1
|
Mi Q, Wu X, Chen Y, Meng W. MAIT cells modulating the oral lichen planus immune microenvironment: a cellular crosstalk perspective. Inflamm Res 2025; 74:10. [PMID: 39762617 DOI: 10.1007/s00011-024-01990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Mucosal-associated invariant T (MAIT) cells, a type of T lymphocytes with innate-like characteristics, are crucial in bridging innate and adaptive immunity. When activated, MAIT cells release various inflammatory molecules and swiftly respond to antigens. Notably, numerous studies highlight the significant impact of MAIT cells on tumors and various immune disorders by influencing the immune microenvironment. Oral lichen planus (OLP) is an immune-mediated inflammatory condition mainly involving T lymphocytes. Previous research primarily focused on T cells alone, neglecting the broader immune environment. However, there is a current growing recognition of the complex interactions among multiple immune cells and inflammatory factors in patients with OLP. This immune microenvironment comprises T lymphocytes, fibroblasts, keratinocytes, dendritic cells, macrophages, inflammation-related cytokines, and chemokines, orchestrating intricate interactions that contribute to OLP initiation and persistence. Therefore, this review consolidates current research on the interplay between MAIT cells and other immune cells within the OLP microenvironment. We also delve into potential mechanisms through which MAIT cells regulate inflammation in patients with OLP, aiming to further explore the role of MAIT cells in these patients.
Collapse
Affiliation(s)
- Qian Mi
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoli Wu
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuhe Chen
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wenxia Meng
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Pan L, Chen J, Lai Y, Du G, Wang H, Sun L, Tang G, Wang Y. HSP90 Complex From OLP Lesion Induces T-Cell Polarization via Activation of Dendritic Cells. Oral Dis 2024. [PMID: 39530299 DOI: 10.1111/odi.15195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/11/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES To investigate the effects of the heat shock protein 90 (HSP90) complex from oral lichen planus (OLP) lesion tissues on dendritic cell (DC) activation and the polarization of naïve T cells. METHODS Expression of HSP90 in OLP lesions and healthy control (HC) mucosa was evaluated by single-cell RNA sequence, IHC, qRT-PCR, and immunoblotting. HSP90 complex was extracted by immunoprecipitation from oral mucosa as the agonist of DCs. Expression of IFN-α and MHC was detected by flow cytometry. After cocultured with pre-stimulated DCs, polarization of naïve T cells was investigated by cytokine analysis. RESULTS HSP90 was significantly higher in the lamina propria of OLP lesion and closely related to lymphocyte infiltration. HSP90 complex of OLP lesion activated DCs via TLR9 and increased their IFN-α secretion and MHC II expression. Pre-stimulated DCs increased the proportion of Th17 cells. CONCLUSIONS HSP90 complex isolated from OLP lesion activated TLR9/IFN-α of DCs and further promoted the polarization of naïve T cells toward Th17 immunity.
Collapse
Affiliation(s)
- Lei Pan
- Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Junjun Chen
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yirao Lai
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanhuan Du
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Sun
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, China
| | - Guoyao Tang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Stomatology, Shanghai Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufeng Wang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Di Raimondo C, Lozzi F, Di Domenico PP, Paganini C, Campione E, Galluzzo M, Bianchi L. Blastic Plasmacytoid Dendritic Cell Neoplasm, from a Dermatological Point of View. Int J Mol Sci 2024; 25:7099. [PMID: 39000208 PMCID: PMC11240932 DOI: 10.3390/ijms25137099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive hematological malignancy derived from the precursors of plasmacytoid dendritic cells. Although disease awareness has increased over time, BPDCN represents a rare disease with an aggressive clinical course and a dismal prognosis. Due to the overlap in clinical and histological features with a large spectrum of inflammatory and neoplastic diseases, BPDCN is difficult to diagnose. Furthermore, given the rarity of the disease, treatment options for BPDCN are limited, sometimes changing by practitioner and hospitals. Treatment options range from conventional chemotherapy to the recently approved biologic agent tagraxofusp and stem cell transplantation. Therefore, a multidisciplinary approach with coordination among dermatologists, pathologists, and hematologists is ultimately imperative to reach the correct diagnosis and management of BPDCN.
Collapse
Affiliation(s)
- Cosimo Di Raimondo
- Dermatology Unit, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy (L.B.)
| | - Flavia Lozzi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Claudia Paganini
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Elena Campione
- Dermatology Unit, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy (L.B.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marco Galluzzo
- Dermatology Unit, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy (L.B.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy (L.B.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
4
|
Marques ERMDC, Hsieh R, Lourenço SV, Nico MMS. Oral lupus erythematosus: Immunohistochemical evaluation of CD1a, CD21, CD123, and langerin expression in dendritic cells. J Cutan Pathol 2024; 51:368-378. [PMID: 38287771 DOI: 10.1111/cup.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/04/2023] [Accepted: 11/21/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND Dendritic cells participate in the pathophysiology of lupus erythematosus (LE), which are studied in systemic and cutaneous forms; however, little is known about their oral manifestations. METHODS The expressions of dendritic cell markers (including CD1a, CD21, CD123, and langerin) were investigated by immunohistochemistry technique. Sixty intraoral and lower lip LE lesions, and additional 10 control samples were collected from 2003 to 2019. They were topographically analyzed in the epithelium (EP), lamina propria (LP), epithelial junction (JUN), and deep perivascular (PV) areas. RESULTS The expression of CD1a was decreased in the EP (p = 0.003) and increased in the deep PV area (p = 0.002). Langerin immunostaining showed no significant decrease in EP (p = 0.944); however, it increased in LP (p = 0.012) and JUN (p = 0.006). CD21 was expressed in only two specimens (EP, p = 0.012; LP, p < 0.001; deep PV area, p = 0.018). CD123 expression increased in all topographies (EP, p < 0.005; LP, p < 0.001, JUN, p < 0.001; deep PV, p < 0.001). The comparison between vermilion and intraoral mucosa LE lesions suggested that sun-exposed sites showed higher expression of CD123 (EP, p = 0.024; LP, p = 0.047; JUN, p = 0.001). CONCLUSIONS CD1a, langerin, and CD123 expressions were detected coincidently surrounding the inflammatory infiltrate in oral LE, suggesting that these cells may play an important role in immune response. Interestingly, plasmacytoid dendritic cells showed increased CD123 expression in sun-exposed site lesions, which point out a possible function in their pathogenesis. Further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
| | - Ricardo Hsieh
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Silvia Vanessa Lourenço
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Marcello Menta Simonsen Nico
- Department of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Čēma I, Kakar J, Dzudzilo M, Murovska M. Immunological Aspects of EBV and Oral Mucosa Interactions in Oral Lichen Planus. APPLIED SCIENCES 2023; 13:6735. [DOI: 10.3390/app13116735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Oral lichen planus (OLP) is considered a T cell-mediated chronic inflammatory process activated by an unknown antigen, making basal keratinocytes vulnerable to a cytotoxic cell mediated immune response. The aim of this review is to summarize information on the role and pathways of Epstein–Barr virus (EBV) and immune cells in inducing OLP as an autoimmune lesion. The pathogenesis of OLP is analyzed from immunological aspects of interactions between EBV and oral mucosa. The results of the available studies allow us to assume that EBV can act both as an exogenous and an endogenous antigen in the pathogenesis of OLP. We emphasized the role of antigen-presenting cells (APC), such as dendritic cells (Langerhans cells, LC), in detecting and capturing antigens and modulating the adaptive immune response. Although EBV shows tropism for B cells and epithelial cells, under certain conditions it can infect monocytes, LCs, NK, and T lymphocytes. It means that under some circumstances of the chronic inflammatory process, EBV particles can react as endogenous agents. During the development of the autoimmune process, a decisive role is played by the loss of immune tolerance. Factors like the activity of cytokines, chemokines, and autoantibodies secreted by EBV-positive plasma cells, autoantigens formed due to virus protein mimicry of human proteins, new self-peptides released from damaged tissues, self-reactive B and T cells, dysregulation of LC function, the anti-apoptotic effect of EBV early lytic antigens, and an imbalance between inflammatory and anti-inflammatory immune cells facilitate the development of an autoimmune process.
Collapse
Affiliation(s)
- Ingrīda Čēma
- Department of Maxillo-Facial Surgery and Oral Medicine, Rīga Stradiņš University, 16 Dzirciema Str., LV-1007 Rīga, Latvia
| | - Jagriti Kakar
- Department of Maxillo-Facial Surgery and Oral Medicine, Rīga Stradiņš University, 16 Dzirciema Str., LV-1007 Rīga, Latvia
- Doctoral Study Department, Rīga Stradiņš University, 16 Dzirciema Str., LV-1007 Rīga, Latvia
| | - Madara Dzudzilo
- Department of Maxillo-Facial Surgery and Oral Medicine, Rīga Stradiņš University, 16 Dzirciema Str., LV-1007 Rīga, Latvia
| | - Modra Murovska
- Institute of Microbiology and Virology, Rīga Stradiņš University, 5 Rātsupītes Str., LV-1067 Rīga, Latvia
| |
Collapse
|
6
|
Li Q, Wang F, Shi Y, Zhong L, Duan S, Kuang W, Liu N, Luo E, Zhou Y, Jiang L, Dan H, Luo X, Zhang D, Chen Q, Zeng X, Li T. Single-cell immune profiling reveals immune responses in oral lichen planus. Front Immunol 2023; 14:1182732. [PMID: 37090715 PMCID: PMC10116058 DOI: 10.3389/fimmu.2023.1182732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
IntroductionOral lichen planus (OLP) is a common chronic inflammatory disorder of the oral mucosa with an unclear etiology. Several types of immune cells are involved in the pathogenesis of OLP.MethodsWe used single-cell RNA sequencing and immune repertoire sequencing to characterize the mucosal immune microenvironment of OLP. The presence of tissue-resident memory CD8+ T cells are validated by multiplex immunofluorescence.ResultsWe generated a transcriptome atlas from four OLP biopsy samples and their paired peripheral blood mononuclear cells (PBMCs), and compared them with two healthy tissues and three healthy PBMCs samples. Our analysis revealed activated tissue-resident memory CD8+ T cells in OLP tissues. T cell receptor repertoires displayed apperant clonal expansion and preferrential gene pairing in OLP patients. Additionally, obvious BCR clonal expansion was observed in OLP lesions. Plasmacytoid dendritic cells, a subtype that can promote dendritic cell maturation and enhance lymphocyte cytotoxicity, were identified in OLP. Conventional dendritic cells and macrophages are also found to exhibit pro-inflammatory activity in OLP. Cell-cell communication analysis reveals that fibroblasts might promote the recruitment and extravasation of immune cells into connective tissue.DiscussionOur study provides insights into the immune ecosystem of OLP, serving as a valuable resource for precision diagnosis and therapy of OLP.
Collapse
Affiliation(s)
- Qionghua Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Fei Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yujie Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liang Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shumin Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wenjing Kuang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - En Luo
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaobo Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Taiwen Li, ; Xin Zeng,
| | - Taiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
- *Correspondence: Taiwen Li, ; Xin Zeng,
| |
Collapse
|
7
|
Deng X, Wang Y, Jiang L, Li J, Chen Q. Updates on immunological mechanistic insights and targeting of the oral lichen planus microenvironment. Front Immunol 2023; 13:1023213. [PMID: 36700192 PMCID: PMC9870618 DOI: 10.3389/fimmu.2022.1023213] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic immune inflammatory disease that is an oral potentially malignant disorder (OPMD), occurs in the oral mucosa and affects approximately 0.5% to 4% of the general population. There are usually five types of OLP: reticular/papular, plaque-like, atrophic/erythematous, erosive/ulcerative, and bullous. Furthermore, the chance of causing oral squamous cell carcinoma (OSCC) is 1.4%. Although the etiology of OLP is still unknown, accumulating evidence supports that immune dysregulation may play a vital role in the pathogenesis of OLP, especially the massive production of various inflammatory cells and inflammatory mediators. In this review, we focus on the relationship between OLP and its immune microenvironment. We summarize current developments in the immunology of OLP, summarizing functional cell types and crucial cytokines in the OLP immune microenvironment and the underlying mechanisms of key signaling pathways in the OLP immune microenvironment. We highlight the application potential of targeted immune microenvironment therapy for OLP.
Collapse
Affiliation(s)
| | | | - Lu Jiang
- *Correspondence: Jing Li, ; Lu Jiang,
| | - Jing Li
- *Correspondence: Jing Li, ; Lu Jiang,
| | | |
Collapse
|
8
|
Richardson KC, Jung K, Pardo J, Turner CT, Granville DJ. Noncytotoxic Roles of Granzymes in Health and Disease. Physiology (Bethesda) 2022; 37:323-348. [PMID: 35820180 DOI: 10.1152/physiol.00011.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Granzymes are serine proteases previously believed to play exclusive and somewhat redundant roles in lymphocyte-mediated target cell death. However, recent studies have challenged this paradigm. Distinct substrate profiles and functions have since emerged for each granzyme while their dysregulated proteolytic activities have been linked to diverse pathologies.
Collapse
Affiliation(s)
- Katlyn C Richardson
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain.,Department of Microbiology, Radiology, Pediatrics and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Zaragoza, Spain
| | - Christopher T Turner
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Scheib N, Tiemann J, Becker C, Probst HC, Raker VK, Steinbrink K. The Dendritic Cell Dilemma in the Skin: Between Tolerance and Immunity. Front Immunol 2022; 13:929000. [PMID: 35837386 PMCID: PMC9275407 DOI: 10.3389/fimmu.2022.929000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DC) are uniquely capable of initiating and directing immune responses. The range of their activities grounds in the heterogeneity of DC subsets and their functional plasticity. Numerical and functional DC changes influence the development and progression of disease, and correction of such dysregulations has the potential to treat disease causally. In this review, we discuss the major advances in our understanding of the regulation of DC lineage formation, differentiation, and function in the skin. We describe the alteration of DC in disease as well as possibilities for therapeutic reprogramming with a focus on tolerogenic DC. Because regulatory T cells (Treg) are indispensable partners of DC in the induction and control of tolerance, we pay special attention to the interactions with these cells. Above all, we would like to arouse fascination for this cell type and its therapeutic potential in skin diseases.
Collapse
Affiliation(s)
- Nils Scheib
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Jessica Tiemann
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Christian Becker
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Hans Christian Probst
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Verena Katharina Raker
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
- *Correspondence: Verena Katharina Raker,
| | - Kerstin Steinbrink
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
| |
Collapse
|
10
|
Solhaug MB, Schreurs O, Schenck K, Blix IJ, Baekkevold ES. Origin of langerin (CD207)‐expressing antigen presenting cells in the normal oral mucosa and in oral lichen planus lesions. Eur J Oral Sci 2021; 130:e12835. [DOI: 10.1111/eos.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/01/2022]
Affiliation(s)
| | - Olav Schreurs
- Institute of Oral Biology University of Oslo Oslo Norway
| | - Karl Schenck
- Institute of Oral Biology University of Oslo Oslo Norway
| | - Inger Johanne Blix
- Institute of Oral Biology University of Oslo Oslo Norway
- Department of Periodontology Dental Faculty University of Oslo Oslo Norway
| | - Espen S. Baekkevold
- Institute of Oral Biology University of Oslo Oslo Norway
- Department of Pathology Oslo University Hospital and University of Oslo Oslo Norway
| |
Collapse
|
11
|
Boch K, Langan EA, Kridin K, Zillikens D, Ludwig RJ, Bieber K. Lichen Planus. Front Med (Lausanne) 2021; 8:737813. [PMID: 34790675 PMCID: PMC8591129 DOI: 10.3389/fmed.2021.737813] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Lichen planus (LP) is a T cell-mediated disease affecting the stratified squamous epithelia of the skin and/or mucus membrane. Histologically, the disease is characterized by a lichenoid inflammatory infiltrate and vacuolar degeneration of the basal layer of the epidermis. LP has three major subtypes: Cutaneous, mucosal and appendageal LP. Rarely, it may affect the nails in the absence of skin and/or mucosal changes. LP may also be induced by several drugs, typically anti-hypertensive medication or be associated with infections, particularly viral hepatitis. The diagnosis is based on the clinical presentation and characteristic histological findings. Although the disease is often self-limiting, the intractable pruritus and painful mucosal erosions result in significant morbidity. The current first-line treatment are topical and/or systemic corticosteroids. In addition, immunosuppressants may be used as corticosteroid-sparing agents. These, however are often not sufficient to control disease. Janus kinase inhibitors and biologics (anti-IL-12/23, anti-IL17) have emerged as novel future treatment options. Thus, one may expect a dramatic change of the treatment landscape of LP in the near future.
Collapse
Affiliation(s)
- Katharina Boch
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ewan A Langan
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Dermatological Sciences, University of Manchester, Manchester, United Kingdom
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
12
|
Suárez LJ, Arboleda S, Angelov N, Arce RM. Oral Versus Gastrointestinal Mucosal Immune Niches in Homeostasis and Allostasis. Front Immunol 2021; 12:705206. [PMID: 34290715 PMCID: PMC8287884 DOI: 10.3389/fimmu.2021.705206] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Different body systems (epidermis, respiratory tract, cornea, oral cavity, and gastrointestinal tract) are in continuous direct contact with innocuous and/or potentially harmful external agents, exhibiting dynamic and highly selective interaction throughout the epithelia, which function as both a physical and chemical protective barrier. Resident immune cells in the epithelia are constantly challenged and must distinguish among antigens that must be either tolerated or those to which a response must be mounted for. When such a decision begins to take place in lymphoid foci and/or mucosa-associated lymphoid tissues, the epithelia network of immune surveillance actively dominates both oral and gastrointestinal compartments, which are thought to operate in the same immune continuum. However, anatomical variations clearly differentiate immune processes in both the mouth and gastrointestinal tract that demonstrate a wide array of independent immune responses. From single vs. multiple epithelia cell layers, widespread cell-to-cell junction types, microbial-associated recognition receptors, dendritic cell function as well as related signaling, the objective of this review is to specifically contrast the current knowledge of oral versus gut immune niches in the context of epithelia/lymphoid foci/MALT local immunity and systemic output. Related differences in 1) anatomy 2) cell-to-cell communication 3) antigen capture/processing/presentation 4) signaling in regulatory vs. proinflammatory responses and 5) systemic output consequences and its relations to disease pathogenesis are discussed.
Collapse
Affiliation(s)
- Lina J Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Silie Arboleda
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nikola Angelov
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Roger M Arce
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
13
|
Gomez-Casado C, Sanchez-Solares J, Izquierdo E, Díaz-Perales A, Barber D, Escribese MM. Oral Mucosa as a Potential Site for Diagnosis and Treatment of Allergic and Autoimmune Diseases. Foods 2021; 10:970. [PMID: 33925074 PMCID: PMC8146604 DOI: 10.3390/foods10050970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Most prevalent food allergies during early childhood are caused by foods with a high allergenic protein content, such as milk, egg, nuts, or fish. In older subjects, some respiratory allergies progressively lead to food-induced allergic reactions, which can be severe, such as urticaria or asthma. Oral mucosa remodeling has been recently proven to be a feature of severe allergic phenotypes and autoimmune diseases. This remodeling process includes epithelial barrier disruption and the release of inflammatory signals. Although little is known about the immune processes taking place in the oral mucosa, there are a few reports describing the oral mucosa-associated immune system. In this review, we will provide an overview of the recent knowledge about the role of the oral mucosa in food-induced allergic reactions, as well as in severe respiratory allergies or food-induced autoimmune diseases, such as celiac disease.
Collapse
Affiliation(s)
- Cristina Gomez-Casado
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - Javier Sanchez-Solares
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - Elena Izquierdo
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - Araceli Díaz-Perales
- Center of Plant Biotechnology and Genomics, Technical University of Madrid, 28040 Madrid, Spain;
| | - Domingo Barber
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - María M. Escribese
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| |
Collapse
|
14
|
Ferrisse TM, de Oliveira AB, Palaçon MP, Silva EV, Massucato EMS, de Almeida LY, Léon JE, Bufalino A. The role of CD68+ and CD163+ macrophages in immunopathogenesis of oral lichen planus and oral lichenoid lesions. Immunobiology 2021; 226:152072. [PMID: 33677150 DOI: 10.1016/j.imbio.2021.152072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/31/2022]
Abstract
Macrophages are phagocytic cells with essential participation in immunological events of the oral cavity. However, the role of these cells in oral lichen planus (OLP) and oral lichenoid lesions (OLL) remains unclear. The present study aimed to evaluate the density of macrophages in OLP and OLL, and to compare it with that of oral inflammatory fibrous hyperplasia (OIFH) (control group). 14 cases of OLP, 14 cases of OLL and 14 cases of OIFH were selected for immunohistochemical analysis of CD68+ (M1) and CD163+ (M2) macrophage expression. CD68+ and CD163+ macrophages densities were measured in the intraepithelial and subepithelial areas. The statistical tests used were multivariate analysis of variance, as well as a correlation and linear regression. OLP has more CD68+ macrophages when comparing with OLL (p = 0.001) and OIFH (p = 0.045). There is a very strong relationship between the macrophages types (p < 0.0001) in OLP and OLL. The linear regression showed that to OLL development (p < 0.0001/R2' = 0.9584), the presence of different types of macrophages are more essential than to OLP (p < 0.0001/R2' = 0.8983). However, in the OLP these dependencies are also largely. CD68+ macrophages may be associated with immunopathogenesis of OLP, indicating a pro-inflammatory activity and regulatory role in the type of T-cell response. Besides, CD68+ macrophages can cooperate in the diagnosis of OLP. These results are essential to future studies that seek a therapeutic target for OLP and OLL.
Collapse
Affiliation(s)
- Túlio Morandin Ferrisse
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil.
| | - Analú Barros de Oliveira
- Department of Orthodontics and Pediatric Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Mariana Paravani Palaçon
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Evânio Vilela Silva
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Elaine Maria Sgavioli Massucato
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Luciana Yamamoto de Almeida
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical Scholl (FMRP/USP), University of São Paulo, Ribeirão Preto, Brazil
| | - Jorge Esquiche Léon
- Oral Pathology, Department of Stomatology, Public Oral Health, and Forensic Dentistry, Ribeirão Preto Dental School (FORP/USP), University of São Paulo, Avenida do Café, S/N, Ribeirão Preto, São Paulo 14040-904, Brazil.
| | - Andreia Bufalino
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| |
Collapse
|
15
|
Gupta MK, Lipner SR. Review of Nail Lichen Planus: Epidemiology, Pathogenesis, Diagnosis, and Treatment. Dermatol Clin 2021; 39:221-230. [PMID: 33745635 DOI: 10.1016/j.det.2020.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nail lichen planus is an inflammatory disorder of the nails with potential for significant cosmetic disfigurement and functional impairment. Nail manifestations may be isolated or appear concurrently with other forms of lichen planus. Longitudinal ridging is the most common clinical finding, but progressive disease may result in irreversible scarring (dorsal pterygium) or permanent nail loss (anonychia). Data on treatment are limited to retrospective studies and case reports. The mainstays of treatment are intralesional and intramuscular corticosteroid injections and oral retinoids. There is a need for randomized controlled trials on nail lichen planus to more rigorously assess efficacy and outcomes.
Collapse
Affiliation(s)
- Mohit Kumar Gupta
- State University of New York Downstate College of Medicine, Brooklyn, NY, USA
| | - Shari R Lipner
- Department of Dermatology, Weill Cornell Medicine, 1305 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
16
|
Braegelmann C, Fetter T, Niebel D, Dietz L, Bieber T, Wenzel J. Immunostimulatory Endogenous Nucleic Acids Perpetuate Interface Dermatitis-Translation of Pathogenic Fundamentals Into an In Vitro Model. Front Immunol 2021; 11:622511. [PMID: 33505404 PMCID: PMC7831152 DOI: 10.3389/fimmu.2020.622511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Interface dermatitis is a histopathological pattern mirroring a distinct cytotoxic immune response shared by a number of clinically diverse inflammatory skin diseases amongst which lichen planus and cutaneous lupus erythematosus are considered prototypic. Interface dermatitis is characterized by pronounced cytotoxic immune cell infiltration and necroptotic keratinocytes at the dermoepidermal junction. The initial inflammatory reaction is established by cytotoxic immune cells that express CXC chemokine receptor 3 and lesional keratinocytes that produce corresponding ligands, CXC motif ligands 9/10/11, recruiting the effector cells to the site of inflammation. During the resulting anti-epithelial attack, endogenous immune complexes and nucleic acids are released from perishing keratinocytes, which are then perceived by the innate immune system as danger signals. Keratinocytes express a distinct signature of pattern recognition receptors and binding of endogenous nucleic acid motifs to these receptors results in interferon-mediated immune responses and further enhancement of CXC chemokine receptor 3 ligand production. In this perspective article, we will discuss the role of innate nucleic acid sensing as a common mechanism in the perpetuation of clinically heterogeneous diseases featuring interface dermatitis based on own data and a review of the literature. Furthermore, we will introduce a keratinocyte-specific in vitro model of interface dermatitis as follows: Stimulation of human keratinocytes with endogenous nucleic acids alone and in combination with interferon gamma leads to pronounced production of distinct cytokines, which are essential in the pathogenesis of interface dermatitis. This experimental approach bears the capability to investigate potential therapeutics in this group of diseases with unmet medical need.
Collapse
Affiliation(s)
| | - Tanja Fetter
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Dennis Niebel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Lara Dietz
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Thomas Bieber
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Joerg Wenzel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
17
|
Ferrisse TM, de Oliveira AB, Palaçon MP, da Silveira HA, Massucato EMS, de Almeida LY, Léon JE, Bufalino A. Immunohistochemical evaluation of Langerhans cells in oral lichen planus and oral lichenoid lesions. Arch Oral Biol 2020; 124:105027. [PMID: 33550012 DOI: 10.1016/j.archoralbio.2020.105027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE the aim of this study was to evaluate the density of Langerhans cells in oral lichen planus (OLP) and oral lichenoid lesions (OLL). DESIGN 14 cases of OLP, 15 cases of OLL and 14 cases of oral inflammatory fibrous hyperplasia (OIFH), were selected for immunohistochemical analysis of CD1a, CD207 and S100 expression. The OIFH group was subdivided according to the presence (OIFHL n = 14) or absence (OIFHNL n = 14) of lichenoid inflammatory infiltrate. Positive cells were counted in intraepithelial and subepithelial areas. Results were analyzed by multivariate comparative analysis, correlation analysis, linear regression models and Student's T-test. RESULTS A significantly higher amount of CD207+ cells in OLL vs OLP was observed (p = 0.015). The prevailing reticular pattern observed was CD207high for OLP (p = 0.0329). A statistically significant difference in the expression of CD1a and CD207 was observed for intraepithelial vs subepithelial areas (p = 0.024 and p=0.015, for CD1a and CD207, respectively). Significant correlations were also observed between the expression of CD1a + and CD207+ cells in the pathogenesis of OLP and OLL. CONCLUSION High levels of CD207+cells in OLP compared with OLL may help explain the differences in the immunopathogenesis of both diseases. Additionally, CD1a + and CD207+ cells appear to be more essential to immunopathogenesis of OLL than to the pathogenesis of OLP.
Collapse
Affiliation(s)
- Túlio Morandin Ferrisse
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Analú Barros de Oliveira
- Department of Orthodontics and Pediatric Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Mariana Paravani Palaçon
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Heitor Albergoni da Silveira
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Elaine Maria Sgavioli Massucato
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Luciana Yamamoto de Almeida
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical Scholl (FMRP/USP), University of São Paulo, Ribeirão Preto, Brazil
| | - Jorge Esquiche Léon
- Oral Pathology, Department of Stomatology, Public Oral Health, and Forensic Dentistry, Ribeirão Preto Dental School (FORP/USP), University of São Paulo, Avenida do Café, S/N, Ribeirão Preto, São Paulo, 14040-904, Brazil.
| | - Andreia Bufalino
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil.
| |
Collapse
|
18
|
Xia DN, Tan YQ, Yang JY, Zhou G. Omega-3 polyunsaturated fatty acids: a promising approach for the management of oral lichen planus. Inflamm Res 2020; 69:989-999. [PMID: 32770320 DOI: 10.1007/s00011-020-01388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Oral lichen planus (OLP) is a T-cell-mediated inflammatory disease with a risk of malignant transformation. Although the etiology of OLP is still uncertain, growing evidence suggests that oral microbiota, antigen-specific, and non-specific mechanisms are involved in the pathogenesis of OLP. Antigen-specific mechanisms include antigen presentation, T-cell activation, nuclear factor-kappa B signaling pathway, and cytokine secretion, while non-specific mechanisms consist of matrix metalloproteinases (MMP)-9 upregulation, psychological pressure, oxidative damage, aberrant expression of microRNAs (miRNAs), and autophagy. Till now, there is no cure for OLP, and the main purpose of OLP therapy is symptomatic control. FINDING Seafood and its derivative omega-3 polyunsaturated fatty acids (n-3 PUFAs) can suppress antigen presentation, T-cell activation, and nuclear factor-kappa B signaling pathway, modulate the overexpressed inflammatory cytokines, inhibit the expression of MMP-9, as well as regulate the expression of miRNAs and autophagy. And they are possible agents for ameliorating psychological disorder and oxidative damage. Moreover, n-3 PUFAs supplementation has a beneficial effect on preventing tumorigenesis. CONCLUSION n-3 PUFAs consumption may provide a non-toxic, inexpensive administration for OLP.
Collapse
Affiliation(s)
- Duo-Na Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China
| | - Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China
| | - Jing-Ya Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China. .,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
19
|
Jamali A, Kenyon B, Ortiz G, Abou-Slaybi A, Sendra VG, Harris DL, Hamrah P. Plasmacytoid dendritic cells in the eye. Prog Retin Eye Res 2020; 80:100877. [PMID: 32717378 DOI: 10.1016/j.preteyeres.2020.100877] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subpopulation of immune cells, distinct from classical dendritic cells. pDCs are generated in the bone marrow and following development, they typically home to secondary lymphoid tissues. While peripheral tissues are generally devoid of pDCs during steady state, few tissues, including the lung, kidney, vagina, and in particular ocular tissues harbor resident pDCs. pDCs were originally appreciated for their potential to produce large quantities of type I interferons in viral immunity. Subsequent studies have now unraveled their pivotal role in mediating immune responses, in particular in the induction of tolerance. In this review, we summarize our current knowledge on pDCs in ocular tissues in both mice and humans, in particular in the cornea, limbus, conjunctiva, choroid, retina, and lacrimal gland. Further, we will review our current understanding on the significance of pDCs in ameliorating inflammatory responses during herpes simplex virus keratitis, sterile inflammation, and corneal transplantation. Moreover, we describe their novel and pivotal neuroprotective role, their key function in preserving corneal angiogenic privilege, as well as their potential application as a cell-based therapy for ocular diseases.
Collapse
Affiliation(s)
- Arsia Jamali
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Brendan Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Gustavo Ortiz
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Abdo Abou-Slaybi
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Victor G Sendra
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Deshea L Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Cornea Service, Tufts New England Eye Center, Boston, MA, USA.
| |
Collapse
|
20
|
McPhie ML, Wang A, Molin S, Herzinger T. Lichen planopilaris induced by infliximab: A case report. SAGE Open Med Case Rep 2020; 8:2050313X20901967. [PMID: 32064112 PMCID: PMC6987482 DOI: 10.1177/2050313x20901967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infliximab is a tumor necrosis factor-alpha inhibitor used to treat a range of inflammatory diseases. Most reports of cutaneous eruptions from tumor necrosis factor-alpha inhibitors have described the paradoxical development of psoriasis or psoriasiform drug reaction. In our report, we present a 31-year-old female with inflammatory bowel disease who developed an unusual lichenoid drug reaction to infliximab involving the hair follicles, resulting in progressive global alopecia. Clinical features and histopathological findings were consistent with drug-induced lichen planopilaris with eosinophils and lichenoid dermatitis.
Collapse
Affiliation(s)
- Meghan L McPhie
- School of Medicine, Queen's University, Kingston, ON, Canada
| | - Ami Wang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Sonja Molin
- Division of Dermatology, Department of Medicine, Queen's University and Hotel Dieu Hospital, Kingston, ON, Canada
| | - Thomas Herzinger
- Division of Dermatology, Department of Medicine, Queen's University and Hotel Dieu Hospital, Kingston, ON, Canada
| |
Collapse
|
21
|
Tao Y, Ai R, Hao Y, Jiang L, Dan H, Ji N, Zeng X, Zhou Y, Chen Q. Role of miR-155 in immune regulation and its relevance in oral lichen planus. Exp Ther Med 2018; 17:575-586. [PMID: 30651838 PMCID: PMC6307429 DOI: 10.3892/etm.2018.7019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/04/2018] [Indexed: 02/05/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic mucosal inflammatory disease. The World Health Organization has described it as a potentially malignant condition. The pathogenesis of OLP remains to be fully elucidated, but extensive evidence suggests that immunologic and inflammatory factors have important roles. MicroRNAs (miRs), which are small non-coding RNAs, have been reported to be involved in OLP. In particular, miR-155 is significantly upregulated in patients with OLP. miR-155 has numerous functions and is closely linked to inflammation and immune system regulation. However, in-depth studies of the mechanisms via which miR-155 is involved in OLP are currently insufficient. Considering the close association between miR-155 and immune regulation as well as the importance of immune factors in OLP, the role of miR-155 in the immune system was herein summarized with a focus on OLP. The present review provides a basis for further study of the molecular mechanisms underlying the development and progression of OLP.
Collapse
Affiliation(s)
- Yan Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruixue Ai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yilong Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
22
|
Ferri EP, Gallo CDB, Abboud CS, Yanaguizawa WH, Horliana ACRT, Silva DDFTD, Pavani C, Bussadori SK, Nunes FD, Mesquita-Ferrari RA, Fernandes KPS, Rodrigues MFSD. Efficacy of photobiomodulation on oral lichen planus: a protocol study for a double-blind, randomised controlled clinical trial. BMJ Open 2018; 8:e024083. [PMID: 30297352 PMCID: PMC6194464 DOI: 10.1136/bmjopen-2018-024083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Oral lichen planus (OLP) is an idiopathic chronic mucocutaneous disease with a wide range of clinical manifestations, including white reticular patches, erosive/ulcerative and atrophic lesions, both associated with intense symptomatology. Topical corticosteroids are commonly used as standard therapy. However, patients frequently present relapses after the discontinuation of treatment as well as developing resistance to corticosteroid therapy. Photobiomodulation (PBM) has been shown to be a potential therapeutic tool to treat inflammatory disorders, including OLP. The aim of this study was to compare the efficacy of PBM (660 nm) with corticosteroid therapy with clobetasol propionate 0.05% for the treatment of OLP. METHODS AND ANALYSIS Forty-four patients with symptomatic and histopathological diagnosis of OLP will be randomised into two experimental groups in a double-blind manner: control group (n=22): clobetasol propionate 0.05%+placebo PBM, and experimental group (n=22): PBM (λ=660 nm, power 100 mW, radiant exposure: 177 J/cm2 and 0.5J per point)+placebo gel. Laser will be applied 2×/week for 1 month and clobetasol propionate three times a day for 30 days and the same for placebo treatments. The primary variable (pain) and the secondary variables (clinical score, evaluation of functional scores, clinical resolution, OLP recurrence, quality of life and anxiety and depression) will be evaluated at the baseline, once a week during treatment (depending on the variables) and after 30 days and 60 days of follow-up. Pain will be evaluated using visual analogue scale and clinical characteristics will be scored using the Thongprasom Index. The quality of life and anxiety and depression will be evaluated by Oral Health Impact Profile-14 questionnaire and by Hospital Anxiety and Depression Scale for anxiety scale, respectively. The serum and salivary levels of interleukin (IL)-6, IL-10, IL-1β, INF-γ and tumour necrosis factor-α will be evaluated by ELISA at baseline and at the end of treatment. ETHICS AND DISSEMINATION This protocol was approved (#2.375.410) by the Nove de Julho University (UNINOVE) Research Ethics Committee. The data gathered using this protocol will be published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT03320460.
Collapse
Affiliation(s)
- Elza Padilha Ferri
- Biophotonics Applied to Health Sciences, Nove de Julho University, São Paulo, Brazil
| | - Camila de Barros Gallo
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Clery Saad Abboud
- Biophotonics Applied to Health Sciences, Nove de Julho University, São Paulo, Brazil
| | | | | | | | - Christiane Pavani
- Biophotonics Applied to Health Sciences, Nove de Julho University, São Paulo, Brazil
| | - Sandra Kalil Bussadori
- Biophotonics Applied to Health Sciences, Nove de Julho University, São Paulo, Brazil
- Rehabilitation Sciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | - Fabio Daumas Nunes
- Department of Oral Pathology, School of Dntistry, University of São Paulo, São Paulo, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Biophotonics Applied to Health Sciences, Nove de Julho University, São Paulo, Brazil
- Rehabilitation Sciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | | | | |
Collapse
|
23
|
Rampey AM, Lathers DMR, Woodworth BA, Schlosser RJ. Immunolocalization of Dendritic Cells and Pattern Recognition Receptors in Chronic Rhinosinusitis. ACTA ACUST UNITED AC 2018; 21:117-21. [PMID: 17283573 DOI: 10.2500/ajr.2007.21.2998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Dendritic cell (DC) activation and antigen presentation to T cells are critical to innate and adaptive immunity. Toll-like receptors (TLRs) are known to bind pathogen-associated molecular patterns in addition to sinonasally secreted surfactant proteins (SP) such as SP-A and SP-D. TLR binding is known to activate DCs. Based on these observations, we sought to establish the presence, in sinonasal mucosa, of DC and the pattern recognition receptors (PRRs), CD14, TLR2, and TLR4. Methods Sinonasal biopsy specimens were taken from patients with eosinophilic nonatopic nasal polyposis (n = 4), allergic fungal sinusitis (n = 1), and nondiseased patients undergoing cerebrospinal fluid leak repair or pituitary tumor resection (n = 2). Tissue samples were stained immunohistochemically for PRR (CD14, TLR2, and TLR4), mature DC marker (CD208), iDC marker (CD209), or isotype controls. Results Immature and mature DC were immunolocalized to the subepithelial stroma and ciliated epithelial surface, respectively. Diffuse staining of CD14 was observed throughout the stroma with additional staining in the ciliated epithelium. The TLR markers showed no staining in the ciliated epithelium. TLR2 primarily localized in stroma immediately deep to the ciliated epithelial surface. TLR4 immunolocalized to submucosal seromucinous gland ductal epithelium. Data from nondiseased patients were mixed, with one patient showing minimal staining of any of the tested cellular markers. Conclusion This study indicates progressive DC activation and emigration of mature antigen-presenting cells from the epithelial surfaces of sinonasal mucosa. The presence of TLR known to bind SP-A and SP-D suggests a link between SP expression and immune response in sinonasal mucosa.
Collapse
Affiliation(s)
- Andrew M Rampey
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina and the Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | | | | | | |
Collapse
|
24
|
Wang Y, Shang S, Sun Q, Chen J, Du G, Nie H, Han X, Tang G. Increased infiltration of CD11 c +/CD123 + dendritic cell subsets and upregulation of TLR/IFN-α signaling participate in pathogenesis of oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 125:459-467.e2. [PMID: 29429903 DOI: 10.1016/j.oooo.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/22/2017] [Accepted: 12/03/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Investigation of dendritic cell (DC) subsets and expression patterns of Toll-like receptors (TLRs) was conducted to understand the pathogenesis in oral lichen planus (OLP). STUDY DESIGN Blood, OLP lesion, and control samples were collected. Four DC subsets (CD11c+CD123-myeloid DC1 [mDC1], CD141+mDC2, CD11c-CD123+plasmacytoid DC [pDC], and CD1a+CD207+Langerhans cells [LC]) were investigated via flow cytometry (FCM) and immunohistochemical staining. Expression patterns of TLRs and their downstream molecules were analyzed via quantitative real-time polymerase chain reaction and immunohistochemistry in situ. RESULTS Thirty-two samples were collected (9 controls and 23 OLP patients). FCM results found that the percentages of LC, mDC1, mDC2, and pDC in situ were 0.0119 ± 0.0251%, 0.0064 ± 0.0134%, 0.0005 ± 0.0011%, and 0.0022 ± 0.0019% in control mucosa, respectively. The mDC1 (0.0300 ± 0.0276%) and pDC (0.0204 ± 0.0186%) subsets were significantly increased in OLP lesions (P < .01). No marked differences were evident, when comparing all 4 DC subsets from blood, between control and OLP groups. Significant upregulation of TLR7, TLR8, and TLR9 were disclosed in OLP (P < .01), along with their downstream interferon-α (IFN-α) signaling molecules (IRF7 and IFN-α, P < .01). CONCLUSION Our findings of increased infiltration of pDC and mDC1, along with upregulation of TLR/IFN-α signaling, provide valuable information for further understanding the immunity in OLP.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Oral Mucosal Diseases, Ninth People's Hospital, College of Stomatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China; National Clinical Research Center of Stomatology, Shanghai, China
| | - Shu Shang
- Shanghai University of Medicine and Health Science, Shanghai, China
| | - Qianqian Sun
- Department of Oral Mucosal Diseases, Ninth People's Hospital, College of Stomatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China; National Clinical Research Center of Stomatology, Shanghai, China
| | - Junjun Chen
- Department of Oral Mucosal Diseases, Ninth People's Hospital, College of Stomatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China; National Clinical Research Center of Stomatology, Shanghai, China
| | - Guanhuan Du
- Department of Oral Mucosal Diseases, Ninth People's Hospital, College of Stomatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China; National Clinical Research Center of Stomatology, Shanghai, China
| | - Hong Nie
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaozhe Han
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, USA; Harvard School of Dental Medicine, Department of Oral Medicine, Infection and Immunity, Boston, MA, USA
| | - Guoyao Tang
- Department of Oral Mucosal Diseases, Ninth People's Hospital, College of Stomatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China; National Clinical Research Center of Stomatology, Shanghai, China.
| |
Collapse
|
25
|
Plasmacytoid dendritic cell proliferations and neoplasms involving the bone marrow. Ann Hematol 2017; 96:765-777. [DOI: 10.1007/s00277-017-2947-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/03/2017] [Indexed: 12/13/2022]
|
26
|
Cheng YSL, Gould A, Kurago Z, Fantasia J, Muller S. Diagnosis of oral lichen planus: a position paper of the American Academy of Oral and Maxillofacial Pathology. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:332-54. [PMID: 27401683 DOI: 10.1016/j.oooo.2016.05.004] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/03/2016] [Accepted: 05/11/2016] [Indexed: 12/26/2022]
Abstract
Despite being one of the most common oral mucosal diseases and recognized as early as 1866, oral lichen planus (OLP) is still a disease without a clear etiology or pathogenesis, and with uncertain premalignant potential. More research is urgently needed; however, the research material must be based on an accurate diagnosis. Accurate identification of OLP is often challenging, mandating inclusion of clinico-pathological correlation in the diagnostic process. This article summarizes current knowledge regarding OLP, discusses the challenges of making an accurate diagnosis, and proposes a new set of diagnostic criteria upon which to base future research studies. A checklist is also recommended for clinicians to provide specific information to pathologists when submitting biopsy material. The diagnostic process of OLP requires continued clinical follow-up after initial biopsy, because OLP mimics can manifest, necessitating an additional biopsy for direct immunofluorescence study and/or histopathological evaluation in order to reach a final diagnosis.
Collapse
Affiliation(s)
- Yi-Shing Lisa Cheng
- Department of Diagnostic Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA.
| | - Alan Gould
- Louisville Oral Pathology Laboratory, Louisville, KY, USA
| | - Zoya Kurago
- Department of Oral Health and Diagnostic Sciences, College of Dental Medicine, Augusta University, Augusta, GA, USA
| | - John Fantasia
- Department of Dental Medicine, Hofstra North Shore-Long Island Jewish Health System, New Hyde Park, NY, USA
| | - Susan Muller
- Professor Emeritus, Emory University School of Medicine, Atlanta, GA; Atlanta Oral Pathology, Decatur, GA, USA
| |
Collapse
|
27
|
Porter BF, Ambrus A, Storts RW. Immunohistochemical Evaluation of Mx Protein Expression in Canine Encephalitides. Vet Pathol 2016; 43:981-7. [PMID: 17099155 DOI: 10.1354/vp.43-6-981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mx proteins are a group of interferon-induced GTPases whose expression has been demonstrated in a number of human viral infections and in some idiopathic inflammatory diseases. In this study, the expression of Mx protein was evaluated in known viral, nonviral, and idiopathic encephalitides in the dog via immunohistochemistry using an antibody against human MxA. All 12 cases of confirmed viral encephalitis, including 7 cases of canine distemper, 4 cases of canine herpesvirus, and 1 case of rabies, were Mx positive. In canine distemper cases, staining was particularly strong and a variety of cell types were positive, including astrocytes, macrophages/microglia, and neurons. Immunoreactivity for Mx protein was evident in a few cases of nonviral infectious encephalitis, including neosporosis (1/1), Chagas disease (2/3), aspergillosis (1/2), and encephalitozoonosis (1/1). Consistent staining was observed in most cases of idiopathic encephalitis, including granulomatous meningoencephalomyelitis (7/7), necrotizing meningoencephalitis of pug dogs (6/7), and necrotizing encephalitis of the Yorkshire Terrier (3/3) and Maltese (1/1) breeds. Mx staining was negative in 5 normal dog brains; 3 cases of cryptococcosis; and single cases of blastomycosis, protothecosis, and bacterial meningitis.
Collapse
Affiliation(s)
- B F Porter
- Texas A and M University, College of Veterinary Medicine and Biomedical Sciences, Department of Pathobiology, College Station, TX 77843-4467, USA.
| | | | | |
Collapse
|
28
|
Kulkarni G, Sakki EP, Kumar YV, Kolimi S, Perika R, Karthik KV, Kumar KM, Kalyan VS. Expression of CD1a by Langerhan's Cells in Oral Lichen Planus - A Retrospective Analysis. J Clin Diagn Res 2016; 10:ZC28-31. [PMID: 27504405 DOI: 10.7860/jcdr/2016/19189.7966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/05/2016] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Langerhan's Cells (LCs) are dendritic cells of the oral epithelium which play a role in a series of oral lesions from gingivitis to oral cancer. Oral Lichen Planus (OLP) is an oral mucosal T-lymphocyte mediated immunologic reaction to an unidentified putative antigen or allergen. AIM The aim of this study was to quantify the presence of immature LCs in OLP comparing them with normal epithelium. MATERIALS AND METHODS A retrospective study using 30 of OLP cases were conducted. Immunohistochemistry was performed using polyclonal anti-CD1a antibodies to identify LCs in 10 cases of normal tissue and 30 samples of OLP. The distribution of LCs among lesional tissue and normal mucosa was analysed using Mann-Whitney U test. RESULTS LC population in OLP was significantly higher when compared to the normal epithelium (p<0.001). CONCLUSION The increase in LCs indicates the active role played during the antigen detection in OLP and subsequent presentation to T-lymphocytes.
Collapse
Affiliation(s)
- Ganesh Kulkarni
- Senior Lecturer, Department of Oral Pathology, Malla Reddy Institute of Dental Sciences , Hyderabad, Telangana, India
| | - Esther Priyadarshini Sakki
- Senior Lecturer, Department of Oral Pathology, Meghana Institute of Dental sciences , Nizamabad, Telangana, India
| | - Yennavaram Vijay Kumar
- Associate Professor, Department of Public Health Dentistry, MNR Dental College and Hospital , Sangareddy, Telangana, India
| | - Sadananda Kolimi
- Assistant Professor, Department of Periodontics, Government Dental College and Research Institute , VIMS, Bellary, Karnataka, India
| | - Ravi Perika
- Senior Lecturer, Department of Oral Pathology, Malla Reddy Institute of Dental Sciences , Hyderabad, Telangana, India
| | - Kalepu Venkata Karthik
- Senior Lecturer, Department of Oral Pathology, SVS Institute of Dental Sciences , Mahbubnagar, Telangana, India
| | - Kandukuri Mahesh Kumar
- Assistant Professor, Department of Pathology, Malla Reddy Institute of Medical Sciences , Hyderabad, Telangana, India
| | - Venumbaka Siva Kalyan
- Reader, Department of Public Health Dentistry, Mamatha Dental College , Khammam, Telangana, India
| |
Collapse
|
29
|
Souto GR, Nunes LFM, Tanure BB, Gomez RS, Mesquita RA. CD1a+ dendritic cells in oral lichen planus and amalgam lichenoid reaction. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121:651-6. [PMID: 27086000 DOI: 10.1016/j.oooo.2016.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/07/2016] [Accepted: 02/16/2016] [Indexed: 11/16/2022]
|
30
|
De Monte A, Olivieri CV, Vitale S, Bailleux S, Castillo L, Giordanengo V, Maryanski JL, Segura E, Doglio A. CD1c-Related DCs that Express CD207/Langerin, but Are Distinguishable from Langerhans Cells, Are Consistently Present in Human Tonsils. Front Immunol 2016; 7:197. [PMID: 27252701 PMCID: PMC4879127 DOI: 10.3389/fimmu.2016.00197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/06/2016] [Indexed: 12/31/2022] Open
Abstract
Several subsets of dendritic cells (DCs) are present in the oropharyngeal tonsillar tissues and are thought to behave as major actors in development and regulation of immunity by acting as a first line of recognition for airborne and alimentary antigens. We previously discovered in human adult tonsils infected with Epstein–Barr virus (EBV), a subset of DCs that expressed langerin/CD207, a lectin usually recognized as a hallmark of epidermal Langerhans cells (LCs). In the present study, we analyzed the content of several child and adult tonsils in order to characterize in more detail the phenotype of these tonsillar CD207-expressing DCs (tCD207 DCs) and to compare it with that of other human DC subsets. We showed that all the human tonsils studied (n = 12) contained significant proportions of tCD207 DCs among tonsillar cells expressing HLA-DR. Moreover, the presence of tCD207 DCs in tonsils from young children free of EBV infection indicated that these cells could be established early in the tonsil independently of EBV infection. We also showed that tCD207 DCs, that were found mainly located within the tonsillar lymphoid stroma, were distinguishable from LCs by the level of expression of CD1a and EpCAM, and also from human inflammatory DCs by the lack of CD1a, CD206, and CD14 expression. Detailed analysis of cell surface DC markers showed that tCD207 DCs were unrelated to CD141+ DCs or macrophages, but defined a subtype of tonsillar DCs closely related to myeloid resident CD1c DCs. Since it was established that blood CD1c myeloid DCs exhibit plasticity and are capable of expressing CD207 notably in the presence of inflammatory cytokines, it is tempting to speculate that CD207+ CD1c+ DCs may play a specific immune role.
Collapse
Affiliation(s)
- Anne De Monte
- Laboratory MICORALIS EA7354, Faculté de chirurgie dentaire, Université Nice-Sophia-Antipolis, Nice, France; Laboratory Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, Hôpital Pasteur, Nice, France; Laboratory of Virology, Centre Hospitalier Universitaire de Nice, Hôpital l'Archet, Nice, France
| | - Charles-Vivien Olivieri
- Laboratory MICORALIS EA7354, Faculté de chirurgie dentaire, Université Nice-Sophia-Antipolis, Nice, France; Laboratory Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, Hôpital Pasteur, Nice, France
| | - Sébastien Vitale
- Laboratory of Virology, Centre Hospitalier Universitaire de Nice, Hôpital l'Archet , Nice , France
| | - Sonanda Bailleux
- Department of Pediatric Otorhinolaryngology, Hôpitaux pédiatriques de Nice CHU-Lenval , Nice , France
| | - Laurent Castillo
- Department of Otorhinolaryngology, Institut Universitaire de la Face et du Cou , Nice , France
| | - Valérie Giordanengo
- Laboratory of Virology, Centre Hospitalier Universitaire de Nice, Hôpital l'Archet , Nice , France
| | - Janet L Maryanski
- Laboratory MICORALIS EA7354, Faculté de chirurgie dentaire, Université Nice-Sophia-Antipolis, Nice, France; Laboratory Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, Hôpital Pasteur, Nice, France
| | | | - Alain Doglio
- Laboratory MICORALIS EA7354, Faculté de chirurgie dentaire, Université Nice-Sophia-Antipolis, Nice, France; Laboratory Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, Hôpital Pasteur, Nice, France
| |
Collapse
|
31
|
Siponen M, Bitu CC, Al-Samadi A, Nieminen P, Salo T. Cathepsin K expression is increased in oral lichen planus. J Oral Pathol Med 2016; 45:758-765. [PMID: 27152719 DOI: 10.1111/jop.12446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Oral lichen planus (OLP) is an idiopathic T-cell-mediated mucosal inflammatory disease. Cathepsin K (Cat K) is one of the lysosomal cysteine proteases. It is involved in many pathological conditions, including osteoporosis and cancer. The expression and role of Cat K in OLP are unknown. METHODS Twenty-five oral mucosal specimens diagnosed histopathologically as OLP and fourteen healthy controls (HC) were used to study the immunohistochemical (IHC) expression of Cat K. Colocalization of Cat K with CD1a, Melan-A, CD68, CD45, mast cell tryptase (MCT), and Toll-like receptors (TLRs) 4 and 9 were studied using double IHC and/or immunofluorescence (IF) staining. Expression of Cat K was also evaluated in OLP tissue samples before and after topical tacrolimus treatment. RESULTS Cat K was expressed in a higher percentage of cells in the epithelial zone, and the staining intensity was stronger in the stroma in OLP compared to controls (P < 0.001). In OLP, Cat K was present mostly in melanocytes and macrophages and sporadically in basal keratinocytes, endothelial cells, and extracellularly. Cat K was found also in some fibroblasts in HC and OLP samples. Coexpression of Cat K and TLRs 4 and 9 was seen in some dendritic cells (presumably melanocytes) and macrophages. In OLP, tacrolimus treatment reduced the expression of Cat K in the epithelium but increased it in the stroma. CONCLUSIONS These results suggest that Cat K is involved in the pathogenesis of OLP. Cat K possibly takes part in the modulation of matrix molecules and cellular receptors.
Collapse
Affiliation(s)
- Maria Siponen
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland. , .,Department of Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland. ,
| | | | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Pentti Nieminen
- Medical Informatics and Statistics Research Group, University of Oulu, Oulu, Finland
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,HUSLAB, Department of Pathology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Saadeh D, Kurban M, Abbas O. Update on the role of plasmacytoid dendritic cells in inflammatory/autoimmune skin diseases. Exp Dermatol 2016; 25:415-21. [PMID: 26837058 DOI: 10.1111/exd.12957] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2016] [Indexed: 12/28/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) represent a specialized dendritic cell population that exhibit plasma cell morphology, express CD4, CD123, blood-derived dendritic cell antigen-2 (BDCA-2) and Toll-like receptor (TLR)7 and TLR9 within endosomal compartments. When activated, pDCs are capable of producing large quantities of type I IFNs (mainly IFN-α/β), which provide antiviral resistance and link the innate and adaptive immunity. While generally lacking from normal skin, pDCs infiltrate the skin and appear to be involved in the pathogenesis of several inflammatory, infectious (especially viral) and neoplastic entities. In recent years, pDC role in inflammatory/autoimmune skin conditions has been extensively studied. Unlike type I IFN-mediated protective immunity that pDCs provide at the level of the skin by regulated sensing of microbial or self-nucleic acids upon skin damage, excessive sensing may elicit IFN-driven inflammatory/autoimmune diseases. In this review, focus will be on the role of pDCs in cutaneous inflammatory/autoimmune dermatoses.
Collapse
Affiliation(s)
- Dana Saadeh
- Dermatology Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mazen Kurban
- Dermatology Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ossama Abbas
- Dermatology Department, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
33
|
Kurago ZB. Etiology and pathogenesis of oral lichen planus: an overview. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:72-80. [PMID: 27260276 DOI: 10.1016/j.oooo.2016.03.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/02/2016] [Accepted: 03/09/2016] [Indexed: 02/07/2023]
Abstract
Oral lichen planus is a noninfectious, chronic inflammatory condition that involves the oral mucosal stratified squamous epithelium and the underlying lamina propria and may be accompanied by skin lesions. This overview describes the current understanding of the immunopathologic mechanisms implicated in oral lichen planus.
Collapse
Affiliation(s)
- Zoya B Kurago
- Associate Professor, Departments of Oral Health and Diagnostic Sciences and Oral Biology, Augusta University Dental College of Georgia; Department of Pathology, Augusta University Medical College of Georgia; Augusta University Cancer Center, Augusta, GA, USA.
| |
Collapse
|
34
|
Maloth AK, Dorankula SPR, Pasupula AP, Thokala MR, Muddana K, Ramavath R. A Comparative Immunohistochemical Analysis of Langerhans Cells in Oral Mucosa, Oral Lichen Planus and Oral Squamous Cell Carcinoma. J Clin Diagn Res 2015; 9:ZC76-9. [PMID: 26393210 DOI: 10.7860/jcdr/2015/14170.6235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/03/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Langerhans cells (LCs) are immunocompetent cells resident within oral mucosa which, together with intraepithelial lymphocytes, play a role in mucosal defence. LCs play a role in the pathogenesis of Oral lichen planus (OLP), a chronic mucocutaneous disorder thought to result from cell-mediated immune damage. In oral squamous cell carcinoma (OSCC), LCs are thought to present tumour antigens to the lymphocytes. AIM To assess and compare LCs immuno-histochemically in normal mucosa, oral lichen planus and oral squamous cell carcinoma using anti S100 antibody and to know whether LCs play any role in local immune response to these diseases. MATERIALS AND METHODS The study was carried out in 65 cases (study group), 30 oral lichen planus and 35 oral squamous cell carcinoma (15 well differentiated, 14 moderately differentiated and 6 poorly differentiated), that were randomly selected from the archives of department of oral pathology and along with control group consisting of 30 normal healthy mucosa. The tissue sections were stained immunohisto-chemically by using anti S100 antibody in each group for detection of LCs. RESULTS There was significant change in mean value of number of LCs in the study groups i.e. OLP and OSCC when compared to that of control group. The results of our study also revealed that there was decrease in the mean value of langerhans cells as the tumour progressed from well differentiated squamous cell carcinoma to poorly differentiated LCs carcinoma. CONCLUSION A better understanding and clarity of LCs is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of LC's in patients with OLP and OSCC, thus significantly reducing the morbidity of OLP and OSCC patients.
Collapse
Affiliation(s)
- Aruna Kumari Maloth
- Senior Lecturer, Department of Oral Pathology, Kamineni Institute of Dental Sciences , Nalgonda,Telangana, India
| | - Shyam Prasad Reddy Dorankula
- Senior Lecturer, Department of Oral Pathology, Kamineni Institute of Dental Sciences , Nalgonda,Telangana, India
| | - Ajay Prakash Pasupula
- Professor and Head, Mallareddy Dental college for Women's, Suraram Main Road , Jeedimatla, Hyderabad, India
| | - Madhusudan Rao Thokala
- Reader, Department of Oral Pathology, Lenora Institute of Dental Sciences , NH-16 Rajanagaram, Rajahmundry, East Godavari, Andhra Pradesh, India
| | - Keerthi Muddana
- Senior Lecturer, Department of Oral Pathology, Kamineni Institute of Dental Sciences , Nalgonda,Telangana, India
| | - Ravinder Ramavath
- IIIyr Post Graduate, Department of Anaesthesia, Kamineni Institute of Dental Sciences , Nalgonda,Telangana, India
| |
Collapse
|
35
|
Sleiman R, Kurban M, Abbas O. Evaluation of the Diagnostic Value of Plasmacytoid Dendritic Cells in Differentiating the Lymphocytic Cicatricial Alopecias. Dermatology 2015; 231:158-63. [DOI: 10.1159/000431174] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/04/2015] [Indexed: 11/19/2022] Open
|
36
|
El-Rifaie AA, Rashed LA, Doss RW. The role of cyclooxygenase-2 and prostaglandin E2 in the pathogenesis of cutaneous lichen planus. Clin Exp Dermatol 2015; 40:903-7. [DOI: 10.1111/ced.12663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2014] [Indexed: 01/27/2023]
Affiliation(s)
- A. A. El-Rifaie
- Dermatology Department; Faculty of Medicine; Beni Suef University; Beni Suef Egypt
| | - L. A. Rashed
- Biochemistry Department; Faculty of Medicine; Cairo University; Cairo Egypt
| | - R. W. Doss
- Dermatology Department; Faculty of Medicine; Beni Suef University; Beni Suef Egypt
| |
Collapse
|
37
|
Sinon SH, Rich AM, Parachuru VPB, Firth FA, Milne T, Seymour GJ. Downregulation of toll-like receptor-mediated signalling pathways in oral lichen planus. J Oral Pathol Med 2015; 45:28-34. [DOI: 10.1111/jop.12319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Suraya H. Sinon
- Department of Oral Pathology and Oral Medicine; Faculty of Dentistry; Universiti Kebangsaan Malaysia (UKM); Kuala Lumpur Malaysia
| | - Alison M. Rich
- The Sir John Walsh Research Institute; Faculty of Dentistry; University of Otago; Dunedin New Zealand
| | - Venkata P. B. Parachuru
- The Sir John Walsh Research Institute; Faculty of Dentistry; University of Otago; Dunedin New Zealand
| | - Fiona A. Firth
- The Sir John Walsh Research Institute; Faculty of Dentistry; University of Otago; Dunedin New Zealand
| | - Trudy Milne
- The Sir John Walsh Research Institute; Faculty of Dentistry; University of Otago; Dunedin New Zealand
| | - Gregory J. Seymour
- The Sir John Walsh Research Institute; Faculty of Dentistry; University of Otago; Dunedin New Zealand
| |
Collapse
|
38
|
Okiyama N, Fujimoto M. Clinical perspectives and murine models of lichenoid tissue reaction/interface dermatitis. J Dermatol Sci 2015; 78:167-72. [PMID: 25813248 DOI: 10.1016/j.jdermsci.2015.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 01/05/2023]
Abstract
A set of histopathological elements, that is death of epidermal basal cell layer keratinocytes and inflammatory cell infiltration, distinguishes lichenoid tissue reaction (LTR)/interface dermatitis (IFD) from other inflammatory mucocutaneous diseases with histological findings of superficial perivascular dermatitis. The LTR/IFD is observed in inflammatory mucocutaneous diseases such as lichen planus, Stevens-Johnson syndrome/toxic epidermal necrolysis, acute graft-versus-host disease, lupus erythematosus and dermatomyositis. Clinical and basic researches have suggested that keratinocytes are antigen-presenting cells and mediate LTR/IFD reaction via production of cytokines/chemokines and inhibitory molecules such as programmed cell death (PD)-L1, and that cytotoxic CD8(+) T cells producing cytotoxic granules, perforin, granzyme B and granulysin are final effector cells to cause keratinocyte death. Because interferon-γ and FasL, which are produced by not only CD8(+) but also CD4(+) T cells, are candidates of the pathogenic molecules in LTR/IFD, CD4(+) T cells may also play a role to develop LTR/IFD. On the other hand, CD4(+) Treg cells accelerate the remission of LTR/IFD. Some murine models of LTR/IFD have been established. For example, LTR/IFD reactions were induced in keratinocyte-specific membrane-binding ovalbumin-transgenic (mOVA Tg) mice by adoptive transfer of CD8(+) T cells with OVA-specific T-cell-receptor. It has also been shown that human CD8(+) T cells are pathogenic immune cells in human skin-xenografted mice. Various immunosuppressants are used to treat patients with mucocutaneous diseases with LTR/IFD. By analysis of the mOVA Tg mice, a JAK inhibitor was suggested to be a new candidate drug to inhibit not only pathogenic T cells but also keratinocyte death in LTR/IFD. More specific treatments for patients with LTR/IFD will be developed in future.
Collapse
Affiliation(s)
- Naoko Okiyama
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan.
| | - Manabu Fujimoto
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
39
|
del Rei M, Pirmez R, Sodré C, Tosti A. Coexistence of frontal fibrosing alopecia and discoid lupus erythematosus of the scalp in 7 patients: just a coincidence? J Eur Acad Dermatol Venereol 2014; 30:151-3. [DOI: 10.1111/jdv.12642] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- M. del Rei
- Sector of Dermatology; Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - R. Pirmez
- Sector of Dermatology; Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - C.T. Sodré
- Sector of Dermatology; Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - A. Tosti
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| |
Collapse
|
40
|
Zaura E, Nicu EA, Krom BP, Keijser BJF. Acquiring and maintaining a normal oral microbiome: current perspective. Front Cell Infect Microbiol 2014; 4:85. [PMID: 25019064 PMCID: PMC4071637 DOI: 10.3389/fcimb.2014.00085] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/08/2014] [Indexed: 12/15/2022] Open
Abstract
The oral microbiota survives daily physical and chemical perturbations from the intake of food and personal hygiene measures, resulting in a long-term stable microbiome. Biological properties that confer stability in the microbiome are important for the prevention of dysbiosis—a microbial shift toward a disease, e.g., periodontitis or caries. Although processes that underlie oral diseases have been studied extensively, processes involved in maintaining of a normal, healthy microbiome are poorly understood. In this review we present our hypothesis on how a healthy oral microbiome is acquired and maintained. We introduce our view on the prenatal development of tolerance for the normal oral microbiome: we propose that development of fetal tolerance toward the microbiome of the mother during pregnancy is the major factor for a successful acquisition of a normal microbiome. We describe the processes that influence the establishment of such microbiome, followed by our perspective on the process of sustaining a healthy oral microbiome. We divide microbiome-maintenance factors into host-derived and microbe-derived, while focusing on the host. Finally, we highlight the need and directions for future research.
Collapse
Affiliation(s)
- Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam Amsterdam, Netherlands
| | - Elena A Nicu
- Department of Periodontology, Academic Centre for Dentistry Amsterdam Amsterdam, Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam Amsterdam, Netherlands
| | - Bart J F Keijser
- Microbiology and Systems Biology, TNO Earth, Environmental and Life Sciences Zeist, Netherlands ; Top Institute Food and Nutrition Wageningen, Netherlands
| |
Collapse
|
41
|
|
42
|
Abstract
The oral cavity contains distinct mucosal surfaces, each with its own unique distribution of dendritic cell (DC) subsets. In addition to tissue-specific properties, such organization might confer differential immune outcomes guided by tissue-resident DCs, which translate in the lymph node into an overall immune response. This process is further complicated by continual exposure and colonization of the oral cavity with enormous numbers of diverse microbes, some of which might induce destructive immunity. As a central cell type constantly monitoring changes in oral microbiota and orchestrating T-cell function, oral DCs are of major importance in deciding whether to induce immunity or tolerance. In this review, an overview of the phenotype and distribution of DCs in the oral mucosa is provided. In addition, the role of the various oral DC subsets in inducing immunity vs. tolerance, as well as their involvement in several oral pathologies is discussed.
Collapse
|
43
|
Upadhyay J, Upadhyay RB, Agrawal P, Jaitley S, Shekhar R. Langerhans cells and their role in oral mucosal diseases. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2013; 5:505-14. [PMID: 24251267 PMCID: PMC3818822 DOI: 10.4103/1947-2714.118923] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dendritic cells are arguably the most potent antigen-presenting cells and may be the only cells capable of initiating the adaptive immune response. The epithelial residents of dendritic cells are Langerhans cells, which serve as the "sentinels" of the mucosa, altering the immune system not only to pathogen entry but also of tolerance to self antigen and commensal microbes. Oral mucosal Langerhans cells are capable of engaging and internalizing a wide variety of pathogens and have been found responsive to nickel in patients with nickel allergies, oral Candida species, oral lichen planus, lichenoid drug eruptions, graft versus host diseases, periodontal diseases median rhomboid glossitis, human immunodeficiency virus infection, hairy leukoplakia of the tongue, and oral squamous cell carcinoma. Review focuses on the role of antigen-presenting cells in particular Langerhans cells to better understand the mechanisms underlying immune responses. In this review, comprehensive detail about mucosal diseases has been compiled using the PubMed database and through textbooks.
Collapse
Affiliation(s)
- Juhi Upadhyay
- Department of Oral and Maxillofacial Pathology, K.D. Dental College and Hospital, Mathura, India
| | - Ram B Upadhyay
- Department of Oral and Maxillofacial Pathology, K.D. Dental College and Hospital, Mathura, India
| | - Pankaj Agrawal
- Department of Oral and Maxillofacial Pathology, K.D. Dental College and Hospital, Mathura, India
| | - Shweta Jaitley
- Department of Oral and Maxillofacial Pathology, K.D. Dental College and Hospital, Mathura, India
| | - Rhitu Shekhar
- Department of Conservative Dentistry, K.D. Dental College and Hospital, Mathura, Uttar Pradesh, India
| |
Collapse
|
44
|
Rollins-Raval MA, Marafioti T, Swerdlow SH, Roth CG. The number and growth pattern of plasmacytoid dendritic cells vary in different types of reactive lymph nodes: an immunohistochemical study. Hum Pathol 2013; 44:1003-10. [DOI: 10.1016/j.humpath.2012.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|
45
|
Payeras MR, Cherubini K, Figueiredo MA, Salum FG. Oral lichen planus: focus on etiopathogenesis. Arch Oral Biol 2013; 58:1057-69. [PMID: 23660124 DOI: 10.1016/j.archoralbio.2013.04.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/09/2013] [Accepted: 04/11/2013] [Indexed: 02/07/2023]
Abstract
Lichen planus is a chronic mucocutaneous inflammatory disease, which frequently affects the oral mucosa of white females over 40 years old. Its aetiology remains uncertain and the pathogenesis is still the object of much speculation. The present paper presents the most well known antigens, and describes the action of different cells and proteins associated with the development of that disease, as well as the possible agents involved with its malignant transformation. Different external agents, especially virus, and internal agents, like stress, and the heat shock protein antigen expression, associated or not, can alter the basal keratinocytes of the oral mucosa making them susceptible to apoptosis by CD8(+) cytotoxic T cell as well as activate matrix metalloproteinase and mast cell degranulation, which produce a great range of inflammatory mediators and cytokines determining the clinical onset of the disease. Regarding carcinogenesis, since it is a complex process and presents multifactorial origin, it is believed that there may be a synergism between intrinsic, such as inflammation mediators, and extrinsic agents (tobacco, alcohol, viral infections) for the OLP malignant transformation to occur. However, further studies are needed to better understand the origin, pathogenesis and process of malignant transformation of OLP.
Collapse
Affiliation(s)
- Márcia Rodrigues Payeras
- Oral Medicine Division, Pontifical Catholic University of Rio Grande do Sol, Av. Ipiranga 6690, Porto Alegre, RS, Brazil.
| | | | | | | |
Collapse
|
46
|
Matos FTC, Rizo VHT, Almeida LY, Tirapelli C, Silva-Sousa YTC, Almeida OP, León JE. Immunophenotypic characterization and distribution of dendritic cells in odontogenic cystic lesions. Oral Dis 2013; 19:85-91. [PMID: 22788684 DOI: 10.1111/j.1601-0825.2012.01960.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To analyze the expression and distribution patterns of mature dendritic cells (mDCs) and immature DCs (imDCs) in radicular cysts (RCs), dentigerous cysts (DtCs), and keratocystic odontogenic tumors (KCOTs). MATERIALS AND METHODS Forty-nine odontogenic cystic lesions (OCLs) (RCs, n = 20; DtCs, n = 15; KCOTs, n = 14) were assessed using the following markers: S100, CD1a and CD207 for imDCs; and CD83 for mDCs. RESULTS Almost all cases were S100, CD1a, and CD207 positive, whereas 63% were CD83 positive. RCs presented greater number of immunostained cells, followed by DtCs, and KCOTs. The number of S100+ cells was greater than both CD1a+ and CD207+ cells (P < 0.001), which showed approximately similar amounts, followed by lower number of CD83+ cells (P < 0.001) in each OCL type. Different from S100+ cells, both CD1a+ and CD207+ cells on the epithelium (P < 0.05) and CD83+ cells on the capsule (P < 0.05) were preferentially observed. In RCs, significant correlation was found between the thickness epithelium with S100+ and CD1a+ cells, and between the degree of inflammation with CD83+ cells. CONCLUSIONS Dendritic cell populations in OCLs can be phenotypically heterogeneous, and it could represent distinct lineages and/or functional stages. It is suggested that besides DC-mediated immune cell interactions, DC-mediated tissue differentiation and maintenance in OCLs should also be considered.
Collapse
Affiliation(s)
- F T C Matos
- Dentistry School, University of Ribeirão Preto (UNAERP), Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Oral Diseases (2012) Lichen planus (LP) is a common disorder affecting the oral cavity (OLP) and skin. Despite intensive research, LP/OLP etiology and treatment remain controversial. We investigated four controversial topics: (i) Is hepatitis C virus (HCV) infection associated with LP and involved in its pathogenesis? (ii) Should all patients with LP be screened for HCV? (iii) Should patients with OLP have all their amalgam restorations removed? (iv) Are there any new treatments for OLP? Results from extensive literature searches suggested that: (i) Robust evidence from three meta-analyses indicate that HCV is associated with LP and might be involved in OLP pathogenesis (ii) It would be prudent to screen patients with LP/OLP at significant risk with an ELISA for HCV antibodies using country-specific screening strategies (iii) There is no evidence that either OLP or oral lichenoid lesions patients would routinely benefit from having all their amalgam restorations replaced. Weak evidence from potentially very biased, small, non-randomized, unblinded studies suggests that a small fraction of patients may benefit from targeted amalgam replacement. (iv) There is weak evidence that, among new OLP treatments, topical pimecrolimus, aloe vera, and oral curcuminoids may be useful. The development of specific formulations for oral delivery of topical medications is a promising field.
Collapse
Affiliation(s)
- L Baccaglini
- Department of Epidemiology, University of Nebraska Medical Center, Omaha, NE, USA Department of Oral Medicine, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand Department of Oral Medicine, Centre for Oral Health Research, Newcastle University, Newcastle upon Tyne, UK Department of Dermatology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | |
Collapse
|
48
|
Mahanonda R, Sa-Ard-Iam N, Rerkyen P, Thitithanyanont A, Subbalekha K, Pichyangkul S. MxA expression induced by α-defensin in healthy human periodontal tissue. Eur J Immunol 2012; 42:946-956. [DOI: 10.1002/eji.201141657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
| | - Noppadol Sa-Ard-Iam
- Research Unit for Periodontal Disease; Immunology Laboratory; Faculty of Dentistry; Chulalongkorn University; Bangkok; Thailand
| | - Pimprapa Rerkyen
- Research Unit for Periodontal Disease; Immunology Laboratory; Faculty of Dentistry; Chulalongkorn University; Bangkok; Thailand
| | | | - Keskanya Subbalekha
- Department of Oral Maxillofacial Surgery; Faculty of Dentistry; Chulalongkorn University; Bangkok; Thailand
| | - Sathit Pichyangkul
- Department of Immunology and Medicine; US Army Medical Component; Armed Forces Research Institute of Medical Sciences (AFRIMS); Bangkok; Thailand
| |
Collapse
|
49
|
Vermi W, Soncini M, Melocchi L, Sozzani S, Facchetti F. Plasmacytoid dendritic cells and cancer. J Leukoc Biol 2011; 90:681-90. [PMID: 21730085 DOI: 10.1189/jlb.0411190] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cancer develops in a complex microenvironment comprising cancer cells, stromal cells, and host immune cells with their soluble products. The counteracting host-protective and tumor-promoting roles of different immune cell populations have been elegantly clarified in the last decade by pertinent genetically modified mouse models. Among cells with a potential role in cancer immunity, PDCs might represent important players as a result of their capacity to bring together innate and adaptive immunity. This review summarizes current knowledge about the role of PDCs in cancer immunity. PDCs have been documented in primary and metastatic human neoplasms; however, the clinical significance of this finding is still unknown. Once into the tumor bed, PDCs can be hijacked by the tumor microenvironment and lose their propensity to produce the required amount of endogenous I-IFN. However, when properly reprogrammed (i.e., by TLR agonists), PDCs might mediate tumor rejection in a clinical setting. Tumor rejection, at least partially, is driven by I-IFN and seems to require a cross-talk with other innate immune cells, including IFN DCs. The latter evidence, although still limited to skin cancers, can provide a leading model for developing adjuvant immune therapy for other neoplasms. To this end, the generation of appropriate mouse models to modulate the frequency and activation state of murine PDCs will also be of remarkable importance.
Collapse
Affiliation(s)
- William Vermi
- Department of Pathology, University of Brescia, Brescia, Italy.
| | | | | | | | | |
Collapse
|
50
|
Cathelicidins—Therapeutic antimicrobial and antitumor host defense peptides for oral diseases. JAPANESE DENTAL SCIENCE REVIEW 2011. [DOI: 10.1016/j.jdsr.2010.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|