1
|
Dinic J, Tirrell MV. Effects of Charge Sequence Pattern and Lysine-to-Arginine Substitution on the Structural Stability of Bioinspired Polyampholytes. Biomacromolecules 2024; 25:2838-2851. [PMID: 38567844 PMCID: PMC11094733 DOI: 10.1021/acs.biomac.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 05/14/2024]
Abstract
A comprehensive study focusing on the combined influence of the charge sequence pattern and the type of positively charged amino acids on the formation of secondary structures in sequence-specific polyampholytes is presented. The sequences of interest consisting exclusively of ionizable amino acids (lysine, K; arginine, R; and glutamic acid, E) are (EKEK)5, (EKKE)5, (ERER)5, (ERRE)5, and (EKER)5. The stability of the secondary structure was examined at three pH values in the presence of urea and NaCl. The results presented here underscore the combined prominent effects of the charge sequence pattern and the type of positively charged monomers on secondary structure formation. Additionally, (ERRE)5 readily aggregated across a wide range of pH. In contrast, sequences with the same charge pattern, (EKKE)5, as well as the sequences with the equivalent amino acid content, (ERER)5, exhibited no aggregate formation under equivalent pH and concentration conditions.
Collapse
Affiliation(s)
- Jelena Dinic
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Center
for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Center
for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
2
|
Shatabayeva E, Kaldybekov DB, Ulmanova L, Zhaisanbayeva BA, Mun EA, Kenessova ZA, Kudaibergenov SE, Khutoryanskiy VV. Enhancing Mucoadhesive Properties of Gelatin through Chemical Modification with Unsaturated Anhydrides. Biomacromolecules 2024; 25:1612-1628. [PMID: 38319691 PMCID: PMC10934270 DOI: 10.1021/acs.biomac.3c01183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
Gelatin is a water-soluble natural polyampholyte with poor mucoadhesive properties. It has traditionally been used as a major ingredient in many pharmaceuticals, including soft and hard capsules, suppositories, tissue engineering, and regenerative medicine. The mucoadhesive properties of gelatin can be improved by modifying it through conjugation with specific adhesive unsaturated groups. In this study, gelatin was modified by reacting with crotonic, itaconic, and methacrylic anhydrides in varying molar ratios to yield crotonoylated-, itaconoylated-, and methacryloylated gelatins (abbreviated as Gel-CA, Gel-IA, and Gel-MA, respectively). The successful synthesis was confirmed using 1H NMR, FTIR spectroscopies, and colorimetric TNBSA assay. The effect of chemical modification on the isoelectric point was studied through viscosity and electrophoretic mobility measurements. The evolution of the storage (G') and loss (G'') moduli was employed to determine thermoreversible gelation points of modified and unmodified gelatins. The safety of modified gelatin derivatives was assessed with an in vivo slug mucosal irritation test (SMIT) and an in vitro MTT assay utilizing human pulmonary fibroblasts cell line. Two different model dosage forms, such as physical gels and spray-dried microparticles, were prepared and their mucoadhesive properties were evaluated using a flow-through technique with fluorescent detection and a tensile test with ex vivo porcine vaginal tissues and sheep nasal mucosa. Gelatins modified with unsaturated groups exhibited superior mucoadhesive properties compared to native gelatin. The enhanced ability of gelatin modified with these unsaturated functional groups is due to the formation of covalent bonds with cysteine-rich subdomains present in the mucin via thiol-ene click Michael-type addition reactions occurring under physiologically relevant conditions.
Collapse
Affiliation(s)
- Elvira
O. Shatabayeva
- Reading
School of Pharmacy, University of Reading, Whiteknights, RG6 6DX Reading, United Kingdom
- Department
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, 050040 Almaty, Kazakhstan
| | - Daulet B. Kaldybekov
- Reading
School of Pharmacy, University of Reading, Whiteknights, RG6 6DX Reading, United Kingdom
- Department
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, 050040 Almaty, Kazakhstan
- Institute
of Polymer Materials and Technology, 050019 Almaty, Kazakhstan
| | - Leila Ulmanova
- School
of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Balnur A. Zhaisanbayeva
- School
of Engineering and Digital Sciences, Nazarbayev
University, 010000 Astana, Kazakhstan
| | - Ellina A. Mun
- School
of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Zarina A. Kenessova
- Department
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, 050040 Almaty, Kazakhstan
| | | | - Vitaliy V. Khutoryanskiy
- Reading
School of Pharmacy, University of Reading, Whiteknights, RG6 6DX Reading, United Kingdom
| |
Collapse
|
3
|
Çeper T, Langer M, Vashistha N, Dietzek-Ivanšić B, Streb C, Rau S, Schacher FH. Poly(dehydroalanine)-Based Hydrogels as Efficient Soft Matter Matrices for Light-Driven Catalysis. Macromol Rapid Commun 2024; 45:e2300448. [PMID: 38232973 DOI: 10.1002/marc.202300448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/27/2023] [Indexed: 01/19/2024]
Abstract
Soft matter integration of photosensitizers and catalysts provides promising solutions to developing sustainable materials for energy conversion. Particularly, hydrogels bring unique benefits, such as spatial control and 3D-accessibility of molecular units, as well as recyclability. Herein, the preparation of polyampholyte hydrogels based on poly(dehydroalanine) (PDha) is reported. Chemically crosslinked PDha with bis-epoxy poly(ethylene glycol) leads to a transparent, self-supporting hydrogel. Due to the ionizable groups on PDha, this 3D polymeric matrix can be anionic, cationic, or zwitterionic depending on the pH value, and its high density of dynamic charges has a potential for electrostatic attachment of charged molecules. The integration of the cationic molecular photosensitizer [Ru(bpy)3 ]2+ (bpy = 2,2'-bipyridine) is realized, which is a reversible process controlled by pH, leading to light harvesting hydrogels. They are further combined with either a thiomolybdate catalyst ([Mo3 S13 ]2- ) for hydrogen evolution reaction (HER) or a cobalt polyoxometalate catalyst (Co4 POM = [Co4 (H2 O)2 (PW9 O34 )2 ]10- ) for oxygen evolution reaction (OER). Under the optimized condition, the resulting hydrogels show catalytic activity in both cases upon visible light irradiation. In the case of OER, higher photosensitizer stability is observed compared to homogeneous systems, as the polymer environment seems to influence decomposition pathways.
Collapse
Affiliation(s)
- Tolga Çeper
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Marcel Langer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Nikita Vashistha
- Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Helmholtzweg 4, D-07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena, Department of Functional Interfaces, Albert Einstein Allee 9, D-07745, Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Helmholtzweg 4, D-07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena, Department of Functional Interfaces, Albert Einstein Allee 9, D-07745, Jena, Germany
| | - Carsten Streb
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
4
|
Bediako JK, El Ouardi Y, Massima Mouele ES, Mensah B, Repo E. Polyelectrolyte and polyelectrolyte complex-incorporated adsorbents in water and wastewater remediation - A review of recent advances. CHEMOSPHERE 2023; 325:138418. [PMID: 36925007 DOI: 10.1016/j.chemosphere.2023.138418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
In recent years, polyelectrolyte-incorporated functional materials have emerged as novel adsorbents for effective remediation of pollutants in water and wastewater. Polyelectrolytes (PEs) are a special class of polymers with long chains of repeating charged moieties. Polyelectrolyte complexes (PECs) are obtained by mixing aqueous solutions of oppositely charged PEs. Herewith, this review discusses recent advances with respect to water and wastewater remediation using PE- and PEC-incorporated adsorbents. The review begins by highlighting some water resources, their pollution sources and available treatment techniques. Next, an overview of PEs and PECs is discussed, highlighting the evolving progress in their processing. Consequently, application of these materials in different facets of water and wastewater remediation, including heavy metal removal, precious metal and rare earth element recovery, desalination, dye and emerging micropollutant removal, are critically reviewed. For water and wastewater remediation, PEs and PECs are mostly applied either in their original forms, as composites or as morphologically-tunable complexes. PECs are deemed superior to other materials owing to their tunability for both cationic and anionic pollutants. Generally, natural and semi-synthetic PEs have been largely applied owing to their low cost, ready availability and eco-friendliness. Except dye removal and desalination of saline water, application of synthetic PEs and PECs is scanty, and hence requires more focus in future research.
Collapse
Affiliation(s)
- John Kwame Bediako
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850 Lappeenranta, Finland; Department of Food Process Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Youssef El Ouardi
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850 Lappeenranta, Finland
| | - Emile Salomon Massima Mouele
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850 Lappeenranta, Finland
| | - Bismark Mensah
- Department of Materials Science and Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana
| | - Eveliina Repo
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850 Lappeenranta, Finland
| |
Collapse
|
5
|
Dinic J, Schnorenberg MR, Tirrell MV. Sequence-Controlled Secondary Structures and Stimuli Responsiveness of Bioinspired Polyampholytes. Biomacromolecules 2022; 23:3798-3809. [PMID: 35969881 DOI: 10.1021/acs.biomac.2c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A comprehensive study focusing on the influence of the sequence charge pattern on the secondary structure preferences of annealed polyampholytes and their responsiveness to external stimuli is presented. Two sequences are designed composed entirely of ionizable amino acids (charge fraction, f = 1) and an equal number of positive and negative charges (f+ = f- = 0.5) with distinct charge patterns consisting of lysine and glutamic acid monomers. The study reveals that the sequence charge pattern has a significant influence on the secondary structure preferences of polyampholytes at physiological pH. Furthermore, it shows that external stimuli such as pH, ionic strength, and solvent dielectric constant can be used to modulate the secondary structure of the two studied sequences. The observed secondary structure transformations for the two sequences are also substantially different from those determined for uniformly charged homo-polypeptides under matching conditions.
Collapse
Affiliation(s)
- Jelena Dinic
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Mathew R Schnorenberg
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V Tirrell
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Drobota M, Vlad S, Gradinaru LM, Bargan A, Radu I, Butnaru M, Rîmbu CM, Ciobanu RC, Aflori M. Composite Materials Based on Gelatin and Iron Oxide Nanoparticles for MRI Accuracy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3479. [PMID: 35629506 PMCID: PMC9147670 DOI: 10.3390/ma15103479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023]
Abstract
The majority of recent studies have focused on obtaining MRI materials for internal use. However, this study focuses on a straightforward method for preparing gelatin-based materials with iron oxide nanoparticles (G-Fe2O3 and G-Fe3O4) for external use. The newly obtained materials must be precisely tuned to match the requirements and usage situation because they will be in close touch with human/animal skin. The biocompatible structures formed by gelatin, tannic acid, and iron oxide nanoparticles were investigated by using FTIR spectroscopy, SEM-EDAX analysis, and contact angle methods. The physico-chemical properties were obtained by using mechanical investigations, dynamic vapor sorption analysis, and bulk magnetic determination. The size and shape of iron oxide nanoparticles dictates the magnetic behavior of the gelatin-based samples. The magnetization curves revealed a typical S-shaped superparamagnetic behavior which is evidence of improved MRI image accuracy. In addition, the MTT assay was used to demonstrate the non-toxicity of the samples, and the antibacterial test confirmed satisfactory findings for all G-based materials.
Collapse
Affiliation(s)
- Mioara Drobota
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
| | - Stelian Vlad
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
| | - Luiza Madalina Gradinaru
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
| | - Alexandra Bargan
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
| | - Iulian Radu
- Department of Surgery, Regional Institute of Oncology, I-st Surgical Oncology, “Grigore T. Popa” University of Medicine and Pharmacy, 700483 Iasi, Romania;
| | - Maria Butnaru
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
- Department of Biomedical Sciences, “Grigore T. Popa” University of Medicine and Pharmacy, Kogalniceanu Street, 9-13, 700115 Iasi, Romania
| | - Cristina Mihaela Rîmbu
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Romeo Cristian Ciobanu
- SC All Green SRL, I. Bacalu Street, 5, 700029 Iasi, Romania;
- Electrical Engineering Faculty, “Gheorghe Asachi” Technical University of Iasi, Dimitrie Mangeron Bd., 67, 700050 Iasi, Romania
| | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
| |
Collapse
|
7
|
Lezov A, Rogozhin V, Donets A, Lezova A, Gubarev A, Vlasov P, Samokhvalova S, Polushina G, Polushin S, Tsvetkov N. Influence of anions on behavior of cationic polyelectrolyte poly(diallyldimethylammonium chloride) and its copolymer in aqueous solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Lee J, Wang Y, Xue C, Chen Y, Qu M, Thakor J, Zhou X, Barros NR, Falcone N, Young P, van den Dolder FW, Lee K, Zhu Y, Cho HJ, Sun W, Zhao B, Ahadian S, Jucaud V, Dokmeci MR, Khademhosseini A, Kim HJ. pH-Responsive doxorubicin delivery using shear-thinning biomaterials for localized melanoma treatment. NANOSCALE 2022; 14:350-360. [PMID: 34908077 DOI: 10.1039/d1nr05738c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Injectable shear-thinning biomaterials (STBs) have attracted significant attention because of their efficient and localized delivery of cells as well as various molecules ranging from growth factors to drugs. Recently, electrostatic interaction-based STBs, including gelatin/LAPONITE® nanocomposites, have been developed through a simple assembly process and show outstanding shear-thinning properties and injectability. However, the ability of different compositions of gelatin and LAPONITE® to modulate doxorubicin (DOX) delivery at different pH values to enhance the effectiveness of topical skin cancer treatment is still unclear. Here, we fabricated injectable STBs using gelatin and LAPONITE® to investigate the influence of LAPONITE®/gelatin ratio on mechanical characteristics, capacity for DOX release in response to different pH values, and cytotoxicity toward malignant melanoma. The release profile analysis of various compositions of DOX-loaded STBs under different pH conditions revealed that lower amounts of LAPONITE® (6NC25) led to higher pH-responsiveness capable of achieving a localized, controlled, and sustained release of DOX in an acidic tumor microenvironment. Moreover, we showed that 6NC25 had a lower storage modulus and required lower injection forces compared to those with higher LAPONITE® ratios. Furthermore, DOX delivery analysis in vitro and in vivo demonstrated that DOX-loaded 6NC25 could efficiently target subcutaneous malignant tumors via DOX-induced cell death and growth restriction.
Collapse
Affiliation(s)
- Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yonggang Wang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chengbin Xue
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, P.R. China
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yi Chen
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Research and Design, Beijing Biosis Healing Biological Technology Co., Ltd, Daxing District, Biomedical Base, Beijing 102600, P. R. China
| | - Moyuan Qu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jai Thakor
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xingwu Zhou
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Patric Young
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Floor W van den Dolder
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - KangJu Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Hyun-Jong Cho
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Wujin Sun
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bo Zhao
- Department of Research and Design, Beijing Biosis Healing Biological Technology Co., Ltd, Daxing District, Biomedical Base, Beijing 102600, P. R. China
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Selenova B, Ayazbayeva A, Shakhvorostov A, Kabdrakhmanova S, Nauryzova S, Kudaibergenov S. Preparation and study of the physicochemical characteristics of multilayer polymer composites based on poly(ethyleneimine)-stabilized copper nanoparticles and poly(sodium 2-acrylamide-2-methyl-1-propanesulfonate). CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2021. [DOI: 10.15328/cb1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multilayer films were synthesized from a complex of branched polyethyleneimine (PEI) with copper nanoparticles (PEI-CuNPs) and sodium poly-2-acrylamide-2-methyl-1-propanesulfonate (PAMPSNa), applied layer-by-layer (LbL) on a solid support in an acidic medium. Protonation of the amino groups of PEI in an acidic medium increases the positive charge of the PEI-CuNPs system to +43.5 mV and promotes the formation of an interpolyelectrolyte complex between the positively charged PEI-CuNPs and the highly charged anionic polyelectrolyte PAMPS, the ζ-potential of which was -141 mV. AFM images and SEM micrographs showed a uniform distribution of spherical copper nanoparticles in the homogeneous structure of the multilayer film. The optical characteristics and hydrodynamic dimensions of PEI-CuNPs indicate the formation of PEI-CuNPs nanoparticles with sizes of 60-300 nm, with an average size of up to 100 nm. Copper nanoparticles distributed uniformly in a multilayer PEI-CuNPs/PAMPS film may be of interest for applications in the field of membrane catalysis, biochips, sensor membranes, and controlled drug delivery.
Collapse
|