1
|
Shen T, Yang Y, Lai Y, Zhang H, Liu D, Wang C, Li L, Xu W, Li K, Li S, Yang M. Elevated circulating regenerating islet-derived protein 4 levels in patients with metabolic syndrome and related to its key components. Endocrine 2025; 87:578-588. [PMID: 39412609 DOI: 10.1007/s12020-024-04056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/22/2024] [Indexed: 02/11/2025]
Abstract
PURPOSE Regenerating islet-derived protein 4 (REG4) is a secretory protein that belongs to the C-type lectin superfamily. This study aims to explore the diagnostic value of REG4 as a potential biomarker for metabolic syndrome by analyzing the correlation between serum REG4 levels and metabolic syndrome. METHODS Serum REG4 levels were measured using enzyme-linked immunosorbent assay (ELISA). Bioinformatics analysis was conducted to investigate REG4-related genes and metabolic signaling pathways. RESULTS Serum REG4 levels were significantly elevated in MetS patients compared to healthy controls (439.7 vs. 422.6 ng/L, p < 0.01). In addition, circulating REG4 levels showed a positive correlation with AUGg, HbA1c, VAI, BMI, WHR, TG, TC, LDL-C, while being inversely correlated with HDL-C in the study population. Serum REG4 levels were positively correlated with MetS score. Multiple linear regression analysis identified HOMA-IR and LDL-C as independent factors affecting serum REG4 concentration. Interventional studies have shown that OGTT can significantly increase serum REG4 levels in healthy individuals, but significantly reduce REG4 levels in MetS patients. Bioinformatics analysis suggested that REG4 is linked to several metabolism-related genes and is enriched in various metabolism-related signaling pathways. CONCLUSION REG4 may serve as a valuable biomarker and potential treatment target for insulin resistance (IR) and MetS. CLINICAL TRIAL REGISTRATION NUMBER ChiCTR2000032878.
Collapse
Affiliation(s)
- Tianjiao Shen
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yu Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yerui Lai
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongmin Zhang
- Department of Endocrinology, People's Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Cong Wang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Li
- Key Laboratory of Diagnostic Medicine (Ministry of Education) and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Weiwei Xu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ke Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shengbing Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Mengliu Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Shue F, White LJ, Hendrix R, Ulrich J, Henson RL, Knight W, Martens YA, Wang N, Roy B, Starling SC, Ren Y, Xiong C, Asmann YW, Syrjanen JA, Vassilaki M, Mielke MM, Timsina J, Sung YJ, Cruchaga C, Holtzman DM, Bu G, Petersen RC, Heckman MG, Kanekiyo T. CSF biomarkers of immune activation and Alzheimer's disease for predicting cognitive impairment risk in the elderly. SCIENCE ADVANCES 2024; 10:eadk3674. [PMID: 38569027 PMCID: PMC10990276 DOI: 10.1126/sciadv.adk3674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/23/2024] [Indexed: 04/05/2024]
Abstract
The immune system substantially influences age-related cognitive decline and Alzheimer's disease (AD) progression, affected by genetic and environmental factors. In a Mayo Clinic Study of Aging cohort, we examined how risk factors like APOE genotype, age, and sex affect inflammatory molecules and AD biomarkers in cerebrospinal fluid (CSF). Among cognitively unimpaired individuals over 65 (N = 298), we measured 365 CSF inflammatory molecules, finding age, sex, and diabetes status predominantly influencing their levels. We observed age-related correlations with AD biomarkers such as total tau, phosphorylated tau-181, neurofilament light chain (NfL), and YKL40. APOE4 was associated with lower Aβ42 and higher SNAP25 in CSF. We explored baseline variables predicting cognitive decline risk, finding age, CSF Aβ42, NfL, and REG4 to be independently correlated. Subjects with older age, lower Aβ42, higher NfL, and higher REG4 at baseline had increased cognitive impairment risk during follow-up. This suggests that assessing CSF inflammatory molecules and AD biomarkers could predict cognitive impairment risk in the elderly.
Collapse
Affiliation(s)
- Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Launia J. White
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rachel Hendrix
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason Ulrich
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel L. Henson
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - William Knight
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yuka A. Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ni Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Bhaskar Roy
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Yingxue Ren
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 93110, USA
| | - Yan W. Asmann
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jeremy A. Syrjanen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester MN 55905, USA
| | - Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester MN 55905, USA
| | - Michelle M. Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester MN 55905, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 93110, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 93110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 93110, USA
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Michael G. Heckman
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
3
|
Tong QY, Pang MJ, Hu XH, Huang XZ, Sun JX, Wang XY, Burclaff J, Mills JC, Wang ZN, Miao ZF. Gastric intestinal metaplasia: progress and remaining challenges. J Gastroenterol 2024; 59:285-301. [PMID: 38242996 DOI: 10.1007/s00535-023-02073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
Most gastric cancers arise in the setting of chronic inflammation which alters gland organization, such that acid-pumping parietal cells are lost, and remaining cells undergo metaplastic change in differentiation patterns. From a basic science perspective, recent progress has been made in understanding how atrophy and initial pyloric metaplasia occur. However, pathologists and cancer biologists have long been focused on the development of intestinal metaplasia patterns in this setting. Arguably, much less progress has been made in understanding the mechanisms that lead to the intestinalization seen in chronic atrophic gastritis and pyloric metaplasia. One plausible explanation for this disparity lies in the notable absence of reliable and reproducible small animal models within the field, which would facilitate the investigation of the mechanisms underlying the development of gastric intestinal metaplasia (GIM). This review offers an in-depth exploration of the current state of research in GIM, shedding light on its pivotal role in tumorigenesis. We delve into the histological subtypes of GIM and explore their respective associations with tumor formation. We present the current repertoire of biomarkers utilized to delineate the origins and progression of GIM and provide a comprehensive survey of the available, albeit limited, mouse lines employed for modeling GIM and engage in a discussion regarding potential cell lineages that serve as the origins of GIM. Finally, we expound upon the myriad signaling pathways recognized for their activity in GIM and posit on their potential overlap and interactions that contribute to the ultimate manifestation of the disease phenotype. Through our exhaustive review of the progression from gastric disease to GIM, we aim to establish the groundwork for future research endeavors dedicated to elucidating the etiology of GIM and developing strategies for its prevention and treatment, considering its potential precancerous nature.
Collapse
Affiliation(s)
- Qi-Yue Tong
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Min-Jiao Pang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xiao-Hai Hu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xuan-Zhang Huang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xin-Yu Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Departments of Pathology and Immunology, Molecular and Cellular Biology, Baylor College of Medicine, Houston, USA
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| | - Zhi-Feng Miao
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
4
|
Zhang CY, Zhang R, Zhang L, Wang ZM, Sun HZ, Cui ZG, Zheng HC. Regenerating gene 4 promotes chemoresistance of colorectal cancer by affecting lipid droplet synthesis and assembly. World J Gastroenterol 2023; 29:5104-5124. [PMID: 37744296 PMCID: PMC10514755 DOI: 10.3748/wjg.v29.i35.5104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Regenerating gene 4 (REG4) has been proved to be carcinogenic in some cancers, but its manifestation and possible carcinogenic mechanisms in colorectal cancer (CRC) have not yet been elucidated. Our previous study found that the drug resistance of CRC cells may be closely linked to their fat metabolism. AIM To explore the role of REG4 in CRC and its association with lipid droplet formation and chemoresistance. METHODS We conducted a meta-analysis and bioinformatics and pathological analyses of REG4 expression in CRC. The effects of REG4 on the phenotypes and related protein expression were also investigated in CRC cells. We detected the impacts of REG4 on the chemoresistance and lipid droplet formation in CRC cells. Finally, we analyzed how REG4 regulated the transcription and proteasomal degradation of lipogenic enzymes in CRC cells. RESULTS Compared to normal mucosa, REG4 mRNA expression was high in CRC (P < 0.05) but protein expression was low. An inverse correlation existed between lymph node and distant metastases, tumor-node-metastasis staging or short overall survival and REG4 mRNA overexpression (P < 0.05), but vice versa for REG4 protein expression. REG4-related genes included: Chemokine activity; taste receptors; protein-DNA and DNA packing complexes; nucleosomes and chromatin; generation of second messenger molecules; programmed cell death signals; epigenetic regulation and DNA methylation; transcription repression and activation by DNA binding; insulin signaling pathway; sugar metabolism and transfer; and neurotransmitter receptors (P < 0.05). REG4 exposure or overexpression promoted proliferation, antiapoptosis, migration, and invasion of DLD-1 cells in an autocrine or paracrine manner by activating the epidermal growth factor receptor-phosphoinositide 3-kinase-Akt-nuclear factor-κB pathway. REG4 was involved in chemoresistance not through de novo lipogenesis, but lipid droplet assembly. REG4 inhibited the transcription of acetyl-CoA carboxylase 1 (ACC1) and ATP-citrate lyase (ACLY) by disassociating the complex formation of anti-acetyl (AC)-acetyl-histone 3-AC-histone 4-inhibitor of growth protein-5-si histone deacetylase;-sterol-regulatory element binding protein 1 in their promoters and induced proteasomal degradation of ACC1 or ACLY. CONCLUSION REG4 may be involved in chemoresistance through lipid droplet assembly. REG4 reduces expression of de novo lipid synthesis key enzymes by inhibiting transcription and promoting ubiquitination-mediated proteasomal degradation.
Collapse
Affiliation(s)
- Cong-Yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Shenyang 110042, Liaoning Province, China
| | - Li Zhang
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Zi-Mo Wang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Hong-Zhi Sun
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui 910-1193, Japan
| | - Hua-Chuan Zheng
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| |
Collapse
|
5
|
Wang Y, Yan W, Lu Y, Du J, Tian X, Wu B, Peng S, Gu B, Cai W, Xiao Y. Intestinal Reg4 deficiency confers susceptibility to high-fat diet-induced liver steatosis by increasing intestinal fat absorption in mice. JHEP Rep 2023; 5:100700. [PMID: 37138677 PMCID: PMC10149362 DOI: 10.1016/j.jhepr.2023.100700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 05/05/2023] Open
Abstract
Background & Aims Regenerating gene family member 4 (REG4) is a novel marker for enteroendocrine cells and is selectively expressed in specialised enteroendocrine cells of the small intestine. However, the exact roles of REG4 are largely unknown. In this study we investigate the effects of REG4 on the development of dietary fat-dependent liver steatosis and the mechanisms involved. Methods Mice with intestinal-specific Reg4 deficiency (Reg4 ΔIEC ) and Reg4-floxed alleles (Reg4 fl/fl ) were generated to investigate the effects of Reg4 on diet-induced obesity and liver steatosis. Serum levels of REG4 were also measured in children with obesity using ELISA. Results Reg4 ΔIEC mice fed a high-fat diet demonstrated significantly increased intestinal fat absorption and were prone to obesity and hepatic steatosis. Importantly, Reg4 ΔIEC mice exhibit enhanced activation of adenosine monophosphate-activated protein kinase (AMPK) signalling and increased protein abundance of the intestinal fat transporters, as well as enzymes involved in triglyceride synthesis and packaging at the proximal small intestine. Moreover, REG4 administration reduced fat absorption, and decreased the expression of intestinal fat absorption-related proteins in cultured intestinal cells possibly via the CaMKK2-AMPK pathway. Serum REG4 levels were markedly lower in children with obesity with advanced liver steatosis (p <0.05). Serum REG4 levels were inversely correlated with levels of liver enzymes, homeostasis model assessment of insulin resistance, low-density lipoprotein cholesterol, and triglycerides. Conclusions Our findings directly link Reg4 deficiency with increased fat absorption and obesity-related liver steatosis, and suggest that REG4 may provide a potential target for prevention and treatment of liver steatosis in children. Impact and Implications Hepatic steatosis is a key histological feature of non-alcoholic fatty liver disease, which is the leading chronic liver disease in children leading to the development of metabolic diseases; however, little is known about mechanisms induced by dietary fat. Intestinal REG4 acts as a novel enteroendocrine hormone reducing high-fat-diet-induced liver steatosis with decreasing intestinal fat absorption. REG4 may be a novel target for treatment of paediatric liver steatosis from the perspective of crosstalk between intestine and liver.
Collapse
Affiliation(s)
- Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Weihui Yan
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jun Du
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Xinbei Tian
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Bo Wu
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shicheng Peng
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Beilin Gu
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Corresponding authors. Addresses: Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University No. 1665, Kong Jiang Road, Shanghai 200092, China. Tel.: +86-21-25076441; Fax: +86-21-65791316.
| | - Yongtao Xiao
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665, Kong Jiang Road, Shanghai 200092, China. Tel.: +86-21-25076445; Fax: +86-21-65791316.
| |
Collapse
|
6
|
Differential plasma protein expression after ingestion of essential amino acid-based dietary supplement verses whey protein in low physical functioning older adults. GeroScience 2023:10.1007/s11357-023-00725-5. [PMID: 36720768 PMCID: PMC10400527 DOI: 10.1007/s11357-023-00725-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/02/2023] [Indexed: 02/02/2023] Open
Abstract
In a recent randomized, double-blind, placebo-controlled trial, we were able to demonstrate the superiority of a dietary supplement composed of essential amino acids (EAAs) over whey protein, in older adults with low physical function. In this paper, we describe the comparative plasma protein expression in the same subject groups of EAAs vs whey. The plasma proteomics data was generated using SOMA scan assay. A total of twenty proteins were found to be differentially expressed in both groups with a 1.5-fold change. Notably, five proteins showed a significantly higher fold change expression in the EAA group which included adenylate kinase isoenzyme 1, casein kinase II 2-alpha, Nascent polypeptide-associated complex subunit alpha, peroxiredoxin-1, and peroxiredoxin-6. These five proteins might have played a significant role in providing energy for the improved cardiac and muscle strength of older adults with LPF. On the other hand, fifteen proteins showed slightly lower fold change expression in the EAA group. Some of these 15 proteins regulate metabolism and were found to be associated with inflammation or other comorbidities. Gene Ontology (GO) enrichment analysis showed the association of these proteins with several biological processes. Furthermore, protein-protein interaction network analysis also showed distinct networks between upregulated and downregulated proteins. In conclusion, the important biological roles of the upregulated proteins plus better physical function of participants in the EAAs vs whey group demonstrated that EAAs have the potential to improve muscle strength and physical function in older adults. This study was registered with ClinicalTrials.gov: NCT03424265 "Nutritional interventions in heart failure."
Collapse
|
7
|
Wang W, Wang Y, Lu Y, Zhu J, Tian X, Wu B, Du J, Cai W, Xiao Y. Reg4 protects against Salmonella infection-associated intestinal inflammation via adopting a calcium-dependent lectin-like domain. Int Immunopharmacol 2022; 113:109310. [DOI: 10.1016/j.intimp.2022.109310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
8
|
Xiang LW, Xue H, Ha MW, Yu DY, Xiao LJ, Zheng HC. The effects of REG4 expression on chemoresistance of ovarian cancer. J OBSTET GYNAECOL 2022; 42:3149-3157. [PMID: 35929918 DOI: 10.1080/01443615.2022.2106834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although ovarian cancer usually responds well to platinum- and taxane-based first-line chemotherapy, most patients develop recurrence and chemoresistance. Regenerating gene 4 (REG4) is a secretory protein involved in cell differentiation and proliferation. We found higher REG4 expression in ovarian cancer than in normal tissues (p < .05). Regenerating gene 4 expression was negatively associated with overall, progression-free or post-progression survival rates of patients with ovarian cancer receiving platinum or paclitaxel treatment (p < .05) according to a Kaplan-Meier plotter. Regenerating gene 4 overexpression resulted in either cisplatin or paclitaxel resistance, and apoptosis resistance in CAOV3 ovarian cancer cells (p < .05). REG4-transfected ovarian cancer cells showed stronger migration and invasion treated with cisplatin or paclitaxel (p < .05). Additionally, cisplatin or paclitaxel exposure led to the overexpression of phosphorylated phosphoinositide 3-kinase (p-PI3K), p-Akt, phosphorylated mammalian target of rapamycin (p-mTOR), glutathione S-transferase-π, survivin, and B-cell lymphoma 2 in REG4 transfectants compared with control cells (p < .05). These findings suggested that REG4 expression was up-regulated in ovarian cancer, and associated with poor survival and chemotherapy resistance. REG4 promoted the occurrence, development, and chemotherapy resistance of ovarian cancer by regulating cell proliferation, apoptosis, migration, and invasion, and PI3K/Akt/m-TOR signalling pathways. IMPACT STATEMENTWhat is already known on this subject? REG4 mRNA expression is up-regulated in many digestive cancers. High REG4 expression was associated with an adverse prognosis, high tumour and nodal stages, poor differentiation, and hepatic and peritoneal metastases of digestive cancers. REG4 expression conferred cancer cells with increased resistance to chemoradiotherapy, especially 5-FU-based treatment, by activating the MAPK/Erk/Bim signalling pathway.What do the results of this study add? REG4 was highly expressed in ovarian cancer. The expression of p-PI3K, p-AKT, p-mTOR, GST-π, survivin, and Bcl-2 was increased in REG4-overexpressing cells. High REG4 expression was significantly associated with inferior OS, PFS, and PPS rates in patients with ovarian cancer receiving platinum chemotherapy. REG4 mediated cisplatin and paclitaxel resistance in CAOV3 ovarian cancer cells. The percentage of apoptotic cells was markedly lower in REG4-transfected compared to mock-transfected cells after cisplatin or paclitaxel treatment.What are the implications of these findings for clinical practice and/or further research? This study aimed to evaluate the prognostic significance of REG4 expression in ovarian cancer treated with platinum and paclitaxel, to explore REG4 chemoresistance mechanisms to platinum and paclitaxel, and to provide a scientific experimental basis for the clinical treatment and outcome evaluation of ovarian cancer. In order to provide comprehensive clinical treatment of ovarian cancer, it is helpful to improve our understanding of multi-drug resistance and identify new cancer diagnostic biomarkers.
Collapse
Affiliation(s)
- Li-Wei Xiang
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hang Xue
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Min-Wen Ha
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Da-Yong Yu
- Department of Cell Biology, Basic Medicine College of Chengde Medical University, Chengde, China
| | - Li-Jun Xiao
- Department of Immunology, Basic Medicine College of Chengde Medical University, Chengde, China
| | - Hua-Chuan Zheng
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
9
|
Zheng HC, Xue H, Zhang CY. REG4 promotes the proliferation and anti-apoptosis of cancer. Front Cell Dev Biol 2022; 10:1012193. [PMID: 36172286 PMCID: PMC9511136 DOI: 10.3389/fcell.2022.1012193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Regenerating islet-derived 4 (REG4) gene was discovered by high-throughput sequencing of ulcerative colitis cDNA libraries. REG4 is involved in infection and inflammation by enhancing macrophage polarization to M2, via activation of epidermal growth factor receptor (EGFR)/Akt/cAMP-responsive element binding and the killing inflammatory Escherichia coli, and closely linked to tumorigenesis. Its expression was transcriptionally activated by caudal type homeobox 2, GATA binding protein 6, GLI family zinc finger 1, SRY-box transcription factor 9, CD44 intracytoplasmic domain, activating transcription factor 2, and specificity protein 1, and translationally activated by miR-24. REG4 can interact with transmembrane CD44, G protein-coupled receptor 37, mannan and heparin on cancer cells. Its overexpression was observed in gastric, colorectal, pancreatic, gallbladder, ovarian and urothelial cancers, and is closely linked to their aggressive behaviors and a poor prognosis. Additionally, REG4 expression and recombinant REG4 aggravated such cellular phenotypes as tumorigenesis, proliferation, anti-apoptosis, chemoradioresistance, migration, invasion, peritoneal dissemination, tumor growth, and cancer stemness via EGFR/Akt/activator protein-1 and Akt/glycogen synthase kinase three β/β-catenin/transcription factor 4 pathways. Sorted REG4-positive deep crypt secretory cells promote organoid formation of single Lgr5 (+) colon stem cells by Notch inhibition and Wnt activation. Histologically, REG4 protein is specifically expressed in neuroendocrine tumors and signet ring cell carcinomas of the gastrointestinal tract, pancreas, ovary, and lung. It might support the histogenesis of gastric intestinal–metaplasia–globoid dysplasia–signet ring cell carcinoma. In this review, we summarized the structure, biological functions, and effects of REG4 on inflammation and cancer. We conclude that REG4 may be employed as a biomarker of tumorigenesis, subsequent progression and poor prognosis of cancer, and may be a useful target for gene therapy.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-Chuan Zheng,
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-Yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
10
|
Kang G, Oh I, Pyo J, Kang D, Son B. Clinicopathological Significance and Prognostic Implications of REG4 Immunohistochemical Expression in Colorectal Cancer. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:938. [PMID: 34577861 PMCID: PMC8464993 DOI: 10.3390/medicina57090938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022]
Abstract
Background and objectives: The present study aimed to evaluate the clinicopathological significance and prognostic implications of REG4 immunohistochemical expression in colorectal cancer (CRC). Materials and Methods: We performed immunohistochemical analysis for REG4 cytoplasmic expression in 266 human CRC tissues. Correlations between REG4 expression, clinicopathological characteristics, and survival were investigated in CRC. Results: REG4 was expressed in 84 of 266 CRC tissues (31.6%). REG4 expression was significantly more frequent in the right colon than that in the left colon and rectum (p = 0.002). However, we observed no significant correlation between REG4 expression and other clinicopathological parameters. REG4 expression was significantly higher in CRCs with low stroma than in those with high stroma (p = 0.006). In addition, REG4 was more frequently expressed in CRCs with the mucinous component than in those without it (p < 0.001). There was no significant correlation between REG4 expression and overall recurrence-free survival (p = 0.132 and p = 0.480, respectively). Patients with REG4 expression showed worse overall and recurrence-free survival in the high-stroma subgroup (p = 0.001 and p = 0.017, respectively), but no such correlation was seen in the low stroma subgroup (p = 0.232 and p = 0.575, respectively). Conclusions: REG4 expression was significantly correlated with tumor location, amount of stroma, and mucinous component in CRCs. In patients with high stroma, REG4 expression was significantly correlated with poor overall and recurrence-free survival.
Collapse
Affiliation(s)
- Guhyun Kang
- Department of Pathology, Daehang Hospital, Seoul 06699, Korea;
| | - Ilhwan Oh
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Korea;
| | - Jungsoo Pyo
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Korea;
| | - Dongwook Kang
- Department of Pathology, Chungnam National University Sejong Hospital, 20 Bodeum 7-ro, Sejong 30099, Korea;
- Department of Pathology, Chungnam National University School of Medicine, 266 Munhwa Street, Daejeon 35015, Korea
| | - Byoungkwan Son
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Korea;
| |
Collapse
|
11
|
O'Neill RS, Stoita A. Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket? World J Gastroenterol 2021; 27:4045-4087. [PMID: 34326612 PMCID: PMC8311531 DOI: 10.3748/wjg.v27.i26.4045] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a leading cause of cancer related mortality on a global scale. The disease itself is associated with a dismal prognosis, partly due to its silent nature resulting in patients presenting with advanced disease at the time of diagnosis. To combat this, there has been an explosion in the last decade of potential candidate biomarkers in the research setting in the hope that a diagnostic biomarker may provide a glimmer of hope in what is otherwise quite a substantial clinical dilemma. Currently, serum carbohydrate antigen 19-9 is utilized in the diagnostic work-up of patients diagnosed with PC however this biomarker lacks the sensitivity and specificity associated with a gold-standard marker. In the search for a biomarker that is both sensitive and specific for the diagnosis of PC, there has been a paradigm shift towards a focus on liquid biopsy and the use of diagnostic panels which has subsequently proved to have efficacy in the diagnosis of PC. Currently, promising developments in the field of early detection on PC using diagnostic biomarkers include the detection of microRNA (miRNA) in serum and circulating tumour cells. Both these modalities, although in their infancy and yet to be widely accepted into routine clinical practice, possess merit in the early detection of PC. We reviewed over 300 biomarkers with the aim to provide an in-depth summary of the current state-of-play regarding diagnostic biomarkers in PC (serum, urinary, salivary, faecal, pancreatic juice and biliary fluid).
Collapse
Affiliation(s)
- Robert S O'Neill
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| | - Alina Stoita
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| |
Collapse
|
12
|
Song K, Yang Q, Yan Y, Yu X, Xu K, Xu J. Gastric mucin phenotype indicates aggressive biological behaviour in early differentiated gastric adenocarcinomas following endoscopic treatment. Diagn Pathol 2021; 16:62. [PMID: 34256780 PMCID: PMC8276406 DOI: 10.1186/s13000-021-01122-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background The distribution of mucin phenotypes and their relationship with clinicopathological features in early differentiated gastric adenocarcinomas in a Chinese cohort are unknown. We aimed to investigate mucin phenotypes and analyse the relationship between mucin phenotypes and clinicopathological features, especially biological behaviours, in early differentiated gastric adenocarcinomas from endoscopic specimens in a Chinese cohort. Methods Immunohistochemical staining of CD10, MUC2, MUC5AC, and MUC6 was performed in 257 tissue samples from patients with early differentiated gastric adenocarcinomas. The tumour location, gross type, tumour size, histological type, depth of invasion, lymphovascular invasion, mucosal background and other clinicopathological parameters were evaluated. The relationship between mucin phenotypes and clinicopathological features was analysed with the chi-square test. Results The incidences of gastric, gastrointestinal, intestinal and null phenotypes were 21 %, 56 %, 20 and 3 %, respectively. The mucin phenotypes were related to histology classification (P < 0.05). The proportion of the gastric phenotype became greater during the transition from differentiated to undifferentiated (P < 0.05). Complete intestinal metaplasia was higher in the gastric and intestinal phenotypes than in the gastrointestinal phenotype (P < 0.05). Tumours with poorly differentiated adenocarcinoma were mainly of the gastric phenotype, which was significantly higher than that of purely differentiated tubular adenocarcinoma (P < 0.05), and the depth of invasion in the mixed type was deeper (P < 0.05). Neither recurrence nor metastasis was detected. Conclusions The mucin phenotype of early-differentiated gastric adenocarcinoma has clinical implications, and the gastric phenotype has aggressive biological behaviour in early differentiated gastric cancers, especially in those with poorly differentiated adenocarcinoma or papillary adenocarcinoma components.
Collapse
Affiliation(s)
- Kai Song
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Yang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Yan
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyan Yu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kanlun Xu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghong Xu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Zhang J, Zhu Z, Miao Z, Huang X, Sun Z, Xu H, Wang Z. The Clinical Significance and Mechanisms of REG4 in Human Cancers. Front Oncol 2021; 10:559230. [PMID: 33489872 PMCID: PMC7819868 DOI: 10.3389/fonc.2020.559230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Regenerating islet-derived type 4 (REG4), a member of the calcium-dependent lectin gene superfamily, is abnormally expressed in various cancers, such as colorectal, gastric, gallbladder, pancreatic, ovarian, prostate, and lung cancer. REG4 is associated with a relatively unfavorable prognosis and clinicopathologic features in cancers, including advanced tumor and nodal stage, histological differentiation, and liver and peritoneal metastasis. Moreover, REG4-positive cancer cells show more frequent resistance to chemoradiotherapy, especially 5-FU-based chemotherapy. REG4 participates in many aspects of carcinogenesis, including cell proliferation, apoptosis, cell cycle, invasion, metastasis, and drug resistance. The underlying mechanisms are complex and involve a series of signaling mediators and multiple pathways. Thus, REG4 may be a potential diagnostic and prognostic biomarker as well as a candidate therapeutic target in cancer patients. In this review, we systematically summarize the advances about the clinical significance, biological functions, and mechanisms underlying REG4 in cancer to provide new directions for future cancer research.
Collapse
Affiliation(s)
- Junyan Zhang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi Zhu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhifeng Miao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhe Sun
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huimian Xu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Towards Understanding of Gastric Cancer Based upon Physiological Role of Gastrin and ECL Cells. Cancers (Basel) 2020; 12:cancers12113477. [PMID: 33266504 PMCID: PMC7700139 DOI: 10.3390/cancers12113477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Generally, we know that cancers represent genetic changes in tumour cells, but we most often do not know the causes of cancers or how they develop. Our knowledge of the regulation of gastric acid secretion is well known, with the gastric hormone gastrin maintaining gastric acidity by stimulation of the enterochromaffin-like (ECL) cell to release histamine, which subsequently augments acid secretion. Furthermore, it seems to be a general principle that stimulation of function (which, for the ECL cell, is release of histamine) in a parallel way stimulates the proliferation of the same cell. Long-term hyperstimulation of cell division predisposes to genetic changes and, thus, development of tumours. All conditions with reduced gastric acidity result in an increased risk of gastric tumours due to elevated gastrin in order to restore gastric acidity. It is probable that Helicobacter pylori infection (the most important cause of gastric cancer), as well as drugs inhibiting gastric acid secretion induce gastric cancer in the long-term, due to an elevation of gastrin caused by reduced gastric acidity. Gastric carcinomas have been shown to express ECL cell markers, further strengthening this relationship. Abstract The stomach is an ideal organ to study because the gastric juice kills most of the swallowed microbes and, thus, creates rather similar milieu among individuals. Combined with a rather easy access to gastric juice, gastric physiology was among the first areas to be studied. During the last century, a rather complete understanding of the regulation of gastric acidity was obtained, establishing the central role of gastrin and the histamine producing enterochromaffin-like (ECL) cell. Similarly, the close connection between regulation of function and proliferation became evident, and, furthermore, that chronic overstimulation of a cell with the ability to proliferate, results in tumour formation. The ECL cell has long been acknowledged to give rise to neuroendocrine tumours (NETs), but not to play any role in carcinogenesis of gastric adenocarcinomas. However, when examining human gastric adenocarcinomas with the best methods presently available (immunohistochemistry with increased sensitivity and in-situ hybridization), it became clear that many of these cancers expressed neuroendocrine markers, suggesting that some of these tumours were of neuroendocrine, and more specifically, ECL cell origin. Thus, the ECL cell and its main regulator, gastrin, are central in human gastric carcinogenesis, which make new possibilities in prevention, prophylaxis, and treatment of this cancer.
Collapse
|
15
|
Chen Z, Downing S, Tzanakakis ES. Four Decades After the Discovery of Regenerating Islet-Derived (Reg) Proteins: Current Understanding and Challenges. Front Cell Dev Biol 2019; 7:235. [PMID: 31696115 PMCID: PMC6817481 DOI: 10.3389/fcell.2019.00235] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Regenerating islet-derived (Reg) proteins have emerged as multifunctional agents with pro-proliferative, anti-apoptotic, differentiation-inducing and bactericidal properties. Over the last 40 years since first discovered, Reg proteins have been implicated in a gamut of maladies including diabetes, various types of cancer of the digestive tract, and Alzheimer disease. Surprisingly though, a consensus is still absent on the regulation of their expression, and molecular underpinning of their function. Here, we provide a critical appraisal of recent findings in the field of Reg protein biology. Specifically, the structural characteristics are reviewed particularly in connection with established or purported functions of different members of the Reg family. Moreover, Reg expression patterns in different tissues both under normal and pathophysiological conditions are summarized. Putative receptors and cascades reported to relay Reg signaling inciting cellular responses are presented aiming at a better appreciation of the biological activities of the distinct Reg moieties. Challenges are also discussed that have hampered thus far the rapid progress in this field such as the use of non-standard nomenclature for Reg molecules among various research groups, the existence of multiple Reg members with significant degree of homology and possibly compensatory modes of action, and the need for common assays with robust readouts of Reg activity. Coordinated research is warranted going forward, given that several research groups have independently linked Reg proteins to diseased states and raised the possibility that these biomolecules can serve as therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Zijing Chen
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
| | - Shawna Downing
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| | - Emmanuel S Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States.,Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
16
|
Sun S, Hu Z, Huang S, Ye X, Wang J, Chang J, Wu X, Wang Q, Zhang L, Hu X, Yu H. REG4 is an indicator for KRAS mutant lung adenocarcinoma with TTF-1 low expression. J Cancer Res Clin Oncol 2019; 145:2273-2283. [PMID: 31428934 DOI: 10.1007/s00432-019-02988-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Recent research has classified lung adenocarcinoma patients with KRAS mutation into three subtypes by co-occurring genetic events in TP53 (KP subgroup), STK11/LKB1 (KL subgroup) and CDKN2A/B inactivation plus TTF-1 low expression (KC subgroup). The aim of this study was to identify valuable biomarkers by searching the candidate molecules that contribute to lung adenocarcinoma pathogenesis, especially KC subtype. MATERIALS AND METHODS We analyzed the publicly available database and identified the candidate REG4 using the E-GEOD-31210 dataset, and then confirmed by TCGA dataset. In addition, an independent cohort of 55 clinical samples was analyzed by quantitative real-time PCR analysis. Functional studies and RNA sequencing were performed after silencing the REG4 expression. RESULTS REG4, an important regulator of gastro-intestinal carcinogenesis, was highly expressed in KRAS mutant lung adenocarcinoma with low expression of TTF-1 (KC subtype). The results were validated both by gene expression analysis and immunohistochemistry study in an independent 55 clinical samples from Fudan University Shanghai Cancer Center. Further in vitro and in vivo functional assays revealed silencing REG4 expression significantly reduces cancer cell proliferation and tumorigenesis. Moreover, RNA sequencing and GSEA analysis displayed that REG4 knockdown might induce cell cycle arrest by regulating G2/M checkpoint and E2F targets. CONCLUSION Our results indicate that REG4 plays an important role in KRAS-driven lung cancer pathogenesis and is a novel biomarker of lung adenocarcinoma subtype. Future studies are required to clarify the underlying mechanisms of REG4 in the division and proliferation of KC tumors and its potential therapeutic value.
Collapse
Affiliation(s)
- Si Sun
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhihuang Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xun Ye
- Gracell Biotech Co. Ltd, Shanghai, 200233, China
| | - Jialei Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianhua Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianghua Wu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qifeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Lanlin Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xingjiang Hu
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Research Center for Clinical Pharmacy, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Hui Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Oue N, Sentani K, Sakamoto N, Uraoka N, Yasui W. Molecular carcinogenesis of gastric cancer: Lauren classification, mucin phenotype expression, and cancer stem cells. Int J Clin Oncol 2019; 24:771-778. [PMID: 30980196 DOI: 10.1007/s10147-019-01443-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
Gastric cancer (GC), one of the most common human cancers, is a heterogeneous disease with different phenotypes, prognoses, and responses to treatment. Understanding the pathogenesis of GC at the molecular level is important for prognosis prediction and determining treatments. Microsatellite instability (MSI), silencing of MLH1, MGMT, and CDKN2A genes by DNA hypermethylation, KRAS mutation, APC mutation, and ERBB2 amplification are frequently found in intestinal type GC. Inactivation of CDH1 and RARB by DNA hypermethylation, and amplification of FGFR and MET, are frequently detected in diffuse type GC. In addition, BST2 and PCDHB9 genes are overexpressed in intestinal type GC. Both genes are associated with GC progression. GC can be divided into gastric/intestinal mucin phenotypes according to mucin expression. MSI, alterations of TP73, CDH1 mutation, and DNA methylation of MLH are detected frequently in the gastric mucin phenotype. TP53 mutation, deletion of APC, and DNA methylation of MGMT are detected frequently in the intestinal mucin phenotype. FKTN is overexpressed in the intestinal mucin phenotype, and IQGAP3 is overexpressed in the gastric mucin phenotype. These genes are involved in GC progression. To characterize cancer stem cells, a useful method is spheroid colony formation. KIFC1 and KIF11 genes show more than twofold higher expression in spheroid-forming cells than that in parental cells. Both KIF genes are overexpressed in GC, and knockdown of these genes inhibits spheroid formation. Alterations of these molecules may be useful to understand gastric carcinogenesis. Specific inhibitors of these molecules may also be promising anticancer drugs.
Collapse
Affiliation(s)
- Naohide Oue
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naohiro Uraoka
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
18
|
Deficiency in intestinal epithelial Reg4 ameliorates intestinal inflammation and alters the colonic bacterial composition. Mucosal Immunol 2019; 12:919-929. [PMID: 30953001 PMCID: PMC7744279 DOI: 10.1038/s41385-019-0161-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 02/04/2023]
Abstract
The regenerating islet-derived family member 4 (Reg4) in the gastrointestinal tract is up-regulated during intestinal inflammation. However, the physiological function of Reg4 in the inflammation is largely unknown. In the current study, the functional roles and involved mechanisms of intestinal epithelial Reg4 in intestinal inflammation were studied in healthy and inflamed states using human intestinal specimens, an intestinal conditional Reg4 knockout mouse (Reg4ΔIEC) model and dextran sulfate sodium (DSS)-induced colitis model. We showed that the elevated serum Reg4 in pediatric intestinal failure (IF) patients were positively correlated with the serum concentrations of proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). In inflamed intestine of IF patients, the crypt base Reg4 protein was increased and highly expressed towards the luminal face. The Reg4 was indicated as a novel target of activating transcription factor 2 (ATF2) that enhanced Reg4 expression during the intestinal inflammation. In vivo, the DSS-induced colitis was significantly ameliorated in Reg4ΔIEC mice. Reg4ΔIEC mice altered the colonic bacterial composition and reduced the bacteria adhere to the colonic epithelium. In vitro, Reg4 was showed to promote the growth of colonic organoids, and that this occurs through a mechanism involving activation of signal transducer and activator of transcription 3 (STAT3). In conclusion, our findings demonstrated intestinal-epithelial Reg4 deficiency protects against experimental colitis and mucosal injury via a mechanism involving alteration of bacterial homeostasis and STAT3 activation.
Collapse
|
19
|
Saukkonen K, Hagström J, Mustonen H, Lehtinen L, Carpen O, Andersson LC, Seppänen H, Haglund C. Prognostic and diagnostic value of REG4 serum and tissue expression in pancreatic ductal adenocarcinoma. Tumour Biol 2018. [PMID: 29542402 DOI: 10.1177/1010428318761494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Expression of regenerating islet-derived protein 4 (REG4), a secretory protein involved in cell differentiation and proliferation, is upregulated in inflammatory bowel diseases and in many gastrointestinal malignancies. The prognostic significance of its expression in pancreatic ductal adenocarcinoma is unknown. Our aim was to investigate tumor tissue and serum REG4 expression in pancreatic ductal adenocarcinoma patients. We also evaluated as a control the diagnostic value of serum REG4 level in patients with chronic pancreatitis. Immunohistochemical expression of REG4 was evaluated in 154 surgical specimens and serum REG4 level in 130 samples from pancreatic ductal adenocarcinoma patients treated at Helsinki University Hospital, Finland, in 2000-2011. REG4 tissue and serum expression was assessed in relation to clinicopathological parameters and patient survival. A chronic pancreatitis control group comprised 34 patients who underwent pancreatic resection because of suspicion of malignancy. Significant survival differences were detectable in subgroups: in tumor stages IA-IIA, high serum REG4 level predicted worse survival (p=0.046). In patients with grade I tumor, positive tissue REG4 expression predicted better survival (p=0.006). In multivariate analysis, neither tissue nor serum REG4 expression was independent prognostic factors. Serum REG4 levels were higher in pancreatic ductal adenocarcinoma than in chronic pancreatitis (p=0.002), with diagnostic sensitivity of 45% and specificity of 91%. In logistic regression analysis, a multivariate model with REG4, CA19-9, and age provided sensitivity of 82% and specificity of 79%. REG4 tissue expression is a prognostic marker in subgroups of pancreatic ductal adenocarcinoma patients. Serum REG4 level might be useful in differential diagnosis between pancreatic ductal adenocarcinoma and chronic pancreatitis.
Collapse
Affiliation(s)
- Kapo Saukkonen
- 1 Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,2 Translational Cancer Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- 2 Translational Cancer Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.,3 Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harri Mustonen
- 1 Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Laura Lehtinen
- 4 Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Olli Carpen
- 3 Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,4 Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.,5 Genome Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Leif C Andersson
- 3 Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanna Seppänen
- 1 Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- 1 Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,2 Translational Cancer Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Reis H, Krafft U, Niedworok C, Módos O, Herold T, Behrendt M, Al-Ahmadie H, Hadaschik B, Nyirady P, Szarvas T. Biomarkers in Urachal Cancer and Adenocarcinomas in the Bladder: A Comprehensive Review Supplemented by Own Data. DISEASE MARKERS 2018; 2018:7308168. [PMID: 29721106 PMCID: PMC5867586 DOI: 10.1155/2018/7308168] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/06/2018] [Indexed: 12/11/2022]
Abstract
Urachal cancer (UrC) is a rare but aggressive cancer. Due to overlapping histomorphology, discrimination of urachal from primary bladder adenocarcinomas (PBAC) and adenocarcinomas secondarily involving the bladder (particularly colorectal adenocarcinomas, CRC) can be challenging. Therefore, we aimed to give an overview of helpful (immunohistochemical) biomarkers and clinicopathological factors in addition to survival analyses and included institutional data from 12 urachal adenocarcinomas. A PubMed search yielded 319 suitable studies since 1930 in the English literature with 1984 cases of UrC including 1834 adenocarcinomas (92%) and 150 nonadenocarcinomas (8%). UrC was more common in men (63%), showed a median age at diagnosis of 50.8 years and a median tumor size of 6.0 cm. No associations were noted for overall survival and progression-free survival (PFS) and clinicopathological factors beside a favorable PFS in male patients (p = 0.047). The immunohistochemical markers found to be potentially helpful in the differential diagnostic situation are AMACR and CK34βE12 (UrC versus CRC and PBAC), CK7, β-Catenin and CD15 (UrC and PBAC versus CRC), and CEA and GATA3 (UrC and CRC versus PBAC). Serum markers like CEA, CA19-9 and CA125 might additionally be useful in the follow-up and monitoring of UrC.
Collapse
Affiliation(s)
- Henning Reis
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Ulrich Krafft
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Christian Niedworok
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Orsolya Módos
- Department of Urology, Semmelweis University, Üllői út 78/b, 1082 Budapest, Hungary
| | - Thomas Herold
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Mark Behrendt
- Department of Urology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Boris Hadaschik
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Peter Nyirady
- Department of Urology, Semmelweis University, Üllői út 78/b, 1082 Budapest, Hungary
| | - Tibor Szarvas
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
- Department of Urology, Semmelweis University, Üllői út 78/b, 1082 Budapest, Hungary
| |
Collapse
|
21
|
Shimizu A, Takahashi T, Kushima R, Sentani K, Yasui W, Matsuno Y. An extremely rare case of Epstein-Barr virus-associated gastric carcinoma with differentiation to neuroendocrine carcinoma. Pathol Int 2017; 68:41-46. [PMID: 29244230 DOI: 10.1111/pin.12613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVGC) is defined as a neoplasm comprising monoclonal proliferation of EBV-infected gastric epithelial cells. Although the typical histology is gastric carcinoma with lymphoid stroma (GCLS), the histologic features of the tumor vary. We report herein the case of a 78-year-old man with multiple simultaneous EBVGCs revealing different histopathologic morphologies; one was mixed adenoneuroendocrine carcinoma (MANEC), and the other was GCLS. Both tumor types exhibited positive results for EBV in situ hybridization. To the best of our knowledge, this represents the first report of EBVGC showing neuroendocrine differentiation. Immunohistochemistry also revealed a loss of gastrointestinal features, including CDX2, MUC5AC, and MUC6 expression, among tumor cells from the neuroendocrine component of the MANEC. We describe the pathologic features of this rare neoplasm and discuss the mechanisms underlying the neuroendocrine differentiation of EBVGC cells, along with providing a brief review of the literature.
Collapse
Affiliation(s)
- Ai Shimizu
- Department of Pathology, Hokkaido Gastroenterology Hospital, Sapporo, Japan.,Department of Pathology, Hokkaido University Hospital, Sapporo, Japan
| | | | - Ryoji Kushima
- Division of Diagnostic Pathology, Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yoshihiro Matsuno
- Department of Pathology, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
22
|
Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon. Proc Natl Acad Sci U S A 2016; 113:E5399-407. [PMID: 27573849 DOI: 10.1073/pnas.1607327113] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Leucine-rich repeat-containing G-protein coupled receptor 5-positive (Lgr5(+)) stem cells reside at crypt bottoms of the small and large intestine. Small intestinal Paneth cells supply Wnt3, EGF, and Notch signals to neighboring Lgr5(+) stem cells. Whereas the colon lacks Paneth cells, deep crypt secretory (DCS) cells are intermingled with Lgr5(+) stem cells at crypt bottoms. Here, we report regenerating islet-derived family member 4 (Reg4) as a marker of DCS cells. To investigate a niche function, we eliminated DCS cells by using the diphtheria-toxin receptor gene knocked into the murine Reg4 locus. Ablation of DCS cells results in loss of stem cells from colonic crypts and disrupts gut homeostasis and colon organoid growth. In agreement, sorted Reg4(+) DCS cells promote organoid formation of single Lgr5(+) colon stem cells. DCS cells can be massively produced from Lgr5(+) colon stem cells in vitro by combined Notch inhibition and Wnt activation. We conclude that Reg4(+) DCS cells serve as Paneth cell equivalents in the colon crypt niche.
Collapse
|
23
|
Mikami S, Ota I, Masui T, Itaya-Hironaka A, Shobatake R, Okamoto H, Takasawa S, Kitahara T. Effect of resveratrol on cancer progression through the REG Ⅲ expression pathway in head and neck cancer cells. Int J Oncol 2016; 49:1553-1560. [PMID: 27633858 DOI: 10.3892/ijo.2016.3664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/12/2016] [Indexed: 11/05/2022] Open
Abstract
Identification of reliable markers of chemo- and radiosensitivity and the key molecules that enhance the susceptibility of head and neck squamous cell carcinoma (HNSCC) to anticancer treatments is highly desirable. Previously, we have reported that regenerating gene (REG) Ⅲ expression was such a marker associated with an improved survival rate for HNSCC patients. In the present study, we investigated the stimulators for induction of REG Ⅲ expression using REG Ⅲ promoter assay in HNSCC cells transfected with REG Ⅲ promoter vector. We tested inflammatory cytokines, growth factors, polyphenols, PPARγ activator of thiazolidinediones, and histone deacetylase inhibitors, and found that 3,4',5-trihydroxy-trans-stilbene (resveratrol) significantly increased the REG Ⅲ promoter activity and the mRNA levels of REG Ⅲ in HNSCC cells. Moreover, we demonstrated the effect of resveratrol on cancer cell progression, such as cell proliferation, chemo‑ and radiosensitivity and cancer invasion of HNSCC cells. Resveratrol significantly inhibited cell growth, enhanced chemo‑ and radiosensitivity, and blocked cancer invasion of HNSCC cells. These data suggested that resveratrol could inhibit cancer progression through the REG Ⅲ expression pathway in HNSCC cells.
Collapse
Affiliation(s)
- Shinji Mikami
- Department of Otolaryngology‑Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Ichiro Ota
- Department of Otolaryngology‑Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Takashi Masui
- Department of Otolaryngology‑Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Asako Itaya-Hironaka
- Department of Biochemistry, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Ryogo Shobatake
- Department of Biochemistry, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Hideyuki Okamoto
- Department of Otolaryngology, Nara City Hospital, Nara 630‑8305, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Tadashi Kitahara
- Department of Otolaryngology‑Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| |
Collapse
|
24
|
Abstract
Gastric carcinogenesis is a multistep process, during which numerous genetic and epigenetic alterations accumulate: there are abnormalities of growth factors/receptors, angiogenic factors, cell cycle regulators, DNA mismatch repair genes etc. These abnormalities define, at the same time, the biological character of the cancer cell and may thus serve as therapeutic targets. Genetic instability may cause accumulation of genetic abnormalities. The most important epigenetic alterations are DNA methylation, histone modification and chromatin remodeling. Some of these changes are common in gastric cancer, regardless of subtype, and some differ by histological type or (gastric or intestinal) mucin phenotype. Genetic polymorphism is a crucial endogenous cause and fundamental aspect of cancer risk. Importantly, genetic polymorphisms are also associated with the therapeutic efficacy and toxicity of anti-cancer drugs. Genomic science and technology such as Serial Analysis of Gene Expression (SAGE) allows the identification of novel genes and molecules specifically up-regulated or down-regulated in gastric cancer, e.g., RegIV and claudin-18 can be identified. Advances in our understanding of the genetic and molecular bases lead to improved diagnosis, personalised medicine and prevention of gastric cancer.
Collapse
Affiliation(s)
- W Yasui
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Minami-ku, Hiroshima, Japan.
| | | | | | | |
Collapse
|
25
|
Wang H, Hu L, Zang M, Zhang B, Duan Y, Fan Z, Li J, Su L, Yan M, Zhu Z, Liu B, Yang Q. REG4 promotes peritoneal metastasis of gastric cancer through GPR37. Oncotarget 2016; 7:27874-88. [PMID: 27036049 PMCID: PMC5053694 DOI: 10.18632/oncotarget.8442] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Being the major reason of recurrence and death after surgery, peritoneal metastasis of gastric cancer dooms the prognosis of advanced gastric cancer patients. Regenerating islet-derived family, member 4 (REG4) is believed to promote peritoneal metastasis, however, its mechanism is still a moot point at present. In the present study, we show that high expression of REG4 correlates with advanced stage and poor survival prognosis for gastric cancer patients. REG4 overexpression significantly enhances peritoneal metastasis by increasing adhesion ability. Moreover, SP1 is proved to be a transcription factor of REG4 and induce REG4 expression upon TGF-alpha stimulation. Also, G protein-coupled receptor 37 (GPR37) is identified to be in the same complex of REG4, which mediates REG4's signal transduction and promotes peritoneal metastasis of gastric cancer cell. Interestingly, we also discover a positive feedback loop triggered by REG4, amplifying itself through EGFR transactivation, consisting of GPR37, ADAM17, TGF-alpha, EGFR, SP1 and REG4. In conclusion, REG4 promotes peritoneal metastasis of gastric cancer through GPR37 and triggers a positive feedback loop.
Collapse
Affiliation(s)
- Hexiao Wang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Lei Hu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Mingde Zang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Baogui Zhang
- Affiliated Hospital of Jining Medical University, Department of Surgery, Jining 272000, People's Republic of China
| | - Yantao Duan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhiyuan Fan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Liping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Min Yan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Qiumeng Yang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| |
Collapse
|
26
|
Fukutin, identified by the Escherichia coli ampicillin secretion trap (CAST) method, participates in tumor progression in gastric cancer. Gastric Cancer 2016. [PMID: 26223471 DOI: 10.1007/s10120-015-0511-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is the fifth commonest malignancy worldwide and still one of the leading causes of cancer-related death. The aim of this study was to identify a novel prognostic marker or therapeutic target for GC. METHODS We analyzed candidate genes from our previous Escherichia coli ampicillin secretion trap (CAST) libraries in detail, and focused on the FKTN gene because it was overexpressed in both GC cell line CAST libraries, MKN-1 and MKN-45. RESULTS Quantitative reverse transcriptase PCR analysis of FKTN revealed that FKTN messenger RNA was overexpressed in nine of 28 (32.1 %) GC tissue samples compared with nonneoplastic gastric mucosa. Immunostaining of fukutin showed that 297 of 695 cases (42.7 %) were positive for fukutin. Fukutin-positive GC cases were significantly associated with differentiated histological features, and advanced T grade and N grade. In addition, fukutin expression was observed more frequently in the intestinal phenotype (51 %) of GC than in other phenotypes (37 %) when defined by the expression patterns of mucin 5AC, mucin 6, mucin 2, and CD10. FKTN small interfering RNA treatment decreased GC cell proliferation. CONCLUSIONS These results indicate that the expression of fukutin may be a key regulator for progression of GC with the intestinal mucin phenotype.
Collapse
|
27
|
Perezpeña-Diazconti M, Hinojosa Armendáriz V, Cortés Sauza J. [Gastric adenocarcinoma with signet-ring cell and neuroendocrine differentiation. A rare cancer in adolescents]. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:268-277. [PMID: 29421390 DOI: 10.1016/j.bmhimx.2016.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/26/2022] Open
Affiliation(s)
- Mario Perezpeña-Diazconti
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, México.
| | | | - Jorge Cortés Sauza
- Departamento de Cirugía Oncológica, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| |
Collapse
|
28
|
Ma X, Wu D, Zhou S, Wan F, Liu H, Xu X, Xu X, Zhao Y, Tang M. The pancreatic cancer secreted REG4 promotes macrophage polarization to M2 through EGFR/AKT/CREB pathway. Oncol Rep 2015; 35:189-96. [PMID: 26531138 DOI: 10.3892/or.2015.4357] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
In the periphery of pancreatic ductal adenocarcinoma (PDAC), high accumulation of tumor-associated macrophages (TAMs), which exhibit M2 phenotype, has been shown to be correlated with extra-pancreatic invasion, lymph vessel invasion, lymph node involvement and shortened survival time. However, mechanisms by which tumor cells educate and reprogram TAMs remain largely unclear. The phenotype of TAMs in PDAC tissues was confirmed by immunofluoresence and confocal microscopy. Human CD14+ monocytes were incubated with recombinant human REG4 (rREG4) before being stimulated with LPS and IL-10 and IL-6 were measured with ELISA. A panel of M1 and M2 genes were measured by quantitative real-time PCR. Panc1, AsPC1 and BxPC3 cells were cultured in the conditioned medium (CM) and treated with REG4. The macrophages were infected with CREB shRNA or cultured by the CM of Panc1 cells infected with REG4 shRNA. The expression of CD163, CD206 and REG4 and the phosphorylation levels of epidermal growth factor receptor (EGFR), AKT and cAMP response element-binding protein (CREB) in cells were assessed with western blotting. Cell proliferation and invasiveness were also assessed. The rREG4 or the conditioned medium of Panc1 cells which secreted REG4 induced the polarization macrophages to M2 phenotype. Treatment of human macrophages with REG4 resulted in phosphorylation of EGFR, AKT and CREB. The latter was responsible for REG4-mediated macrophage polarization to M2. The conditioned medium of macrophages treated with rREG4 promoted the proliferation and invasion of pancreatic cancer cell lines. REG4, overexpressed in PDAC and secreted by cancer cells, promoted macrophage polarization to M2, through at least in part, activation of ERK1/2 and CREB and changed the microenvironment to facilitate cancer growth and metastasis.
Collapse
Affiliation(s)
- Xiuying Ma
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Deqing Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Shu Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Feng Wan
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hua Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaorong Xu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xuanfu Xu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yan Zhao
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Maochun Tang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
29
|
The role of Reg IV in colorectal cancer, as a potential therapeutic target. Contemp Oncol (Pozn) 2015; 19:261-4. [PMID: 26557771 PMCID: PMC4631303 DOI: 10.5114/wo.2015.54385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/05/2013] [Accepted: 11/22/2013] [Indexed: 01/28/2023] Open
Abstract
Regenerating islet-derived family, member 4 (Reg IV), a member of the Reg gene family, has been reported to be overexpressed in gastrointestinal tract cancers. Reg IV overexpression in tumor cells has been associated with carcinogenesis, tissue regeneration, proliferation and resistance to apoptosis. Reg IV activates the epidermal growth factor receptor (EGFR) signaling pathway in colon cancer and increases expression of B-cell lymphoma-2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl), which are associated with the inhibition of apoptosis, results in mitogenic signaling in colon cancer cells, increase cell proliferation, metastasis and decreased apoptosis. Reg IV treatment inhibits 5-fluorouracil induced apoptosis, at least two mechanisms are involved in inhibition of apoptosis by Reg IV, including Bcl-2 and dihydropyrimidine dehydrogenase (DPD). These studies may lead to novel therapeutic strategies for cancers expressing Reg IV. Recently, one proteoglycan was confirmed to disrupt this signaling pathway to perform antitumor effect. This review summaries current knowledge of the expression and roles of Reg IV in human colorectal cancer, describes the possible signaling pathway which Reg IV activates, and discusses the relevance of Reg IV as a potential therapeutic target for cancer treatment.
Collapse
|
30
|
Oue N, Sentani K, Sakamoto N, Yasui W. Clinicopathologic and molecular characteristics of gastric cancer showing gastric and intestinal mucin phenotype. Cancer Sci 2015; 106:951-8. [PMID: 26033320 PMCID: PMC4556382 DOI: 10.1111/cas.12706] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/19/2015] [Accepted: 05/25/2015] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC), one of the most common human cancers, can be classified into gastric or intestinal phenotype according to mucin expression. TP53 mutation, allelic deletion of the APC gene and nuclear staining of β-catenin are frequently detected in the intestinal phenotype of GC, whereas CDH1 gene mutation, microsatellite instability and DNA hypermethylation of MLH1 are common events in the gastric phenotype of GC. Our Serial Analysis of Gene Expression (SAGE) and Escherichia coli ampicillin secretion trap (CAST) analyses revealed that CDH17, REG4, OLFM4, HOXA10, DSC2, TSPAN8 and TM9SF3 are upregulated in GC and that CLDN18 is downregulated in GC. Expression of CDH17, REG4, HOXA10 and DSC2 and downregulation of CLDN18 are observed in the intestinal phenotype of GC. In contrast, OLFM4 is expressed in the gastric phenotype of GC. Expression of TSPAN8, TM9SF3 and HER2 are not associated with either gastric or intestinal phenotypes. Ectopic CDX2 expression plays a key function in the GC intestinal phenotype. MUC2, CDH17, REG4, DSC2 and ABCB1 are direct targets of CDX2. Importantly, these genes encode transmembrane/secretory proteins, indicating that the microenvironment as well as cancer cells are also different between gastric and intestinal phenotypes of GC.
Collapse
Affiliation(s)
- Naohide Oue
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
31
|
Chen S, Gou WF, Zhao S, Niu ZF, Zhao Y, Takano Y, Zheng HC. The role of the REG4 gene and its encoding product in ovarian epithelial carcinoma. BMC Cancer 2015; 15:471. [PMID: 26077911 PMCID: PMC4469329 DOI: 10.1186/s12885-015-1435-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 05/13/2015] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Although its biological function remains poorly understood, REG4 is reported to be a potent activator of the EGFR/Akt/AP-1 signaling pathway in colon cancer cells and closely linked with the inhibition of apoptosis. METHODS SKOV3 cells were transfected with a REG4-expressing plasmid or treated with recombinant REG4. We then analyzed proliferation, cell cycle, apoptosis, invasion and metastasis or expression of related molecules. REG4 expression was examined in normal ovarian tissue, benign and borderline tumors, and cancers by immunohistochemistry or real-time PCR. RESULTS REG4 overexpression and the recombinant protein inhibited cell apoptosis, enhanced G2/S progression, proliferation, migration and invasion. Furthermore, expression of Wnt5a, p70s6k, survivin and VEGF expression was increased, while Bax expression was decreased at both the mRNA and protein levels compared to control or mock cells (P<0.05). REG4 mRNA levels were higher in benign tumors and primary cancer compared to those in normal ovarian tissue (P<0.05) while, REG4 protein expression was higher in all three tumor types than that in normal ovarian tissue (P<0.05). Higher REG4 mRNA expression was observed in mucinous carcinomas than serous carcinomas (P<0.05), and in well- and moderately-differentiated carcinomas than poorly-differentiated carcinomas (P<0.05). Survival analysis revealed an inverse relationship between REG4 expression and cumulative or relapse-free survival rates of the patients with ovarian cancer as an independent factor (P<0.05). CONCLUSIONS Our findings indicate that aberrant REG4 expression plays an essential role in early ovarian carcinogenesis and is closely linked to mucinous ovarian tumors, differentiation and adverse prognosis of ovarian cancer by modulating proliferation, apoptosis, migration and invasion.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Wen-Feng Gou
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, 110001, China.
| | - Shuang Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, 110001, China.
| | - Zhe-Feng Niu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, 110001, China.
| | - Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Yasuo Takano
- Clinical Cancer Institute, Kanagawa Cancer Center, Yokohama, 241-0815, Japan.
| | - Hua-Chuan Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
32
|
Zhu X, Han Y, Yuan C, Tu W, Qiu G, Lu S, Lu H, Peng Z, Zhou C. Overexpression of Reg4, alone or combined with MMP-7 overexpression, is predictive of poor prognosis in colorectal cancer. Oncol Rep 2015; 33:320-8. [PMID: 25338725 DOI: 10.3892/or.2014.3559] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/23/2014] [Indexed: 11/05/2022] Open
Abstract
Regenerating islet-derived family, member 4 (Reg4) is a secreted protein that plays a critical role in the development of colorectal cancer (CRC). In the present study, we examined the relationship between Reg4 and matrix metalloproteinase-7 (MMP-7) expression in CRC, particularly with regard to metastasis. RT-qPCR, western blotting, tissue microarray (TMA) and immunohistochemical staining were performed to detect Reg4 and MMP-7 expression in CRC tissues and paired adjacent normal tissues. As compared with normal tissues, most paired colon cancers showed a ≥2-fold increase in the Reg4 and MMP-7 mRNA levels, which was subsequently validated by the post-transcriptional levels. Immunohistochemical analysis demonstrated that Reg4 was associated with lymph node and distant metastasis, advanced American Joint Committee on Cancer (AJCC) stage, and histologic grade. Further studies showed the correlation between Reg4 and MMP-7 expression was significant in CRC with distant metastasis (r=0.555, P=0.021) and in the lymph‑node metastasis samples (r=0.557, P<0.001). Patients with tumor positivity for the two molecules showed a worse prognosis even after radical surgery (P<0.001). Multivariate analysis revealed that patients with Reg4- and MMP-7-positive tumors had extremely poor OS (HR 4.63; 95% CI 2.43-8.81; P<0.001) and DFS (HR 3.88; 95% CI 2.08-7.22; P<0.001). Reg4 expression may be useful in the prediction of colon cancer prognosis when combined with MMP-7.
Collapse
Affiliation(s)
- Xingwu Zhu
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Yang Han
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Chenwei Yuan
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Weiwei Tu
- Department of General Surgery, Shanghai First People's Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guoqiang Qiu
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Su Lu
- Department of Pathology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Huijun Lu
- Department of Pathology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Zhihai Peng
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| | - Chongzhi Zhou
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, P.R. China
| |
Collapse
|
33
|
Sawada T, Yashiro M, Sentani K, Oue N, Yasui W, Miyazaki K, Kai K, Fushida S, Fujimura T, Ohira M, Kakeji Y, Natsugoe S, Shirabe K, Nomura S, Shimada Y, Tomita N, Hirakawa K, Maehara Y. New molecular staging with G-factor supplements TNM classification in gastric cancer: a multicenter collaborative research by the Japan Society for Gastroenterological Carcinogenesis G-Project committee. Gastric Cancer 2015; 18:119-28. [PMID: 24488015 PMCID: PMC4257995 DOI: 10.1007/s10120-014-0338-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 12/30/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND The G-Project committee was erected by the Japan Society for Gastroenterological Carcinogenesis with an aim of establishing a new classification scheme based on molecular biological characteristics that would supplement the conventional TNM classification to better predict outcome. METHODS In a literature search involving 822 articles on gastric cancer, eight molecules including p53, vascular endothelial growth factor (VEGF)-A, VEGF-C, matrix metalloproteinase-7 (MMP-7), human epidermal growth factor receptor 2, Regenerating islet-derived family, member 4, olfactomedin-4 and Claudin-18 were selected as candidates to be included in the new molecular classification scheme named G-factor. A total of 210 cases of gastric cancer who underwent curative R0 resection were registered from four independent facilities. Immunohistochemical staining for the aforementioned molecules was performed for the surgically resected specimens of the 210 cases to investigate the correlation between clinicopathological factors and expression of each molecule. RESULTS No significant correlation was observed between the immunostaining expression of any of the eight factors and postoperative recurrence. However, the expressions of p53 and MMP-7 were significantly correlated with overall survival (OS). When 210 gastric cancer patients were divided into three groups based on the expression of p53 and MMP-7 (G0 group: negative for both p53 and MMP-7, n = 69, G1 group: positive for either p53 or MMP-7, n = 97, G2 group: positive for both of the molecules, n = 44), G2 group demonstrated significantly higher recurrence rate (59%) compared to 38% in G0 (p = 0.047). The multivariate regression analysis revealed that G2 group was independently associated with a shorter disease-free survival (DFS) (hazard ratio 1.904, 95% CI 1.098-3.303; p = 0.022), although the association with OS was not significant. Stage II patients among the G2 group had significantly inferior prognosis both in terms of OS and DFS when compared with those among the G0/G1 group, with survival curves similar to those of Stage III cases. CONCLUSIONS G-factor based on the expression of p53 and MMP-7 was found to be a promising factor to predict outcome of Stage II/III gastric cancer, and possibly to help select the treatment for Stage II cancer, thus supplementing the conventional TNM system.
Collapse
Affiliation(s)
- Tetsuji Sawada
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Akhavan-Niaki H, Samadani AA. Molecular insight in gastric cancer induction: an overview of cancer stemness genes. Cell Biochem Biophys 2014; 68:463-73. [PMID: 24078401 DOI: 10.1007/s12013-013-9749-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gastric cancer is one of the most outgoing human cancers in the world. Two main functional types were described: Intestinal adenocarcinoma and diffuse one. The most important purpose of this review is to analyze and investigate the main genetic factors involved in tumorogenesis of stomach and the molecular mechanism of their expression regulation alongside with the importance of cancer stem cells and their relationship with gastric cancer. It is evident that proper diagnosis of molecular case of cancer may lead to absolute treatment and at least reduction in the disease severity. However, stemness factors such as Sox2, Oct3/4, and Nanog were related with induced pluripotent stem cells, proposing a correlation between these stemness factors and cancer stem cells. Moreover, aberrant induction by Helicobacter pylori of the intestinal-specific homeobox transcription factors, CDX1 and CDX2, also plays an important role in this modification. There are some genes which are directly activated by CDX1 in gastric cancer and distinguished stemness-related reprogramming factors like SALL4 and KLF5. Correspondingly, we also aimed to present the main important epigenetic changes such as DNA methylation, histone modification, and chromatin modeling of stemness genes in disease development. Remarkably, a better understanding of molecular bases of cancer may lead to novel diagnostic, therapeutic, and preventive approaches by some genetic and epigenetic changes such as gene amplifications, gene silencing by DNA methylation, losses of imprinting, LOH, and mutations. Consequently, genome-wide searches of gene expression are widely important for surveying the proper mechanisms of cancer emergence and development. Conspicuously, this review explains an outline of the molecular mechanism and new approaches in gastric cancer.
Collapse
Affiliation(s)
- Haleh Akhavan-Niaki
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
35
|
REG4 independently predicts better prognosis in non-mucinous colorectal cancer. PLoS One 2014; 9:e109600. [PMID: 25295732 PMCID: PMC4190354 DOI: 10.1371/journal.pone.0109600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/11/2014] [Indexed: 12/23/2022] Open
Abstract
Introduction Colorectal cancer (CRC) is one of the world’s three most common cancers and its incidence is rising. To identify patients who benefit from adjuvant therapy requires novel biomarkers. The regenerating islet-derived gene (REG) 4 belongs to a group of small secretory proteins involved in cell proliferation and regeneration. Its up-regulated expression occurs in inflammatory bowel diseases also in gastrointestinal cancers. Reports on the association of REG4 expression with CRC prognosis have been mixed. Our aim was to investigate tumor REG4 expression in CRC patients and its coexpression with other intestinal markers. Methods Tumor expression of REG4 was evaluated by immunohistochemistry in 840 consecutive surgically treated CRC patients at Helsinki University Central Hospital. Expression of MUC1, MUC2, MUC5AC, synapthophysin, and chromogranin was evaluated in a subgroup of 220 consecutively operated CRC patients. REG4 expression with clinicopathological parameters, other intestinal markers, and the impact of REG4 expression on survival were assessed. Results REG4 expression associated with favorable clinicopathological parameters and with higher overall survival from non-mucinous CRC (p = 0.019). For such patients under 65, its expression was an independent marker of lower risk of death within 5 years that cancer; univariable hazard ratio (HR) = 0.57; 95% confidence interval (CI) (0.34–0.94); multivariable HR = 0.55; 95% CI (0.33–0.92). In non-mucinous CRC, REG4 associated with positive MUC2, MUC4, and MUC5AC expression. Conclusion We show, to our knowledge for the first time, that REG4 IHC expression to be an independent marker of favorable prognosis in non-mucinous CRC. Our results contradict those from studies based on quantification of REG4 mRNA levels, a discrepancy warranting further studies.
Collapse
|
36
|
He HL, Lee YE, Shiue YL, Lee SW, Lin LC, Chen TJ, Wu TF, Hsing CH, Huang HY, Wang JY, Li CF. Overexpression of REG4 confers an independent negative prognosticator in rectal cancers receiving concurrent chemoradiotherapy. J Surg Oncol 2014; 110:1002-10. [PMID: 25155043 DOI: 10.1002/jso.23764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/19/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Neoadjuvant concurrent chemoradiotherapy (CCRT) followed by surgery is the standard treatment for locally advanced rectal cancer. Through data mining from published transcriptomic database, we identified Regenerating Gene Type IV (REG4) as the most significantly associated gene with resistance to CCRT. This study examined the prognostic impact of REG4 expression in patients with rectal cancer receiving neoadjuvant CCRT. METHODS REG4 immunohistochemistry was retrospectively assessed for pre-treatment biopsy specimens from 172 rectal cancer patients who received neoadjuvant CCRT followed by surgery without initial distant metastasis. The results were correlated with the clinicopathological variables, disease-specific survival (DSS), local recurrence-free survival (LRFS), and distant metastasis-free survival (DMFS), as well as γ-H2AX expression in post-treatment tumor samples. RESULTS High expression of REG4 was associated with advanced pre-treatment nodal status (P = 0.026), advanced post-treatment tumor status (P = 0.006), advanced post-treatment nodal status (P = 0.001), advanced post-treatment tumor stage (P < 0.001), and inferior tumor regression grade (P = 0.001). Of note, high expression of REG4 emerged as an adverse prognosticator for DSS (P = 0.0004), LRFS (P = 0.0009), and MeFS (P = 0.0254). After multivariate comparisons, it remained independently prognostic for worse DSS (hazard ratio [HR] = 2.731; P = 0.025) and LRFS (HR = 2.676; P = 0.029). High expression of REG4 was also negatively associated with γ-H2AX expression (P < 0.0001, r = -0.708). CONCLUSIONS High expression of REG4 is associated with poor therapeutic response, adverse outcome and an aggressive phenotype in rectal cancer patients treated with neoadjuvant CCRT, justifying REG4 is a surrogate marker to predict CCRT resistance.
Collapse
Affiliation(s)
- Hong-Lin He
- Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan; Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yan LH, Wei WY, Xie YB, Xiao Q. New insights into the functions and localization of the homeotic gene CDX2 in gastric cancer. World J Gastroenterol 2014; 20:3960-3966. [PMID: 24744585 PMCID: PMC3983451 DOI: 10.3748/wjg.v20.i14.3960] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/22/2013] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most frequent cancers, and it ranks the third most common cancer in China. The most recently caudal-related homeobox transcription factor 2 (CDX2) is expressed in a large number of human gastrointestinal cancers. In addition, gastric epithelial cell mutations in CDX2 result in tumor promotion, which is characterized by cellular drug resistance and a high proclivity for developing cancer. A series of publications over the past years suggests a mechanism by which CDX2 overexpression results in multidrug resistance. CDX2 appears to forward control regenerating IV and the multidrug resistance 1 expression signaling pathway for regulation of cell drug resistance.
Collapse
|
38
|
Oo HZ, Sentani K, Sakamoto N, Anami K, Naito Y, Oshima T, Yanagihara K, Oue N, Yasui W. Identification of novel transmembrane proteins in scirrhous-type gastric cancer by the Escherichia coli ampicillin secretion trap (CAST) method: TM9SF3 participates in tumor invasion and serves as a prognostic factor. Pathobiology 2014; 81:138-48. [PMID: 24642718 DOI: 10.1159/000357821] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Scirrhous-type gastric cancer (GC) is highly aggressive and has a poor prognosis due to rapid cancer cell infiltration accompanied by extensive stromal fibrosis. The aim of this study is to identify genes that encode transmembrane proteins frequently expressed in scirrhous-type GC. METHODS We compared Escherichia coli ampicillin secretion trap (CAST) libraries from 2 human scirrhous-type GC tissues with a normal stomach CAST library. By sequencing 2,880 colonies from scirrhous CAST libraries, we identified a list of candidate genes. RESULTS We focused on the TM9SF3 gene because it has the highest clone count, and immunohistochemical analysis demonstrated that 46 (50%) of 91 GC cases were positive for TM9SF3, which was observed frequently in scirrhous-type GC. TM9SF3 expression showed a significant correlation with the depth of invasion, tumor stage and undifferentiated GC. There was a strong correlation between TM9SF3 expression and poor patient outcome, which was validated in two separate cohorts by immunostaining and quantitative RT-PCR, respectively. Transient knockdown of the TM9SF3 gene by siRNA showed decreased tumor cell-invasive capacity. CONCLUSION Our results indicate that TM9SF3 might be a potential diagnostic and therapeutic target for scirrhous-type GC.
Collapse
Affiliation(s)
- Htoo Zarni Oo
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Delker DA, McGettigan BM, Kanth P, Pop S, Neklason DW, Bronner MP, Burt RW, Hagedorn CH. RNA sequencing of sessile serrated colon polyps identifies differentially expressed genes and immunohistochemical markers. PLoS One 2014; 9:e88367. [PMID: 24533081 PMCID: PMC3922809 DOI: 10.1371/journal.pone.0088367] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sessile serrated adenomas/polyps (SSA/Ps) may account for 20-30% of colon cancers. Although large SSA/Ps are generally recognized phenotypically, small (<1 cm) or dysplastic SSA/Ps are difficult to differentiate from hyperplastic or small adenomatous polyps by endoscopy and histopathology. Our aim was to define the comprehensive gene expression phenotype of SSA/Ps to better define this cancer precursor. RESULTS RNA sequencing was performed on 5' capped RNA from seven SSA/Ps collected from patients with the serrated polyposis syndrome (SPS) versus eight controls. Highly expressed genes were analyzed by qPCR in additional SSA/Ps, adenomas and controls. The cellular localization and level of gene products were examined by immunohistochemistry in syndromic and sporadic SSA/Ps, adenomatous and hyperplastic polyps and controls. We identified 1,294 differentially expressed annotated genes, with 106 increased ≥10-fold, in SSA/Ps compared to controls. Comparing these genes with an array dataset for adenomatous polyps identified 30 protein coding genes uniquely expressed ≥10-fold in SSA/Ps. Biological pathways altered in SSA/Ps included mucosal integrity, cell adhesion, and cell development. Marked increased expression of MUC17, the cell junction protein genes VSIG1 and GJB5, and the antiapoptotic gene REG4 were found in SSA/Ps, relative to controls and adenomas, were verified by qPCR analysis of additional SSA/Ps (n = 21) and adenomas (n = 10). Immunohistochemical staining of syndromic (n≥11) and sporadic SSA/Ps (n≥17), adenomatous (n≥13) and hyperplastic (n≥10) polyps plus controls (n≥16) identified unique expression patterns for VSIG1 and MUC17 in SSA/Ps. CONCLUSION A subset of genes and pathways are uniquely increased in SSA/Ps, compared to adenomatous polyps, thus supporting the concept that cancer develops by different pathways in these phenotypically distinct polyps with markedly different gene expression profiles. Immunostaining for a subset of these genes differentiates both syndromic and sporadic SSA/Ps from adenomatous and hyperplastic polyps.
Collapse
Affiliation(s)
- Don A. Delker
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Brett M. McGettigan
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Priyanka Kanth
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Stelian Pop
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Deborah W. Neklason
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary P. Bronner
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Randall W. Burt
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Curt H. Hagedorn
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- The Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
The regenerating gene (Reg) family is a group of small molecules that includes four members found in various species, although only three are found in human tissues. Their expression is stimulated by certain growth factors or cytokines. The Reg family plays different roles in proliferation, migration, and anti-apoptosis through activating different signaling pathways. Their dysexpression is closely associated with a number of human conditions and diseases such as inflammation and cancer, especially in the human digestive system. Clinically, upregulation of Reg proteins is usually demonstrated in histological sections and sera from cancer patients. Therefore, Reg proteins can predict the progression and prognosis of cancers, especially those of the digestive tract, and can also act as diagnostic markers and therapeutic targets.
Collapse
|
41
|
Bishnupuri KS, Sainathan SK, Bishnupuri K, Leahy DR, Luo Q, Anant S, Houchen CW, Dieckgraefe BK. Reg4-induced mitogenesis involves Akt-GSK3β-β-Catenin-TCF-4 signaling in human colorectal cancer. Mol Carcinog 2013; 53 Suppl 1:E169-80. [PMID: 24151146 DOI: 10.1002/mc.22088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/06/2013] [Accepted: 08/20/2013] [Indexed: 11/06/2022]
Abstract
Upregulation of regenerating gene 4 (Reg4) is observed in many human gastrointestinal malignancies including colorectal cancer (CRC). We previously reported a Reg4-mediated induction of epidermal growth factor receptor-Akt-AP1 signaling regulating CRC cell apoptosis. However, the role of Reg4 in the regulation of CRC cell division is poorly understood. This study tests the hypothesis that Reg4 induces Akt-GSK3β-β-Catenin-TCF-4 signaling to regulate CRC cell division. In vitro models of human CRC were used to determine the role of Reg4 in regulation of CRC cell division. Cell cycle studies demonstrated that Reg4 treatment significantly decreased CRC cell number in G1 phase and increased in G2 phase. Subsequently Reg4 significantly increased the mitotic index of CRC cells. As assessed by real-time RT-PCR and Western blot analyses, Reg4 significantly increased the expression of cell cycle regulatory genes Cyclin D1 and D3, and associated Cyclin-dependent kinases (CDK4 and CDK6). Reg4-mediated increase in these genes involved a pathway that included an induced Akt activity by increasing phosphorylation of Thr308 and Ser473, a reduced glycogen synthase kinase 3β (GSK-3β) activity by increasing phosphorylation of Ser9, an induced nuclear translocation of β-Catenin by decreasing phosphorylation of Ser33/37/Thr41, and an increased TCF-4 transcriptional activity. Furthermore, antagonism of Reg4-signaling using Reg4-specific mAbs (2H6 and 3E5) and Akt inhibitor significantly decreased, whereas agonism using GSK-3β antagonist (SB216763) significantly increased mitotic index and proliferation of CRC cells. These results identify Reg4 as a key regulator of the CRC cell division and proliferation, hence a potential target of human CRC treatment.
Collapse
Affiliation(s)
- Kumar S Bishnupuri
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Sawada T, Yashiro M, Sentani K, Oue N, Yasui W, Miyazaki K, Kai K, Fujita H, Nakamura K, Maeda K, Kakeji Y, Natsugoe S, Shirabe K, Nomura S, Shimada Y, Tomita N, Hirakawa K, Maehara Y. New molecular staging with G-factors (VEGF-C and Reg IV) by supplementing TNM classification in colorectal cancers. Oncol Rep 2013; 30:2609-16. [PMID: 24101199 PMCID: PMC3839952 DOI: 10.3892/or.2013.2787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/02/2013] [Indexed: 02/05/2023] Open
Abstract
Staging classification of colorectal cancers is performed by the UICC/TNM classification system, which is the global gold standard. However, we often experience in clinical practice that there are considerable differences in prognoses between patients who have the same classification particularly in stage II and III cancers. The aim of this study was to propose a new TNM-G classification to predict prognosis and recurrence by supplementing the conventional TNM classification. A total of 220 cases of colorectal cancer, including 77 at stage II and 143 at stage III, were registered from four independent facilities. Immunohistochemical staining for 7 molecules, such as p53, vascular endothelial growth factor (VEGF)-A, VEGF-C, regenerating islet-derived family, member 4 (Reg IV), olfactomedin 4, Claudin-18 and matrix metalloproteinase-7 (MMP-7), was performed to investigate the correlation between clinicopathological factors and expression of each molecule. Based on the results, no significant correlation was observed between the immunostaining expression of these 7 factors and recurrence in total colorectal cancer. Recurrence in stage II (77 cases) was significantly higher in cases positive for Reg IV expression (P=0.042). On analysis of overall survival (OS) and disease-free survival (DFS), VEGF-C and Reg IV expression had a correlation with poor prognosis, therefore, these factors were selected and applied to G-factor classifications so that cases negative for both could be classified as G0, cases positive for either of the factors could be classified as G1, and cases positive for both factors could be classified as G2. While no significant correlation was observed in the recurrence rates between G0 and G2, OS and DFS in stage II cases were significantly poorer for G2 cases in comparison with G0 or G1 cases. The survival curves of OS and DFS in stage II G2 were similar to that of stage III cases. According to these results, prognosis of VEGF-C/Reg IV both positive G2 cases in stage II colorectal cancer was found to be almost equal to the poor survival in stage III cases, and the advancement of one stage up migration based on G-factors may be supposed to be highly feasible for clinical application. In conclusion, the combination of VEGF-C and Reg IV may be a promising factor for clinical staging to supplement the classical TNM classification system, and it may suggest a good indication of adjuvant chemotherapy for G2 cases in stage II colorectal cancers.
Collapse
Affiliation(s)
- Tetsuji Sawada
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Microsatellite instability status affects gene expression profiles in early onset colorectal cancer patients. J Surg Res 2013; 185:626-37. [PMID: 23992855 DOI: 10.1016/j.jss.2013.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND The association between microsatellite instability (MSI) status and gene expression profiles in the early onset sporadic colorectal cancer (CRC) has not been clearly established. The aim of this study was to identify the altered gene expression patterns depending on the MSI status of early onset CRC and determine specific biomarkers that could provide novel therapeutic molecular targets in the Turkish population. MATERIALS AND METHODS MSI markers (BAT25, BAT26, D2S123, D5S346, and D17S250) were investigated in tumors from 36 early onset sporadic CRC patients in whom gene expression profiles were analyzed previously. The relationship between the gene expression profiles depending on MSI status was evaluated. RESULTS A total of 15 tumors (16.66%) were identified as having MSI and 21 tumors (58.33%) were identified as having microsatellite stability (MSS). CK20 and MAP3K8 upregulation, observed in MSS tumors, was significantly associated with lymph node metastasis, recurrence, and/or distant metastasis and a short median survival (P < 0.05). REG1A upregulation is also correlated with recurrence and/or distant metastasis and a short median survival in patients with MSI tumors (P < 0.05). CONCLUSIONS High expression levels of CK20 and MAP3K8 in MSS tumors and REG1A in MSI tumors correlated with a poor prognosis in CRC patients. Further studies and validations are required; these genes may provide novel therapeutic molecular targets for the development of anticancer drugs related to MSI status for early onset CRC treatment.
Collapse
|
44
|
Lu S, Bevier M, Huhn S, Sainz J, Lascorz J, Pardini B, Naccarati A, Vodickova L, Novotny J, Hemminki K, Vodicka P, Försti A. Genetic variants in C-type lectin genes are associated with colorectal cancer susceptibility and clinical outcome. Int J Cancer 2013; 133:2325-33. [PMID: 23650115 DOI: 10.1002/ijc.28251] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/15/2013] [Indexed: 11/09/2022]
Abstract
Inflammatory responses play a vital role at different stages of colorectal carcinogenesis. C-type lectins mediate inflammatory/immune responses and participate in immune escape of pathogens and tumors. Our study aimed to evaluate the correlation between polymorphisms in three C-type lectin genes, CD209, MBL2 and REG4, and colorectal cancer (CRC) risk and clinical outcome. We genotyped 15 potentially functional single nucleotide polymorphisms (SNPs) and assessed their associations with CRC risk in a case-control study of 1353 CRC cases and 767 healthy controls from the Czech Republic. We also analyzed these SNPs in relation to overall and event-free survival in 414 patients. Two CD209 SNPs were associated with CRC risk after adjustment for multiple comparison. Minor allele carriers of the promoter SNP rs2287886 had an increased risk of CRC (OR 1.30, 95% CI 1.08-1.56), while minor allele carriers of the 3'UTR SNP, rs7248637, had a decreased risk (OR 0.74, 95% CI 0.60-0.91). Multivariate survival analyses, including age, gender, TNM stage and grade, showed that patients without distant metastasis at the time of diagnosis and carrying the rs2994809 T allele had a decreased overall and event-free survival (HR 2.11, 95% CI 1.20-3.72 and HR 2.00, 95% CI 1.18-3.39, respectively). We show that SNPs in CD209 may affect CRC risk, while a SNP in REG4 may be a useful marker for CRC progression.
Collapse
Affiliation(s)
- Shun Lu
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
REG gene expression in inflamed and healthy colon mucosa explored by in situ hybridisation. Cell Tissue Res 2013; 352:639-46. [PMID: 23519454 PMCID: PMC3663985 DOI: 10.1007/s00441-013-1592-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/14/2013] [Indexed: 12/14/2022]
Abstract
The regenerating islet-derived (REG) gene family encodes a group of proteins highly expressed in several human pathologies, many of which are associated with epithelial inflammation. All human family members, namely REG1A, REG1B, REG3A and REG4, are closely related in genomic sequence and all are part of the c-type lectin superfamily. REGs are highly expressed during inflammatory bowel disease (IBD)-related colonic inflammation and the in vivo expression pattern of REG1A and REG4 has been localised by using immunohistochemistry. However, the function of the encoded proteins is largely unknown and the cellular localisation of REG expression during colonic inflammation has not been described. Therefore, we have used in situ hybridisation to demonstrate the cellular localisation of REG expression in healthy and diseased colonic mucosa. Samples drawn from an IBD cohort including both inflamed and un-inflamed colonic mucosa are described, as are samples from non-IBD inflammation and healthy controls. Immunohistochemistry against known cell-type markers on serial sections has localised the expression of REGs to metaplastic Paneth cells (REG1A, REG1B and REG3A) and enteroendocrine cells (REG4), with a marked expansion of expression during inflammation. The group of REGs can, based on gene expression patterns, be divided into at least two groups; REG1A, REG1B and REG3A with their expression focused in the crypt base spreading from Paneth cells and REG4 being more highly expressed towards the luminal face. This exploration of expression pattern forms provides the background for further exploration of REG function in the intestine.
Collapse
|
46
|
Heiskala K, Andersson LC. Reg IV is differently expressed in enteroendocrine cells of human small intestine and colon. ACTA ACUST UNITED AC 2013; 183:27-34. [PMID: 23499801 DOI: 10.1016/j.regpep.2013.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 03/03/2013] [Indexed: 12/19/2022]
Abstract
Reg IV is a 17 kD secreted C-type lectin physiologically found in selected enteroendocrine cells (EEC). It is thought be involved in the regulation of normal and pathological intestinal and/or neuroendocrine differentiation and proliferation but its ultimate functional role(s) is still unclear. We used immunostaining and compared the cellular expression of Reg IV with a panel of neuroendocrine markers in human GI-tract tissue samples. Reg IV showed cellular co-distribution with serotonin and chromogranin A in all parts of GI-tract. Co-localization of Reg IV with somatostatin was seen in colon and with substance P in ileum. Subpopulations of cells expressing Reg IV overlapped with EECs containing GLP-1, GLP-2, secretin, PYY, and ghrelin, depending on the anatomical localization of the samples. The results further underscore the high degree of diversity among EECs and suggest that Reg IV may be involved in the finetuning of functions exerted by the neuroendocrine cells in the GI-tract.
Collapse
Affiliation(s)
- Kukka Heiskala
- Department of Pathology, Haartman Institute, Haartmaninkatu 3 (P.O. Box 21), FIN-00014 University of Helsinki, Finland
| | - Leif C Andersson
- Department of Pathology, Haartman Institute, Haartmaninkatu 3 (P.O. Box 21), FIN-00014 University of Helsinki, Finland; HUSLAB, Haartmaninkatu 3 (P.O. Box 21), FIN-00014 University of Helsinki, Finland.
| |
Collapse
|
47
|
Ying LS, Yu JL, Lu XX, Ling ZQ. Enhanced RegIV expression predicts the intrinsic 5-fluorouracil (5-FU) resistance in advanced gastric cancer. Dig Dis Sci 2013; 58:414-22. [PMID: 23010741 DOI: 10.1007/s10620-012-2381-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/20/2012] [Indexed: 01/23/2023]
Abstract
AIM RegIV, a member of the Regenerating (REG) gene family, may be a marker for the prediction of resistance to 5-fluorouracil (5-FU)-based chemotherapy. However, the relationship between the intrinsic drug resistance of gastric cancer (GC) cells to 5-FU used alone (single FU) or in multidrug therapeutic regimens (5-FU combinations) and RegIV expression has not been investigated. METHODS The patient cohort comprised 45 patients with primary GC. The chemoresistance of GC cells to therapeutic regimens consisting of single 5-FU or FU combinations was investigated using the ATP-tumor chemosensitivity assay. The level of RegIV mRNA transcripts was determined by real-time reverse transcriptase-PCR. RegIV expression was evaluated as a novel predictive biomarker for the intrinsic drug resistance of primary GC cells to single 5-FU or 5-FU combinations. RESULTS Upregulation of RegIV mRNA transcripts was observed in 36 of the 45 tumor specimens and was positively correlated with the invasive depth of the tumor cells (p = 0.000), the clinical stages (p = 0.000) and the in vitro intrinsic drug resistance of primary GC cells to 5-FU (p = 0.000) or 5-FU combinations. CONCLUSION RegIV mRNA transcript level was strongly associated with the intrinsic resistance of GC cells to single 5-FU or 5-FU combinations, suggesting that RegIV may play an important role in the intrinsic resistance of GC cells to 5-FU and that targeted therapy against the RegIV gene could be applied to overcome 5-FU resistance in the treatment of GC.
Collapse
Affiliation(s)
- Li-Sha Ying
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, No.38 Guangji Rd., Banshanqiao District, Hangzhou, 310022, People's Republic of China.
| | | | | | | |
Collapse
|
48
|
Du F, Yao ZW. The Expression Patterns of Reg IV Gene in Normal Rat Reproduction System. ACTA ACUST UNITED AC 2012. [PMID: 23203400 DOI: 10.1002/jez.1771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fang Du
- Department of Gynecology and Obstetrics; The First Affiliated Hospital of Chongqing Medical University; Chongqing; China
| | - Zhen-Wei Yao
- Department of Gynecology and Obstetrics; The First Affiliated Hospital of Chongqing Medical University; Chongqing; China
| |
Collapse
|
49
|
Naito Y, Oue N, Hinoi T, Sakamoto N, Sentani K, Ohdan H, Yanagihara K, Sasaki H, Yasui W. Reg IV is a direct target of intestinal transcriptional factor CDX2 in gastric cancer. PLoS One 2012; 7:e47545. [PMID: 23133598 PMCID: PMC3487720 DOI: 10.1371/journal.pone.0047545] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/12/2012] [Indexed: 12/22/2022] Open
Abstract
REG4, which encodes Reg IV protein, is a member of the calcium-dependent lectin superfamily and potent activator of the epidermal growth factor receptor/Akt/activator protein-1 signaling pathway. Several human cancers overexpress Reg IV, and Reg IV expression is associated with intestinal phenotype differentiation. However, regulation of REG4 transcription remains unclear. In the present study, we investigated whether CDX2 regulates Reg IV expression in gastric cancer (GC) cells. Expression of Reg IV and CDX2 was analyzed by Western blot and quantitative reverse transcription–polymerase chain reaction in 9 GC cell lines and 2 colon cancer cell lines. The function of the 5′-flanking region of the REG4 gene was characterized by luciferase assay. In 9 GC cell lines, endogenous Reg IV and CDX2 expression were well correlated. Using an estrogen receptor-regulated form of CDX2, rapid induction of Reg IV expression was observed in HT-29 cells. Reporter gene assays revealed an important role in transcription for consensus CDX2 DNA binding elements in the 5′-flanking region of the REG4 gene. Chromatin immunoprecipitation assays showed that CDX2 binds directly to the 5′-flanking region of REG4. These results indicate that CDX2 protein directly regulates Reg IV expression.
Collapse
Affiliation(s)
- Yutaka Naito
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Takao Hinoi
- Department of Surgery, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Surgery, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | | | - Hiroki Sasaki
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
50
|
He XJ, Jiang XT, Ma YY, Xia YJ, Wang HJ, Guan TP, Shao QS, Tao HQ. REG4 contributes to the invasiveness of pancreatic cancer by upregulating MMP-7 and MMP-9. Cancer Sci 2012; 103:2082-91. [PMID: 22957785 DOI: 10.1111/cas.12018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/26/2012] [Accepted: 09/01/2012] [Indexed: 01/23/2023] Open
Abstract
Recent studies have shown that overexpression of regenerating gene family member 4 (REG4) is associated with the initiation and progression of pancreatic cancer. In our study, we explored the role of REG4 in the invasion of pancreatic cancer. Real-time PCR and Western blot analysis were used to determine REG4 expression in pancreatic cancer cell lines. An MTT assay was carried out to test the effect of REG4 on the growth of pancreatic cancer cells. The involvement of REG4 in cancer cell invasion was examined by Transwell invasion assay. Two MMPs, MMP-7 and MMP-9, were identified from a pool of candidate genes as being related to REG4-induced cell invasion by PCR and Western blotting. Immunohistochemistry was used to confirm the correlation between REG4 and the two MMPs. High expression of REG4 was found in BXPC-3 cells and its culture media. But in PANC-1 and ASPC-1 cell lines, REG4 expression levels were very low, and no detectable protein was found in the culture medium. The MTT and Transwell invasion assays showed that recombinant REG4 protein and BXPC-3 conditioned media significantly promoted the proliferation and invasiveness of pancreatic cancer cells. It was also shown that MMP-7 and MMP-9 are upregulated by REG4 induction using real-time PCR and Western blotting analysis. Immunohistochemical study further verified this result. In conclusion, REG4 promotes not only growth but also in vitro invasiveness of pancreatic cancer cells by upregulating MMP-7 and MMP-9.
Collapse
Affiliation(s)
- Xu-Jun He
- Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|