St-g-PAM) were synthesized by electron beam irradiation used as the free radical initiator by applying different irradiation doses and dose rates. St-g-PAM loaded with ex situ prepared silver nanoparticles was also synthesized by using an accelerated electron beam. The graft copolymers were characterized by chemical analysis, rheology, and differential scanning calorimetry (DSC). The results showed that the level of grafting (monomer conversion coefficient and residual monomer concentration), intrinsic viscosity and thermal behavior (thermodynamic parameters) were influenced by the irradiation dose, dose rate and presence of silver nanoparticles. The flocculation performances of the synthesized copolymers were also tested on water from the meat industry in experiments at the laboratory level. In the coagulation–flocculation process, the copolymer aqueous solutions showed good efficiency to improve different water quality indicators.
Collapse
|
8
|
Bryant SJ, Calabrese V, da Silva MA, Zakir Hossain KM, Scott JL, Edler KJ. Rheological modification of partially oxidised cellulose nanofibril gels with inorganic clays. PLoS One 2021; 16:e0252660. [PMID: 34234363 PMCID: PMC8263268 DOI: 10.1371/journal.pone.0252660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/20/2021] [Indexed: 11/18/2022] Open
Abstract
This study aimed to quantify the influence of clays and partially oxidised cellulose nanofibrils (OCNF) on gelation as well as characterise their physical and chemical interactions. Mixtures of Laponite and montmorillonite clays with OCNF form shear-thinning gels that are more viscous across the entire shear range than OCNF on its own. Viscosity and other rheological properties can be fine-tuned using different types of clay at different concentrations (0.5-2 wt%). Laponite particles are an order of magnitude smaller than those of montmorillonite (radii of 150 Å compared to 2000 Å) and are therefore able to facilitate networking of the cellulose fibrils, resulting in stronger effects on rheological properties including greater viscosity. This work presents a mechanism for modifying rheological properties using renewable and environmentally-friendly nanocellulose and clays which could be used in a variety of industrial products including home and personal care formulations.
Collapse
Affiliation(s)
- Saffron J. Bryant
- Department of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Vincenzo Calabrese
- Department of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Marcelo A. da Silva
- Department of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | | | - Janet L. Scott
- Department of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom
- Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath, United Kingdom
| | - Karen J. Edler
- Department of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom
| |
Collapse
|
9
|
Yu F, Zhu Y, Liu Y, Qiu G, Shang X, Meng T, Yuan H, Hu F. Poly-γ-glutamic acid derived nanopolyplexes for up-regulation of gamma-glutamyl transpeptidase to augment tumor active targeting and enhance synergistic antitumor therapy by regulating intracellular redox homeostasis. Biomater Sci 2020; 8:5955-5968. [PMID: 32966382 DOI: 10.1039/d0bm01254h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The active targeting strategy has achieved inspiring progress for drug accumulation in tumor therapy; however, the insufficient expression level of many potential receptors poses challenges for drug delivery. Poly-γ-glutamic acid (γ-pGluA), a naturally occurring anionic biopolymer, showed high affinity with tumor-associated gamma-glutamyl transpeptidase (GGT), which localized on the cell surface and exhibited intracellular redox homeostasis-dependent expression pattern; thus, GGT was utilized for mediating endocytosis of nanoparticles. Herein, GGT-targeting nanopolyplexes (γ-pGluA-CSO@Fe3+, PCFN) consisting of cationic chitosan and GGT-targeting γ-pGluA blended with iron ion were constructed to load reactive oxygen species-induced menadione (MA) and doxorubicin, which were utilized to investigate the mechanism of GGT up-regulation. Briefly, the pretreated PCFN/MA induced an intracellular oxidative stress environment, which facilitated adjusted up-regulated GGT expression and boosted tumor targeting. Subsequently, the destroyed redox homeostasis sensitized tumors for synergistic therapy. The innovative strategy of augmenting active targeting by disturbing intracellular redox homeostasis offers insight for the application of γ-pGluA-derived nanopolyplexes.
Collapse
Affiliation(s)
- Fangying Yu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Quienne B, Pinaud J, Robin JJ, Caillol S. From Architectures to Cutting-Edge Properties, the Blooming World of Hydrophobically Modified Ethoxylated Urethanes (HEURs). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Julien Pinaud
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | |
Collapse
|
11
|
Giuri D, Zanna N, Tomasini C. Low Molecular Weight Gelators Based on Functionalized l-Dopa Promote Organogels Formation. Gels 2019; 5:E27. [PMID: 31091701 PMCID: PMC6630615 DOI: 10.3390/gels5020027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 12/03/2022] Open
Abstract
We prepared the small pseudopeptide Lau-l-Dopa(OBn)2-d-Oxd-OBn (Lau = lauric acid; l-Dopa = l-3,4-dihydroxyphenylalanine; d-Oxd = (4R,5S)-4-methyl-5-carboxyl-oxazolidin-2-one; Bn = benzyl) through a number of coupling reactions between lauric acid, protected l-Dopa and d-Oxd with an excellent overall yield. The ability of the product to form supramolecular organogels has been tested with different organic solvents of increasing polarity and compared with the results obtained with the small pseudopeptide Fmoc-l-Dopa(OBn)2-d-Oxd-OBn. The mechanical and rheological properties of the organogels demonstrated solvent-dependent properties, with a storage modulus of 82 kPa for the ethanol organogel. Finally, to have a preliminary test of the organogels' ability to adsorb pollutants, we treated a sample of the ethanol organogel with an aqueous solution of Rhodamine B (RhB) for 24 h. The water solution slowly lost its pink color, which became trapped in the organogel.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy.
| | - Nicola Zanna
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy.
| | - Claudia Tomasini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy.
| |
Collapse
|
12
|
Kulawik-Pióro A, Ptaszek A, Kruk J. Effective tool for assessment of the quality of barrier creams - relationships between rheological, textural and sensory properties. Regul Toxicol Pharmacol 2019; 103:113-123. [PMID: 30664900 DOI: 10.1016/j.yrtph.2019.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 11/16/2022]
Abstract
The efficiency of barier creams (BC) in the prevention of occupational skin diseases is closely related to their mechanical, rheological but also sensory properties. The measurement procedure we elaborated, which simulates the spreadability conditions on the skin and evaluation whether the structure reconstruction occurs (hysteresis loop test, shear rate dependence of normal force), allows the assessment of the effectivness of the BC in terms of mechanical resistance and its adhesion to the skin surface. In this thesis an effort was made to define the impact of the human factor - the product application on skin - on the efficiency of medical devices for cutaneous use. Creams' performance such as the spreadability or the feeling on the skin during and after application, which mostly determine users willingness to use them systematically and rigorously, have been linked to parameters obtained during the structure analysis and to rheological properties. Moreover an attempt has been made to correlate the values of basic textural properties with rheological parameters determined by viscoelasticity and classic flow analysis. Instrumental analysis of selected BC products demonstrated a good correlation with organoleptic tests carried out on probands. The applicability of our tool for quality evaluation of BC has been confirmed.
Collapse
Affiliation(s)
- Agnieszka Kulawik-Pióro
- Institute of Organic Chemistry and Technology, Department of Chemical Engineering and Technology, Cracow University of Technology, Warszawska, 24, 31-155, Cracow, Poland.
| | - Anna Ptaszek
- Department of Engineering and Machinery in Food Industry, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149, Krakow, Poland
| | - Joanna Kruk
- Department of Engineering and Machinery in Food Industry, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149, Krakow, Poland
| |
Collapse
|
13
|
|
14
|
Halla N, Fernandes IP, Heleno SA, Costa P, Boucherit-Otmani Z, Boucherit K, Rodrigues AE, Ferreira ICFR, Barreiro MF. Cosmetics Preservation: A Review on Present Strategies. Molecules 2018; 23:E1571. [PMID: 29958439 PMCID: PMC6099538 DOI: 10.3390/molecules23071571] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022] Open
Abstract
Cosmetics, like any product containing water and organic/inorganic compounds, require preservation against microbial contamination to guarantee consumer’s safety and to increase their shelf-life. The microbiological safety has as main goal of consumer protection against potentially pathogenic microorganisms, together with the product’s preservation resulting from biological and physicochemical deterioration. This is ensured by chemical, physical, or physicochemical strategies. The most common strategy is based on the application of antimicrobial agents, either by using synthetic or natural compounds, or even multifunctional ingredients. Current validation of a preservation system follow the application of good manufacturing practices (GMPs), the control of the raw material, and the verification of the preservative effect by suitable methodologies, including the challenge test. Among the preservatives described in the positive lists of regulations, there are parabens, isothiasolinone, organic acids, formaldehyde releasers, triclosan, and chlorhexidine. These chemical agents have different mechanisms of antimicrobial action, depending on their chemical structure and functional group’s reactivity. Preservatives act on several cell targets; however, they might present toxic effects to the consumer. Indeed, their use at high concentrations is more effective from the preservation viewpoint being, however, toxic for the consumer, whereas at low concentrations microbial resistance can develop.
Collapse
Affiliation(s)
- Noureddine Halla
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LAPSAB), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000 Tlemcen, Algeria.
- Laboratory of Biotoxicology, Pharmacognosy and Biological Recovery of Plants, Department of Biology, Faculty of Sciences, University of Moulay-Tahar, 20000 Saida, Algeria.
| | - Isabel P Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-253 Bragança, Portugal.
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-253 Bragança, Portugal.
| | - Patrícia Costa
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Zahia Boucherit-Otmani
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LAPSAB), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000 Tlemcen, Algeria.
| | - Kebir Boucherit
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LAPSAB), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000 Tlemcen, Algeria.
| | - Alírio E Rodrigues
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Maria Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-253 Bragança, Portugal.
| |
Collapse
|