1
|
Iswanto AH, Lee SH, Hussin MH, Hamidon TS, Hajibeygi M, Manurung H, Solihat NN, Nurcahyani PR, Lubis MAR, Antov P, Savov V, Kristak L, Kawalerczyk J, Osvaldová LM, Farid S, Selvasembian R, Fatriasari W. A comprehensive review of lignin-reinforced lignocellulosic composites: Enhancing fire resistance and reducing formaldehyde emission. Int J Biol Macromol 2024; 283:137714. [PMID: 39571852 DOI: 10.1016/j.ijbiomac.2024.137714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
The rising environmental concerns and the growing demand for renewable materials have surged across various industries. In this context, lignin, being a plentiful natural aromatic compound that possesses advantageous functional groups suitable for utilization in biocomposite systems, has gained notable attention as a promising and sustainable alternative to fossil-derived materials. It can be obtained from lignocellulosic biomass through extraction via various techniques, which may cause variability in its thermal, mechanical, and physical properties. Due to its excellent biocompatibility, eco-friendliness, and low toxicity, lignin has been extensively researched for the development of high-value materials including lignin-based biocomposites. Its aromatic properties also allow it to successfully substitute phenol in the production of phenolic resin adhesives, resulting in decreased formaldehyde emission. This review investigated and evaluated the role of lignin as a green filler in lignin-based lignocellulosic composites, aimed at enhancing their fire retardancy and decreasing formaldehyde emission. In addition, relevant composite properties, such as thermal properties, were investigated in this study. Markedly, technical challenges, including compatibility with other matrix polymers that are influenced by limited reactivity, remain. Some impurities in lignin and various sources of lignin also affect the performance of composites. While lignin utilization can address certain environmental issues, its large-scale use is limited by both process costs and market factors. Therefore, the exact mechanism by which lignin enhances flame retardancy, reduces formaldehyde emissions, and improves the long-term durability of lignocellulosic composites under various environmental conditions remains unclear and requires thorough investigation. Life cycle analysis and techno-economic analysis of lignin-based composites may contribute to understanding the overall influence of systems not only at the laboratory scale but also at a larger industrial scale.
Collapse
Affiliation(s)
- Apri Heri Iswanto
- Department of Forest Products, Faculty of Forestry, Universitas Sumatera Utara, Kampus USU 2 Kwala Bekala, Deli Serdang 20353, North Sumatra, Indonesia.
| | - Seng Hua Lee
- Department of Wood Industry, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Cawangan Pahang Kampus Jengka, 26400 Bandar Tun Razak, Malaysia
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Tuan Sherwyn Hamidon
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Mohsen Hajibeygi
- Department of Organic and Polymer Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran
| | - Harisyah Manurung
- Department of Forest Products, Faculty of Forestry, Universitas Sumatera Utara, Kampus USU 2 Kwala Bekala, Deli Serdang 20353, North Sumatra, Indonesia
| | - Nissa Nurfajrin Solihat
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Kawasan KST Soekarno, Jl Raya Bogor KM 46 Cibinong, Bogor 16911, Indonesia
| | - Puji Rahmawati Nurcahyani
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Kawasan KST Soekarno, Jl Raya Bogor KM 46 Cibinong, Bogor 16911, Indonesia; Food Technology Study Program, Faculty of Technology and Vocational Education, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 229, Bandung 40154, Indonesia
| | - Muhammad Adly Rahandi Lubis
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Kawasan KST Soekarno, Jl Raya Bogor KM 46 Cibinong, Bogor 16911, Indonesia
| | - Petar Antov
- Faculty of Forest Industry, University of Forestry, Sofia, Bulgaria
| | - Viktor Savov
- Faculty of Forest Industry, University of Forestry, Sofia, Bulgaria
| | - Lubos Kristak
- Faculty of Wood Sciences and Technology, Technical University of Zvolen, 96001 Zvolen, Slovakia
| | - Jakub Kawalerczyk
- Department of Mechanical Wood Technology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, 60-627 Poznań, Poland
| | - Linda Makovická Osvaldová
- Department of Fire Engineering, Faculty of Security Engineering, University of Žilina, 01032 Žilina, Slovakia
| | - Samina Farid
- University of Engineering and Technology, Lahore, Pakistan
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Widya Fatriasari
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Kawasan KST Soekarno, Jl Raya Bogor KM 46 Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
2
|
Böcherer D, Montazeri R, Li Y, Tisato S, Hambitzer L, Helmer D. Decolorization of Lignin for High-Resolution 3D Printing of High Lignin-Content Composites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406311. [PMID: 39136053 PMCID: PMC11497040 DOI: 10.1002/advs.202406311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Lignin, one of the most abundant biomaterials and a large-scale industrial waste product, is a promising filler for polymers as it reduces the amount of fossil resources and is readily available. 3D printing is well-known for producing detailed polymer structures in small sizes at low waste production. Especially light-assisted 3D printing is a powerful technique for production of high-resolution structures. However, lignin acts as a very efficient absorber for UV and visible light limiting the printability of lignin composites, reducing its potential as a high-volume filler. In this work, the decolorization of lignin is presented for high-resolution 3D printing of biocomposites with lignin content up to 40 wt.%. Organosolv lignin (OSL) is decolorized by an optimized low-energy process of acetylation and subsequent UV irradiation reducing the UV absorbance by 71%. By integration of decolorized lignin into bio-based tetrahydrofurfuryl acrylate (THFA), a lignin content of 40 wt.% and a resolution of 250 µm is achieved. Due to the reinforcing properties of lignin, the stiffness and strength of the material is increased by factors of 15 and 2.3, respectively. This work paves the way for the re-use of a large amount of lignin waste for 3D printing of tough materials at high resolution.
Collapse
Affiliation(s)
- David Böcherer
- Department of Microsystems EngineeringUniversity of Freiburg79110FreiburgGermany
| | - Ramin Montazeri
- Department of Microsystems EngineeringUniversity of Freiburg79110FreiburgGermany
| | - Yuanyuan Li
- Department of Microsystems EngineeringUniversity of Freiburg79110FreiburgGermany
| | - Silvio Tisato
- Freiburg Materials Research Center (FMF)University of Freiburg79104FreiburgGermany
| | - Leonhard Hambitzer
- Department of Microsystems EngineeringUniversity of Freiburg79110FreiburgGermany
| | - Dorothea Helmer
- Department of Microsystems EngineeringUniversity of Freiburg79110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of Freiburg79104FreiburgGermany
| |
Collapse
|
3
|
Cabello-Alvarado CJ, Andrade-Guel M, Pérez-Alvarez M, Cadenas-Pliego G, Bartolo-Pérez P, Martínez-Carrillo D, Quiñones-Jurado ZV. Green Flame-Retardant Blend Used to Improve the Antiflame Properties of Polypropylene. Polymers (Basel) 2024; 16:1317. [PMID: 38794510 PMCID: PMC11126108 DOI: 10.3390/polym16101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The flammability properties of polymers and polymeric composites play an important role in ensuring the safety of humans and the environment; moreover, flame-retardant materials ensure a greater number of applications. In the present study, we report the obtaining of polypropylene (PP) composites contain a mixture of two green flame retardants, lignin and clinoptilolite, by melt extrusion. These additives are abundantly found in nature. Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), mechanical properties, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), cone calorimetry, UL-94, and carbonized residues analysis were carried out. TGA analysis shows that PPGFR-10 and PPGFR-20 compounds presented better thermal stability with respect to PP without flame retardants. The conical calorimetric evaluation of the composites showed that PPGFR-10 and PPGFR-20 presented decreases in peak heat release rates (HRRs) of 9.75% and 11.88%, respectively. The flammability of the composites was evaluated with the UL-94 standard, and only the PPGFR-20 composite presented the V-0 and 5VB classification, which indicates good flame-retardant properties. Additives in the polymer matrix showed good dispersion with few agglomerates. The PPGFR-20 composite showed an FRI value of 1.15, higher percentage of carbonized residues, and UL-94 V-0 and 5VB rating, suggesting some kind of synergy between lignin and clinoptilolite, but only at high flame-retardant concentrations.
Collapse
Affiliation(s)
- Christian J. Cabello-Alvarado
- Centro de Investigación en Química Aplicada, Saltillo 25294, Coahuila, Mexico; (C.J.C.-A.); (M.P.-A.)
- CONAHCYT—Centro de Investigación en Química Aplicada, Saltillo 25294, Coahuila, Mexico
| | - Marlene Andrade-Guel
- Centro de Investigación en Química Aplicada, Saltillo 25294, Coahuila, Mexico; (C.J.C.-A.); (M.P.-A.)
| | - Marissa Pérez-Alvarez
- Centro de Investigación en Química Aplicada, Saltillo 25294, Coahuila, Mexico; (C.J.C.-A.); (M.P.-A.)
| | - Gregorio Cadenas-Pliego
- Centro de Investigación en Química Aplicada, Saltillo 25294, Coahuila, Mexico; (C.J.C.-A.); (M.P.-A.)
| | - Pascual Bartolo-Pérez
- Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Departamento de Física Aplicada, Mérida 97310, Yucatán, Mexico;
| | - Diego Martínez-Carrillo
- Centro de Investigación en Geociencias Aplicadas, Universidad Autónoma de Coahuila, Nueva Rosita 26830, Coahuila, Mexico;
| | - Zoe V. Quiñones-Jurado
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango 34120, Durango, Mexico;
| |
Collapse
|
4
|
Wang R, You X, Qi S, Tian R, Zhang H. Enhancing Mechanical Performance of High-Lignin-Filled Polypropylene via Reactive Extrusion. Polymers (Basel) 2024; 16:520. [PMID: 38399898 PMCID: PMC11154581 DOI: 10.3390/polym16040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Polypropylene (PP) is one of the most extensively used commodity plastics. In terms of eco-friendliness, it is worth considering preparing high-lignin-filled PP. This study explores the incorporation of high lignin content, derived from acetic acid lignin (AAL) and Kraft lignin (KL), into PP through twin-screw extrusion and injection molding. The challenge lies in maintaining mechanical performance. A compatibilizer-specifically, maleic anhydride-grafted polypropylene (MAPP)-is employed to enhance lignin-PP compatibility by chemically bonding with lignin and physically associating with the PP phase. Results indicate that KL maintains better dispersity than AAL. Compatibilizers with a high maleic anhydride (MA) level (≥0.8 wt.%) and moderate melt flow index (MFI) in the range of 60-100 g 10 min⁻¹ prove favorable in constructing a reinforced PP/KL network. Optimizing with 40 wt.% lignin content and 10 parts per hundred (pph) of compatibilizer yields blends with mechanical performance comparable to neat PP, exhibiting a notable increase in modulus and heat deflection temperature (HDT). Furthermore, utilizing PP/lignin blends can lead to a 20% reduction in expenses and approximately 40% reduction in PP-induced greenhouse gas (GHG) emissions. This approach not only reduces PP costs but also adds value to lignin utilization in a sustainable and cost-effective manner.
Collapse
Affiliation(s)
| | - Xiangyu You
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science of Science & Technology, Xi’an 710021, China; (R.W.); (S.Q.); (R.T.)
| | | | | | - Huijie Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science of Science & Technology, Xi’an 710021, China; (R.W.); (S.Q.); (R.T.)
| |
Collapse
|
5
|
Pregi E, Blasius J, Kun D, Hollóczki O, Pukánszky B. Effect of competitive interactions on the structure and properties of blends prepared from an industrial lignosulfonate polymer. Int J Biol Macromol 2024; 254:127694. [PMID: 37898248 DOI: 10.1016/j.ijbiomac.2023.127694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
To explore the possibility of applying lignin in practice, an industrial lignosulfonate (0-50 vol%) was blended with four ionomers. The concentrations of carboxyl and carboxylate groups were systematically varied in the ethylene-acrylic acid copolymers to study the competition of hydrogen and ionic bonds forming between the components. The mechanical properties of the blends were determined by tensile testing. The structure was investigated by scanning electron microscopy, while deformation and failure processes were studied by acoustic emission measurements and microscopy. Interfacial interactions were quantitatively characterized by analyzing local deformation processes and by evaluating the composition dependence of the tensile strength using appropriate models. Molecular dynamics simulations indicated that carboxylate groups preferably form clusters in the ionomer phase, consequently, the increasing degree of neutralization results in ionomers with more and more self-interactions of components deteriorating ionomer-lignin interactions. The novel combination of experiments, modeling, and simulation was done for the first time on such materials, and it pointed out that the role of hydrogen bonds is more critical in determining blend properties. Blends can be prepared for practical applications with a good combination of stiffness (0.8 GPa), tensile strength (22 MPa), and elongation-at-break (25 %) at 30 vol% lignosulfonate content and 33 % neutralization.
Collapse
Affiliation(s)
- Emese Pregi
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary.
| | - Jan Blasius
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4+6, D-53115 Bonn, Germany
| | - Dávid Kun
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4+6, D-53115 Bonn, Germany; Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| | - Béla Pukánszky
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
6
|
Sarieddine A, Hadjiefstathiou C, Majira A, Pion F, Ducrot PH. Biocatalytic selective acylation of technical lignins: a new route for the design of new biobased additives for industrial formulations. Front Chem 2023; 11:1239479. [PMID: 37547909 PMCID: PMC10400768 DOI: 10.3389/fchem.2023.1239479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
In this article, we describe a proof of concept of the potential use of a biocatalytic process for the functionalization of technical soda lignins from wheat straw through the selective acylation of primary hydroxy groups of lignin oligomers by acetate or hexanoate, thus preserving their free, unreacted phenols. The selectivity and efficiency of the method, although they depend on the structural complexity of the starting material, have been proven on model compounds. Applied to technical lignins, the acylation yield is only moderate, due to structural and chemical features induced by the industrial mode of preparation of the lignins rather than to the lack of efficiency of the method. However, most of the physicochemical properties of the lignins, including their antioxidant potential, are preserved, advocating the potential use of these modified lignins for industrial applications.
Collapse
Affiliation(s)
- Aya Sarieddine
- Université Paris-Saclay, Institut national de la recherche agronomique, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- FARE Laboratory, Institut national de la recherche agronomique, Université de Reims Champagne Ardenne, Reims, France
| | - Caroline Hadjiefstathiou
- Université Paris-Saclay, Institut national de la recherche agronomique, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- URCOM Laboratory, Université Le Havre Normandie, Le Havre, France
| | - Amel Majira
- Université Paris-Saclay, Institut national de la recherche agronomique, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Florian Pion
- Université Paris-Saclay, Institut national de la recherche agronomique, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Paul-Henri Ducrot
- Université Paris-Saclay, Institut national de la recherche agronomique, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
7
|
Ho KH, Lu X, Lau SK. In Situ Dispersion of Lignin in Polypropylene via Supercritical CO 2 Extrusion Foaming: Effects of Lignin on Cell Nucleation and Foam Compression Properties. Polymers (Basel) 2023; 15:polym15081813. [PMID: 37111960 PMCID: PMC10145137 DOI: 10.3390/polym15081813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Supercritical CO2 (scCO2) extrusion foamed high-melt-strength (HMS) polypropylene (PP) often suffers from low cell density, large cell sizes, and poor cell structure uniformity due to the poor nucleation rates of CO2 in the PP. To remedy this, various inorganic fillers have been used as heterogeneous nucleation agents. Although their efficient nucleation effects have been demonstrated, the preparation of these fillers causes some adverse effects on the environment/human health or involves relatively expensive processes or non-eco-friendly chemicals. In this work, biomass-based lignin is studied as a sustainable, lightweight, and cost-effective nucleating agent. It is found that scCO2 could assist in situ dispersion of lignin in the PP in the foaming process, leading to significantly increased cell density, smaller cells, and improved cell uniformity. The Expansion Ratio is also simultaneously improved due to reduced diffusive gas loss. The PP/lignin foams with low lignin loadings exhibit higher compression moduli and plateau strengths than the PP foams with the same densities owing to the improved cell uniformity and probably also the reinforcing effect of the small lignin particles in cell walls. Moreover, the energy absorption capability of the PP/lignin foam with 1 wt% lignin could match the PP foam with similar compression plateau strengths; even the density of the former is 28% lower than the latter. Therefore, this work provides a promising approach to a cleaner and more sustainable production of HMS PP foams.
Collapse
Affiliation(s)
- Keen Hoe Ho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 5 CleanTech Loop #01-01, CleanTech Two Block B, Singapore 636732, Singapore
| | - Xuehong Lu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Soo Khim Lau
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 5 CleanTech Loop #01-01, CleanTech Two Block B, Singapore 636732, Singapore
| |
Collapse
|
8
|
Pham CD, Dang MDT, Ly TB, Tran KD, Vo NT, Do NHN, Mai PT, Le PK. A review of the extraction methods and advanced applications of lignin-silica hybrids derived from natural sources. Int J Biol Macromol 2023; 230:123175. [PMID: 36623624 DOI: 10.1016/j.ijbiomac.2023.123175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
The global trend of increasing energy demand along the large volume of wastewater generated annually from the paper pulping and cellulose production industries are considered as serious dilemma that may need to be solved within these current decades. Within this discipline, lignin, silica or lignin-silica hybrids attained from biomass material have been considered as prospective candidates for the synthesis of advanced materials. In this study, the roles and linking mechanism between lignin and silica in plants were studied and evaluated. The effects of the extraction method on the quality of the obtained material were summarized to show that depending on the biomass feedstocks, different retrieval processes should be considered. The combination of alkaline treatment and acidic pH adjustment is proposed as an effective method to recover lignin-silica with high applicability for various types of raw materials. From considerations of the advanced applications of lignin and silica materials in environmental remediation, electronic devices and rubber fillers future valorizations hold potential in conductive materials and electrochemistry. Along with further studies, this research could not only contribute to the development of zero-waste manufacturing processes but also propose a solution for the fully exploiting of by-products from agricultural production.
Collapse
Affiliation(s)
- Co D Pham
- Refinery and Petrochemicals Technology Research Center (RPTC), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Minh D T Dang
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Tuyen B Ly
- Refinery and Petrochemicals Technology Research Center (RPTC), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ho Chi Minh City, Viet Nam
| | - Khoi D Tran
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Nhi T Vo
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Nga H N Do
- Refinery and Petrochemicals Technology Research Center (RPTC), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Phong T Mai
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Phung K Le
- Refinery and Petrochemicals Technology Research Center (RPTC), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
9
|
Solvents Drive Self-assembly Mechanisms and Inherent properties of Kraft Lignin Nanoparticles (< 50 nm). J Colloid Interface Sci 2022; 626:178-192. [DOI: 10.1016/j.jcis.2022.06.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/31/2022] [Accepted: 06/19/2022] [Indexed: 12/18/2022]
|
10
|
Graziano A, Titton Dias OA, Sena Maia B, Li J. Enhancing the mechanical, morphological, and rheological behavior of polyethylene/polypropylene blends with maleic anhydride‐grafted polyethylene. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antimo Graziano
- Department of Mechanical and Aerospace Engineering Carleton University Ottawa Ontario Canada
| | - Otavio Augusto Titton Dias
- Centre for Biocomposites and Biomaterials Processing, John H. Daniels Faculty of Architecture, Landscape, and Design University of Toronto Toronto Ontario Canada
| | - Bruno Sena Maia
- Centre for Biocomposites and Biomaterials Processing, John H. Daniels Faculty of Architecture, Landscape, and Design University of Toronto Toronto Ontario Canada
| | - Jinlei Li
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| |
Collapse
|
11
|
Kun D, Kárpáti Z, Fekete E, Móczó J. The Role of Interfacial Adhesion in Polymer Composites Engineered from Lignocellulosic Agricultural Waste. Polymers (Basel) 2021; 13:3099. [PMID: 34577999 PMCID: PMC8473458 DOI: 10.3390/polym13183099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
This paper presents a comprehensive study about the application of a lignocellulosic agricultural waste, sunflower husk in different polymer composites. Two types of milled sunflower husk with different geometrical factors were incorporated into polypropylene, low-density and high-density polyethylene, polystyrene (PS), glycol-modified polyethylene terephthalate (PETG) and polylactic acid (PLA). The filler content of the composites varied between 0 and 60 vol%. The components were homogenized in an internal mixer and plates were compression molded for testing. The Lewis-Nielsen model was fitted to the moduli of each composite series, and it was found that the physical contact of the filler particles is a limiting factor of composite modulus. Interfacial interactions were estimated from two independent approaches. Firstly, the extent of reinforcement was determined from the composition dependence of tensile strength. Secondly, the reversible work of adhesion was calculated from the surface energies of the components. As only weak van der Waals interactions develop in the interphase of polyolefins and sunflower husk particles, adhesion is weak in their composites resulting in poor reinforcement. Interfacial adhesion enhanced by specific interactions in the interphase, such as π electron interactions for PS, hydrogen bonds for PLA, and both for PETG based composites.
Collapse
Affiliation(s)
- Dávid Kun
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (D.K.); (Z.K.); (E.F.)
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Lóránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary
| | - Zoltán Kárpáti
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (D.K.); (Z.K.); (E.F.)
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Lóránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary
| | - Erika Fekete
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (D.K.); (Z.K.); (E.F.)
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Lóránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary
| | - János Móczó
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (D.K.); (Z.K.); (E.F.)
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Lóránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary
| |
Collapse
|
12
|
Liu X, Qin Y, Zhao S, Dong JY. Nanocomposites-Turned-Nanoalloys Polypropylene/Multiwalled Carbon Nanotubes- graft-Polystyrene: Synthesis and Polymer Nanoreinforcement. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiuming Liu
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Qin
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songmei Zhao
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Yong Dong
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Liao JJ, Latif NHA, Trache D, Brosse N, Hussin MH. Current advancement on the isolation, characterization and application of lignin. Int J Biol Macromol 2020; 162:985-1024. [DOI: 10.1016/j.ijbiomac.2020.06.168] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/21/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
|
14
|
Alassod A, Gibril M, Islam SR, Huang W, Xu G. Polypropylene/lignin blend monoliths used as sorbent in oil spill cleanup. Heliyon 2020; 6:e04591. [PMID: 32944663 PMCID: PMC7481537 DOI: 10.1016/j.heliyon.2020.e04591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 10/25/2022] Open
Abstract
With increasing industrial development, frequent oil spillages in water; therefore, it is imperative and challenging to develop absorbents materials that are eco-efficiency, cost-effective, and pollution prevention. In this study, sorbents obtained from Lignin incorporated with Polypropylene in different levels loading 0, 10, 20 % wt using thermally induced phase separation Technique (TIPS). The Polypropylene/Lignin blend monoliths were fabricated and compared in terms of morphological, thermal, and wetting characterizations. The successfully blending of different lignin concentrations with preserved the chemical structure of the polymer was confirmed by FTIR analysis. Thermogravimetric tests displayed that the existence of Lignin has changed the onset temperature (Tonset) of the blending sorbents, decreasing as the loading of Lignin is increased. The contact angle measurement showed a decrease in the hydrophobicity of sorbents with increasing lignin loading, Polypropylene/Lignin blend monoliths showed better absorption toward oils (soybean - engine) as compared to Polypropylene itself. PP10L showed an improvement in the oil sorption capacity around 2 times compared to the Polypropylene. These excellent features make Polypropylene/Lignin blend monoliths more competitive promising candidates than commercial absorbent.
Collapse
Affiliation(s)
- Abeer Alassod
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Magdi Gibril
- Qilu University, Key Laboratory of Biobased Materials and Green Papermaking, China
| | | | - Wanzhen Huang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Guangbiao Xu
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
15
|
Alassod A, Islam SR, Farooq A, Xu G. Fabrication of polypropylene/lignin blend sponges via thermally induced phase separation for the removal of oil from contaminated water. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03372-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
16
|
Loste N, Roldán E, Giner B. Is Green Chemistry a feasible tool for the implementation of a circular economy? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6215-6227. [PMID: 31865584 DOI: 10.1007/s11356-019-07177-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
The main goal of this research is to evaluate the contributions of Green Chemistry as a potential tool to drive the transition to circularity. For this, we have carried out a bibliographic study, analyzing those documents, process, or experiences that dealt jointly with the Green Chemistry aspects related to circularity such circular economy, industrial ecology, and closed loop. Findings show that few authors have treated that disciplines together in the last 10 years. Based on an analysis of academic literature, common strategies (design, raw materials, life cycle assessment, processes, normative, new business, and collaboration), specific experiences (catalyst, biobased products or methods, recycling, and reusing), and difficulties to overcome (metrics, transdisciplinary research, unawareness, and competitiveness) have been identified. Finally, different kind of measures, as behind such joint metrics, informal open spaces, closer the industry, education, standards and label are proposed to facilitate the development of Green Chemistry, circular economy, industrial ecology, and closed loop with the ultimate goal of improving sustainable development.From the evidences found, we finally conclude that it is possible to use Green Chemistry and its principles as a tool to drive the transition to circularity, being the development of open spaces for exchange information between different actors from academia, governments and regulatory actors, business and industrial sectors, with the aim of promoting disruptive advances in sustainability.
Collapse
Affiliation(s)
- Natalia Loste
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Esther Roldán
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Beatriz Giner
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain.
| |
Collapse
|
17
|
Giacomin H, Unno M, Eichbauer K, Atkins C. Automotive wastes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1223-1228. [PMID: 31529650 DOI: 10.1002/wer.1217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
A review of the literature from 2018 related to automotive wastes is presented. Topics include solid wastes from autobodies, batteries, tires, and vehicle electronics, in addition to sustainable building materials. Treatment and control of automotive pollution is also discussed, as well as potential toxicological and health risks. PRACTITIONER POINTS: Life cycle analyses and sustainable development automotive components were a key focus of the 2018 literature. Automobiles have been identified as point sources for air and water pollution. Research into energy consumption, emissions control, and catalytic converter behavior was conducted to mitigate the impact of automobile emissions. Potential non-point source control measures were identified. These included biological and chemical degradation of pollutants, as well as adsorption of heavy metals.
Collapse
|