1
|
McHugh KE, Pai RK, Grant RC, Gallinger S, Davison J, Ma C, Pai RK. Claudin 18.2 Expression in 1,404 Digestive Tract Adenocarcinomas including 1,175 Colorectal Carcinomas: Distinct Colorectal Carcinoma Subtypes are Claudin 18.2 Positive. Mod Pathol 2025:100712. [PMID: 39826799 DOI: 10.1016/j.modpat.2025.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Claudin 18.2 (CLDN18.2) immunohistochemical expression can be used to select patients with gastric/gastroesophageal junction adenocarcinomas for zolbetuximab (IMAB362) therapy, a monoclonal antibody targeting CLDN18.2. The aim of this study was to correlate immunohistochemical expression of CLDN18.2 with clinicopathologic and molecular features in a large series of digestive tract cancers. Immunohistochemistry (IHC) for CLDN18.2 was performed on tissue microarrays from 1404 adenocarcinomas including 155 gastric/gastroesophageal, 74 pancreatic ductal, 1175 colorectal (576 in initial test cohort; 599 in subsequent validation cohort), and correlated with HER2 and mismatch repair (MMR) status. Cases were scored as CLDN18.2 positive or negative, with positivity defined as moderate to strong membranous staining in >75% of tumor cells. CLDN18.2 expression was correlated with clinicopathologic and molecular features for all colorectal adenocarcinomas. CLDN18.2 was positive in 39% (61/155) of gastric/gastroesophageal adenocarcinomas, 38% (28/74) of pancreatic ductal adenocarcinomas, and 3.4% (40/1175) of colorectal adenocarcinomas (p<0.001). For gastric/gastroesophageal and pancreatic ductal adenocarcinoma, there was no correlation between CLDN18.2 expression and either HER2 or MMR status. In contrast, CLDN18.2-positive colorectal adenocarcinomas had distinct clinicopathologic and molecular features. CLDN18.2-positive colorectal adenocarcinomas were more frequently proximally located and were more often MMR deficient and BRAF V600E positive (all with p<0.05). Quantitative pathologic analysis using the digital pathology biomarker QuantCRC demonstrated marked differences in histologic features between CLDN18.2-positive and negative colorectal adenocarcinomas, with CLDN18.2-positive tumors having increased tumor:stroma ratio and %mucin but decreased %immature stroma in both the test and validation cohorts (all with p<0.05). In conclusion, CLDN18.2-positive colorectal adenocarcinomas are frequently MMR deficient, BRAF V600E mutated, and demonstrate distinct histologic features. Future studies addressing the efficacy of zolbetuximab therapy in this subset of colorectal cancers are needed.
Collapse
Affiliation(s)
- Kelsey E McHugh
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Robert C Grant
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Jon Davison
- Department of Pathology, University of Pittsburgh Medical Center and the University of Pittsburgh, Pittsburgh, PA
| | - Changqing Ma
- Department of Pathology and Immunology, Washington University, St. Louis, MO
| | - Reetesh K Pai
- Department of Pathology, University of Pittsburgh Medical Center and the University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
2
|
Sugiyama K, Chau I. Claudins as diagnostic tools and therapeutic targets-Glimpse of the horizon. Cancer Treat Rev 2025; 133:102888. [PMID: 39847825 DOI: 10.1016/j.ctrv.2025.102888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
Claudins (CLDNs) play a crucial and indispensable role as fundamental components within the structure of tight junctions. Due to the distinct and unique distribution pattern exhibited by CLDNs in both normal and malignant tissues, these proteins have garnered significant attention as pivotal targets for systemic anti-cancer therapy and as noteworthy diagnostic markers. This review provides a comprehensive and detailed elucidation of the fundamental understanding surrounding CLDNs, their intricate expression patterns, the potential role they play in cancer diagnosis and therapeutic potentials; all encapsulated within a succinct summary of the cutting-edge advancements and the information derived from various clinical trials.
Collapse
Affiliation(s)
- Keiji Sugiyama
- Gastrointestinal Unit, Department of Medicine, Royal Marsden Hospital, London and Surrey, UK; Department of Medical Oncology, NHO Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Ian Chau
- Gastrointestinal Unit, Department of Medicine, Royal Marsden Hospital, London and Surrey, UK.
| |
Collapse
|
3
|
Fujii H, Shoji H, Hirano H, Hirose T, Okita N, Takashima A, Kato K. Exploring novel therapeutic targets in small bowel adenocarcinoma: insights from claudin 18.2, nectin-4, and HER3 expression analysis. ESMO Open 2025; 10:104098. [PMID: 39754977 PMCID: PMC11758419 DOI: 10.1016/j.esmoop.2024.104098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Small bowel adenocarcinoma (SBA) is a rare malignancy with few established chemotherapy options and a dismal prognosis. We investigated the expression of claudin 18.2, nectin-4, human epidermal growth factor receptor 3 (HER3), and programmed death-ligand 1 (PD-L1) in SBA to identify potential antibody drug targets and analyzed associated clinicopathological features and prognosis. MATERIALS AND METHODS We retrospectively reviewed patients diagnosed with SBA who underwent adjuvant or palliative chemotherapy at our hospital between July 2010 and July 2023. Pathological samples were immunohistochemically stained for claudin 18.2, nectin-4, HER3, and PD-L1. Overall survival (OS) was assessed in patients receiving palliative chemotherapy to examine its association with the expression of each protein, excluding those with microsatellite instability-high who were treated with immunotherapy. RESULTS Pathological samples and clinical data were available for 51 patients. The primary lesion was in the duodenum in 49% of these patients and in the jejunum or ileum in 51%. Positive rates for claudin 18.2, nectin-4, and HER3 were 35%, 82%, and 88%, respectively. All cases expressed at least one of the proteins, and 25% expressed all three proteins. The PD-L1 combined positive score (CPS) was <1, 1-5, and ≥5 in 33%, 32%, and 35%, respectively; nectin-4-positive samples showed higher CPS. Neither claudin 18.2 nor HER3 positivity was associated with OS. However, nectin-4 positivity was associated with significantly shorter OS [12.6 versus 43.2 months, hazard ratio (HR) 5.12, P = 0.006]. Similarly, PD-L1 CPS ≥5 was associated with shorter OS relative to CPS <5 (9.7 versus 18.0 months, HR 2.60, P = 0.028). Multivariate analysis identified nectin-4 positivity (HR 4.55, P = 0.020) as an independent adverse prognostic factor for OS. CONCLUSIONS Claudin 18.2, nectin-4, and HER3 are potential therapeutic targets in SBA, and nectin-4 positivity is independently associated with an unfavorable prognosis. These proteins may represent new therapeutic targets for SBA.
Collapse
Affiliation(s)
- H Fujii
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan; Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - H Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan; Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan.
| | - H Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - T Hirose
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - N Okita
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - A Takashima
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - K Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
4
|
Costa M, Lopes Fernandes C, Magalhães H. Perioperative Treatment in Gastric Cancer: A Fast-Changing Field. Cancers (Basel) 2024; 16:4036. [PMID: 39682222 DOI: 10.3390/cancers16234036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Gastric cancer is the fifth most common cancer worldwide and its incidence is rising. Surgery is the only curative strategy and its association with perioperative chemotherapy is now standard treatment for most resectable tumors. Despite treatment advances, disease relapse is high, even in early stages, and continued improvement in curative treatment is imperative. With deeper knowledge of gastric cancer heterogeneity, molecular subtypes, and the tumor immune microenvironment, new standard treatment strategies may emerge in the near future. This paper provides a comprehensive review of the current treatment landscape in resectable gastric cancer and future perspectives for the next decade regarding new agents such as targeted therapies, immunotherapy, antibody-drug conjugates, and the combination of multiple treatment modalities.
Collapse
Affiliation(s)
- Mafalda Costa
- Medical Oncology Department, Pedro Hispano Hospital, 4464-513 Matosinhos, Portugal
| | | | - Helena Magalhães
- Medical Oncology Department, Pedro Hispano Hospital, 4464-513 Matosinhos, Portugal
| |
Collapse
|
5
|
Kim TY, Kwak Y, Nam SK, Han D, Oh DY, Im SA, Lee HS. Clinicopathological analysis of claudin 18.2 focusing on intratumoral heterogeneity and survival in patients with metastatic or unresectable gastric cancer. ESMO Open 2024; 9:104000. [PMID: 39615405 DOI: 10.1016/j.esmoop.2024.104000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND This study aimed to investigate the prevalence of claudin 18.2 (CLDN18.2) positivity, with a particular focus on intratumoral heterogeneity, and its association with clinicopathological features in metastatic or unresectable gastric cancer (GC). PATIENTS AND METHODS We investigated 400 patients who received systemic chemotherapy for unresectable, metastatic, or recurrent GC. Immunohistochemistry for CLDN18 (43-14A), human epidermal growth factor receptor 2 (HER2), programmed death-ligand 1 (PD-L1), and fibroblast growth factor receptor 2, as well as HER2 silver in situ hybridization (ISH), Epstein-Barr virus (EBV) ISH, and microsatellite instability testing were carried out. CD3+, CD8+, CD4+, and Foxp3-positive immune cell densities were calculated using digital image analysis. RESULTS In GC cases with any CLDN18.2 expression, more than half of the cases (61.3%) showed different expression results between four different tissue microarray (TMA) cores. When comparing CLDN18.2 status between whole tissue sections and the combined results from the four TMA cores, discrepancies were observed in only 2 out of 85 GC cases (2.4%), with 1 false positive and 1 false negative. After considering intratumoral heterogeneity, a CLDN18.2 positivity rate of 31.3% was observed among the 400 GC patients. CLDN18.2 positivity was rare in GCs located in the antrum (or lower third) and in HER2-positive cases but was common in EBV-positive GCs (P < 0.05). No differences in overall survival (OS) were observed according to CLDN18.2 positivity (P = 0.116). Additionally, there was no association between OS and CLDN18.2 positivity in patients treated with fluoropyrimidine plus platinum, chemotherapy plus trastuzumab, paclitaxel with or without ramucirumab, and immuno-oncologic agents. CLDN18.2-positive/PD-L1-high GCs showed statistically significantly longer OS than others (P = 0.025) and higher CD8+ T-cell densities in both the tumor center and periphery (P < 0.001). CONCLUSIONS Characterizing unresectable, metastatic, or recurrent GC with positive CLDN18.2 expression and evaluating intratumoral heterogeneity and prognostic implications of various therapeutics help advance treatment strategies and develop new therapies for patients with GC.
Collapse
Affiliation(s)
- T-Y Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Y Kwak
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - S K Nam
- Department of Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
| | - D Han
- Medical Affairs, Astellas Pharma Korea Inc., Seoul, Korea
| | - D-Y Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea; Department of Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - S-A Im
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea; Department of Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - H S Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea; Department of Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Park G, Park SJ, Kim Y. Clinicopathological significance and prognostic values of claudin18.2 expression in solid tumors: a systematic review and meta-analysis. Front Oncol 2024; 14:1453906. [PMID: 39634269 PMCID: PMC11614718 DOI: 10.3389/fonc.2024.1453906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Objective Claudin18.2 has been established as a putative therapeutic target in human solid malignancies. The aim of this study is to determine claudin18.2 expression as a clinicopathological and prognostic factor in human solid tumors through a systematic review and meta-analysis. Articles were systematically reviewed for studies that included the correlation between claudin18.2 expression and clinicopathological features and prognosis in solid tumors. Meta-analysis was conducted to estimate either odds ratio and 95% confidence intervals (CIs) of clinicopathological factors or hazard ratio and 95% CIs of survival outcomes for claudin18.2 expression in all available solid tumors. Results 21 studies including 5,331 patients were identified. Overall proportion of claudin18.2 positivity was 29.7%. Analyses of clinicopathological features demonstrated that claudin18.2 positivity correlated with male predominance, lower T stage, more frequent MUC5AC positivity when all primary tumors included. In subgroup analysis, gastric cancer showed significant correlation between high claudin18.2 expression and frequent EBV infection, male predominance and lower T stage. In lung cancer, claudin18.2 expression was associated with favorable overall survival. However, analyses of survival outcomes in all solid tumors showed that claudin18.2 expression was not associated with overall survival and pooled disease-free survival, tumor-specific survival, progression-free survival and relapse-free survival. Conclusions Our study emphasizes evaluation of claudin18.2 expression as a potential prognostic factor in lung adenocarcinoma and further exploration in other solid tumors as well. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023468651.
Collapse
Affiliation(s)
- Gyerim Park
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Se Jun Park
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Younghoon Kim
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
7
|
Fassan M, Kuwata T, Matkowskyj KA, Röcken C, Rüschoff J. Claudin-18.2 Immunohistochemical Evaluation in Gastric and Gastroesophageal Junction Adenocarcinomas to Direct Targeted Therapy: A Practical Approach. Mod Pathol 2024; 37:100589. [PMID: 39098518 DOI: 10.1016/j.modpat.2024.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Claudin-18.2 (CLDN18.2) expression evaluated by immunohistochemistry is a new biomarker for gastric and gastroesophageal junction adenocarcinomas that will soon have market authorization for implementation into routine clinical practice. Despite successful testing in the setting of clinical trials, no specific practical testing guidelines have been proposed. Several preanalytical and analytical variables may interfere with adequate CLDN18.2 staining interpretation; thus, this article provides practical guidance on CLDN18.2 testing and scoring in gastric and gastroesophageal junction adenocarcinomas to identify patients who may respond to targeted therapy with monoclonal antibodies directed against CLDN18.2. Based on available data, moderate to strong (2+/3+) membrane staining in ≥75% of adenocarcinoma cells is the proposed cutoff for clinical use of monoclonal antibody anti-CLDN18.2 (zolbetuximab).
Collapse
Affiliation(s)
- Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy; Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy.
| | - Takeshi Kuwata
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Chiba, Japan
| | | | - Christoph Röcken
- Department of Pathology, University-Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Josef Rüschoff
- Discovery Life Sciences Biomarker Services, Kassel, Germany
| |
Collapse
|
8
|
Maeda K, Uehara T, Hosoda W, Kuraishi Y, Ota H. Expression profiles of cadherin 17 and claudin 18.2 in comparison with peptide hormonal expression in pancreatic neuroendocrine tumours: Implications for targeted immunotherapy. Pathol Res Pract 2024; 262:155537. [PMID: 39178509 DOI: 10.1016/j.prp.2024.155537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024]
Abstract
Cadherin 17 (CDH17) and claudin 18.2 (CLDN18.2) are highly selective markers of intestinal and gastric lineages and are expressed in adenocarcinomas of various organs. They have also been identified as potential targets for immunotherapy. Expression of CDH17 and CLDN18.2 has been observed in a subset of pancreatic neuroendocrine tumours (PanNETs). This study investigates the immunohistochemical expression of CDH17 and CLDN18 in PanNETs in comparison with hormonal expression profiles to provide baseline data for determining candidate indications for targeted therapy with CDH17 and CLDN18.2 in PanNETs, including insulinomas (n = 22), glucagonomas (n = 13), gastrinomas (n = 3), serotoninomas (n = 2) and PanNETs not otherwise specified (NOS) (n = 17). In the normal pancreas, CDH17 was expressed in the lateral membrane of ducts and some islet cells, whereas CLDN18 was occasionally expressed in the intercalated ducts and centroacinar cells. In PanNETs, CDH17 and CLDN18 was detected by membranous staining. CDH17 expression was observed in 10 to 17 (58.8 %) PanNETs NOS, 3 of 13 (23.1 %) glucagonomas, 1 of 3 (33.3 %,) gastrinomas, 1 of 2 (50 %) serotoninomas, and none of the insulinomas. According to predefined criteria, 7 of 17 (41.2 %) PanNETs NOS, 1 of 3 (33.3 %) gastrinomas, and 1 of 2 (50 %) serotoninomas were classified as CDH17-positive. There were no significant differences in clinicopathological features between CDH17-positive and CDH17-negative PanNETs, except for a higher tumour grade in the former (p<0.05). For CLDN18, expression was noted in 2 out of 3 (66.7 %) gastrinomas, one with focal staining and the other with diffuse staining. One of three (33.3 %) gastrinomas was classified as CLDN18-positive using predefined criteria. These findings suggest that a particular subset of PanNETs, including PanNET NOS, gastrinoma, and serotoninoma, may be potential candidates for CDH17-targeted immunotherapy. Additionally, gastrinoma may be a potential candidate for immunotherapy targeting CLDN18.2.
Collapse
Affiliation(s)
- Kahoko Maeda
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan.
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Waki Hosoda
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan.
| | | | - Hiroyoshi Ota
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan; Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto, Japan.
| |
Collapse
|
9
|
Hrudka J, Kalinová M, Fišerová H, Jelínková K, Nikov A, Waldauf P, Matěj R. Molecular genetic analysis of colorectal carcinoma with an aggressive extraintestinal immunohistochemical phenotype. Sci Rep 2024; 14:22241. [PMID: 39333321 PMCID: PMC11437151 DOI: 10.1038/s41598-024-72687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Colorectal cancer (CRC) is a leading global cause of illness and death. There is a need for identification of better prognostic markers beyond traditional clinical variables like grade and stage. Previous research revealed that abnormal expression of cytokeratin 7 (CK7) and loss of the intestinal-specific Special AT-rich sequence-binding protein 2 (SATB2) are linked to poor CRC prognosis. This study aimed to explore these markers' prognostic significance alongside two extraintestinal mucins (MUC5AC, MUC6), claudin 18, and MUC4 in 285 CRC cases using immunohistochemistry on tissue microarrays (TMAs). CK7 expression and SATB2-loss were associated with MUC5AC, MUC6, and claudin 18 positivity. These findings suggest a distinct "non-intestinal" immunohistochemical profile in CRC, often right-sided, SATB2-low, with atypical expression of CK7 and non-colorectal mucins (MUC5AC, MUC6). Strong MUC4 expression negatively impacted cancer-specific survival (hazard ratio = 2.7, p = 0.044). Genetic analysis via next-generation sequencing (NGS) in CK7 + CRCs and those with high MUC4 expression revealed prevalent mutations in TP53, APC, BRAF, KRAS, PIK3CA, FBXW7, and SMAD4, consistent with known CRC mutation patterns. NGS also identified druggable variants in BRAF, PIK3CA, and KRAS. CK7 + tumors showed intriguingly common (31.6%) BRAF V600E mutations corelating with poor prognosis, compared to the frequency described in the literature and databases. Further research on larger cohorts with a non-colorectal immunophenotype and high MUC4 expression is needed.
Collapse
Affiliation(s)
- Jan Hrudka
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Praha 10, 10034, Prague, Czech Republic.
| | - Markéta Kalinová
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Praha 10, 10034, Prague, Czech Republic
- Central Laboratories, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Hana Fišerová
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Praha 10, 10034, Prague, Czech Republic
| | - Karolína Jelínková
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Praha 10, 10034, Prague, Czech Republic
| | - Andrej Nikov
- Department of General Surgery, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Petr Waldauf
- Department of Anaesthesia and Intensive Care Medicine, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Radoslav Matěj
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Praha 10, 10034, Prague, Czech Republic
- Department of Pathology, 1st Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, 3rd Faculty of Medicine, Charles University, Thomayer University Hospital, Prague, Czech Republic
| |
Collapse
|
10
|
Matsuishi A, Nakajima S, Saito M, Saito K, Fukai S, Tsumuraya H, Kanoda R, Kikuchi T, Nirei A, Kaneta A, Okayama H, Mimura K, Hanayama H, Sakamoto W, Momma T, Saze Z, Kono K. The impact of CLDN18.2 expression on effector cells mediating antibody-dependent cellular cytotoxicity in gastric cancer. Sci Rep 2024; 14:17916. [PMID: 39095563 PMCID: PMC11297210 DOI: 10.1038/s41598-024-68970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Activating antibody-dependent cellular cytotoxicity (ADCC) by targeting claudin-18 isoform 2 (CLDN18.2) using zolbetuximab, a monoclonal antibody against CLDN18.2, has been considered a promising novel therapeutic strategy for gastric cancer (GC). However, the impact of CLDN18.2 expression on natural killer (NK) cells and monocytes/macrophages-crucial effector cells of ADCC-in GC has not been fully investigated. In the present study, we assessed the impact of CLDN18.2 expression on clinical outcomes, molecular features, and the frequencies of tumor-infiltrating NK cells and macrophages, as well as peripheral blood NK cells and monocytes, in GC by analyzing our own GC cohorts. The expression of CLDN18.2 did not significantly impact clinical outcomes of GC patients, while it was significantly and positively associated with Epstein-Barr virus (EBV) status and PD-L1 expression. The frequencies of tumor-infiltrating NK cells and macrophages, as well as peripheral blood NK cells and monocytes, were comparable between CLDN18.2-positive and CLDN18.2-negative GCs. Importantly, both CLDN18.2 expression and the number of tumor-infiltrating NK cells were significantly higher in EBV-associated GC compared to other molecular subtypes. Our findings support the effectiveness of zolbetuximab in CLDN18.2-positive GC, and offer a novel insight into the treatment of this cancer type, highlighting its potential effectiveness for CLDN18.2-positive/EBV-associated GC.
Collapse
Affiliation(s)
- Akira Matsuishi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan.
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Satoshi Fukai
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideaki Tsumuraya
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Ryo Kanoda
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomohiro Kikuchi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Azuma Nirei
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Akinao Kaneta
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroyuki Hanayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan
| |
Collapse
|
11
|
Zeng Y, Lockhart AC, Jin RU. The preclinical discovery and development of zolbetuximab for the treatment of gastric cancer. Expert Opin Drug Discov 2024; 19:873-886. [PMID: 38919123 DOI: 10.1080/17460441.2024.2370332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Gastric cancer remains a formidable challenge in oncology with high mortality rates and few advancements in treatment. Claudin-18.2 (CLDN18.2) is a tight junction protein primarily expressed in the stomach and is frequently overexpressed in certain subsets of gastric cancers. Targeting CLDN18.2 with monoclonal antibodies, such as zolbetuximab (IMAB362), has shown promising efficacy results in combination with chemotherapy. AREAS COVERED The molecular cell biology of CLDN18.2 is discussed along with studies demonstrating the utility of CLDN18.2 expression as a biomarker and therapeutic target. Important clinical studies are reviewed, including Phase III trials, SPOTLIGHT and GLOW, which demonstrate the efficacy of zolbetuximab in combination with chemotherapy in patients with CLDN18.2-positive advanced gastric cancer. EXPERT OPINION CLDN18.2 is involved in gastric differentiation through maintenance of epithelial barrier function and coordination of signaling pathways, and its expression in gastric cancers reflects a 'gastric differentiation' program. Targeting Claudin-18.2 represents the first gastric cancer specific 'targeted' treatment. Further studies are needed to determine its role within current gastric cancer treatment sequencing, including HER2-targeted therapies and immunotherapies. Management strategies will also be needed to better mitigate zolbetuximab-related treatment side effects, including gastrointestinal (GI) toxicities.
Collapse
Affiliation(s)
- Yongji Zeng
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - A Craig Lockhart
- Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ramon U Jin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, USA
| |
Collapse
|
12
|
Jin WM, Zhu Y, Cai ZQ, He N, Yu ZQ, Li S, Yang JY. Progress of Clinical Studies Targeting Claudin18.2 for the Treatment of Gastric Cancer. Dig Dis Sci 2024; 69:2631-2647. [PMID: 38769225 DOI: 10.1007/s10620-024-08435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
Claudin18.2 is a tight junction protein, highly selective, generally expressed only in normal gastric mucosal epithelial cells, which can effectively maintain the polarity of epithelial and endothelial cells, thus effectively regulating the permeability and conductance of the paracellular pathway. Abnormal expression of Claudin18.2 can occur in various primary malignant tumors, especially gastrointestinal tumors, and even in metastatic foci. It regulates its expression by activating the aPKC/MAPK/AP-1 pathway, and therefore, the Claudin18.2 protein is a pan-cancer target expressed in primary and metastatic lesions in human cancer types. Zolbetuximab (IMAB362), an antibody specific for Claudin18.2, has been successfully tested in a phase III clinical trial, and the results of the study showed that combining Zolbetuximab with chemotherapy notably extends patients' survival and is expected to be a potential first-line treatment for patients with Claudin18.2(+)/HER-2(-) gastric cancer. Here, we systematically describe the biological properties and oncogenic effects of Claudin18.2, centering on its clinical-pathological aspects and the progress of drug studies in gastric cancer, which can help to further explore its clinical value.
Collapse
Affiliation(s)
- Wu-Mei Jin
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Yan Zhu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Zhi-Qiang Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Na He
- Department of General, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Zhi-Qiong Yu
- Department of Respiratory, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Shuang Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Ji-Yuan Yang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China.
| |
Collapse
|
13
|
Nakayama I, Qi C, Chen Y, Nakamura Y, Shen L, Shitara K. Claudin 18.2 as a novel therapeutic target. Nat Rev Clin Oncol 2024; 21:354-369. [PMID: 38503878 DOI: 10.1038/s41571-024-00874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
Claudin 18.2, a tight-junction molecule predominantly found in the nonmalignant gastric epithelium, becomes accessible on the tumour cell surface during malignant transformation, thereby providing an appealing target for cancer therapy. Data from two phase III trials testing the anti-claudin 18.2 antibody zolbetuximab have established claudin 18.2-positive advanced-stage gastric cancers as an independent therapeutic subset that derives benefit from the addition of this agent to chemotherapy. This development has substantially increased the percentage of patients eligible for targeted therapy. Furthermore, newer treatments, such as high-affinity monoclonal antibodies, bispecific antibodies, chimeric antigen receptor T cells and antibody-drug conjugates capable of bystander killing effects, have shown considerable promise in patients with claudin 18.2-expressing gastric cancers. This new development has resulted from drug developers moving beyond traditional targets, such as driver gene alterations or growth factors. In this Review, we highlight the biological rationale and explore the clinical activity of therapies that target claudin 18.2 in patients with advanced-stage gastric cancer and explore the potential for expansion of claudin 18.2-targeted therapies to patients with other claudin 18.2-positive solid tumours.
Collapse
Affiliation(s)
- Izuma Nakayama
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Changsong Qi
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yang Chen
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- International Research Promotion Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Lin Shen
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| |
Collapse
|
14
|
Waters R, Sewastjanow-Silva M, Yamashita K, Abdelhakeem A, Iwata KK, Moran D, Elsouda D, Guerrero A, Pizzi M, Vicentini ER, Shanbhag N, Ta A, Chatterjee D, Ajani JA. Retrospective Study of Claudin 18 Isoform 2 Prevalence and Prognostic Association in Gastric and Gastroesophageal Junction Adenocarcinoma. JCO Precis Oncol 2024; 8:e2300543. [PMID: 38781542 PMCID: PMC11371102 DOI: 10.1200/po.23.00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE Claudin 18 isoform 2 (CLDN18.2) is an emerging biomarker and therapeutic target in gastric and gastroesophageal junction (G/GEJ) adenocarcinoma. This study aimed to obtain deeper understanding of CLDN18.2 positivity patterns, prognostic implications, and associations with various demographic, clinical, and molecular characteristics in G/GEJ adenocarcinoma. METHODS Archived tumor tissue samples from 304 patients with G/GEJ adenocarcinoma in the United States were assessed for CLDN18.2 positivity by immunohistochemistry. CLDN18.2 positivity was defined as ≥50% or ≥75% of tumor cells with CLDN18 staining intensity ≥2+. CLDN18.2 positivity patterns were analyzed for association with prognosis and clinicopathologic/demographic characteristics. Where possible, CLDN18.2 positivity was analyzed for matched tissue samples to assess concordance between primary and metastatic tumors and concordance before and after chemotherapy. RESULTS The overall prevalence of CLDN18.2-positive tumors (with ≥75% cutoff) was 44.4% (n = 135 of 304). CLDN18.2-positive tumors had a prevalence of 51.4% (n = 91 of 177) in gastric and 34.6% (n = 44 of 127) in GEJ adenocarcinoma. With a ≥50% cutoff, the prevalence of CLDN18.2-positive tumors was 64.4% (n = 114 of 177) in gastric adenocarcinoma and 44.9% (n = 57 of 127) in GEJ adenocarcinoma. There was no association between overall survival and CLDN18.2 positivity using either threshold. Statistically significant associations were noted between CLDN18.2 positivity and sex, histologic type of G/GEJ adenocarcinoma, and adenocarcinoma subtype (≥75% cutoff), and metastasis site and tumor grade (≥50% cutoff). The overall concordance of CLDN18.2 positivity (≥75% cutoff) was 73% (27 of 37) for matched primary versus metastatic tumor samples and 74% (29 of 39) for matched samples before and after chemotherapy. CONCLUSION This study demonstrated that CLDN18.2 positivity did not correlate with survival in G/GEJ adenocarcinoma, consistent with published data. On the basis of matched sample analysis, CLDN18.2 appears to demonstrate >70% concordance as a biomarker. Observed correlations with certain patient/tumor characteristics warrant further study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Anh Ta
- MD Anderson Cancer Center, Houston, TX
| | | | | |
Collapse
|
15
|
Zhang T, He Z, Liu Y, Jin L, Wang T. High Expression of CLDN 18.2 is Associated with Poor Disease-Free Survival of HER-2 Positive Gastric Cancer. Int J Gen Med 2024; 17:1695-1705. [PMID: 38706745 PMCID: PMC11068041 DOI: 10.2147/ijgm.s453883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Background Anti-claudin (CLDN) 18.2 therapy has been proven to be effective in treating advanced gastric cancer with negative human epidermal growth factor receptor 2 (HER-2). This study purposed to investigate the relationship of CLDN 18.2 expression with prognosis of HER-2-positive gastric cancer patients. Objective To investigate the expression of claudin (CLDN) 18.2 in Human epidermal growth factor receptor 2 (HER-2) positive gastric cancer patients after radical resection and its relationship with gastric cancer prognosis. Methods A total of 55 postoperative HER-2-positive gastric cancer patients were included in this study. CLDN 18.2 protein was detected by immunohistochemistry, and detailed clinical and pathological information was collected. Factors considered potentially important in the univariate analysis were included in the multivariate analysis, which involved COX regression to find the independent prognostic factors affecting disease-free survival (DFS). Results Immunohistochemistry showed that different levels of CLDN 18.2 protein were expressed in HER-2 positive gastric cancer tissues, and the Chi-square analysis showed that the expression level of CLDN 18.2 was significantly correlated with the lymph node stage. Higher expression levels of CLDN 18.2 were found in patients with lymph node positivity and were associated with poor prognosis in HER-2-positive gastric cancer patients. Gastric cancer patients with low and high expressions of CLDN 18.2 had postoperative median DFS of 38.5 months (95% confidence interval (CI) 28.8-48.2 months) and 12.1 months (95% CI, 11.7-41.0 months), respectively. Conclusion High expression of CLDN 18.2 in HER-2 positive gastric cancer is associated with poor prognosis, and the optimal treatment mode for this population is worth exploring after the approval of anti-CLDN 18.2 drugs.
Collapse
Affiliation(s)
- Tongxin Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, People’s Republic of China
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, 214122, People’s Republic of China
| | - Zilong He
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, People’s Republic of China
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, 214122, People’s Republic of China
| | - Yankui Liu
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, People’s Republic of China
| | - Linfang Jin
- Department of Pathology, Wuxi No. 9 People’s Hospital, Wuxi, Jiangsu, 214062, People’s Republic of China
| | - Teng Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, People’s Republic of China
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, 214122, People’s Republic of China
| |
Collapse
|
16
|
Xu Q, Jia C, Ou Y, Zeng C, Jia Y. Dark horse target Claudin18.2 opens new battlefield for pancreatic cancer. Front Oncol 2024; 14:1371421. [PMID: 38511141 PMCID: PMC10951399 DOI: 10.3389/fonc.2024.1371421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Pancreatic cancer is one of the deadliest malignant tumors, which is a serious threat to human health and life, and it is expected that pancreatic cancer may be the second leading cause of cancer death in developed countries by 2030. Claudin18.2 is a tight junction protein expressed in normal gastric mucosal tissues, which is involved in the formation of tight junctions between cells and affects the permeability of paracellular cells. Claudin18.2 is highly expressed in pancreatic cancer and is associated with the initiation, progression, metastasis and prognosis of cancer, so it is considered a potential therapeutic target. Up to now, a number of clinical trials for Claudin18.2 are underway, including solid tumors such as pancreatic cancers and gastric cancers, and the results of these trials have not yet been officially announced. This manuscript briefly describes the Claudia protein, the dual roles of Cluadin18 in cancers, and summarizes the ongoing clinical trials targeting Claudin18.2 with a view to integrating the research progress of Claudin18.2 targeted therapy. In addition, this manuscript introduces the clinical research progress of Claudin18.2 positive pancreatic cancer, including monoclonal antibodies, bispecific antibodies, antibody-drug conjugates, CAR-T cell therapy, and hope to provide feasible ideas for the clinical treatment of Claudin18.2 positive pancreatic cancer.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Caiyan Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yan Ou
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chuanxiu Zeng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
17
|
Mathias-Machado MC, de Jesus VHF, Jácome A, Donadio MD, Aruquipa MPS, Fogacci J, Cunha RG, da Silva LM, Peixoto RD. Claudin 18.2 as a New Biomarker in Gastric Cancer-What Should We Know? Cancers (Basel) 2024; 16:679. [PMID: 38339430 PMCID: PMC10854563 DOI: 10.3390/cancers16030679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric cancer (GC) remains a formidable global health challenge, ranking among the top-five causes of cancer-related deaths worldwide. The majority of patients face advanced stages at diagnosis, with a mere 6% five-year survival rate. First-line treatment for metastatic GC typically involves a fluoropyrimidine and platinum agent combination; yet, predictive molecular markers have proven elusive. This review navigates the evolving landscape of GC biomarkers, with a specific focus on Claudin 18.2 (CLDN18.2) as an emerging and promising target. Recent phase III trials have unveiled the efficacy of Zolbetuximab, a CLDN18.2-targeting antibody, in combination with oxaliplatin-based chemotherapy for CLDN18.2-positive metastatic GC. As this novel therapeutic avenue unfolds, understanding the nuanced decision making regarding the selection of anti-CLDN18.2 therapies over other targeted agents in metastatic GC becomes crucial. This manuscript reviews the evolving role of CLDN18.2 as a biomarker in GC and explores the current status of CLDN18.2-targeting agents in clinical development. The aim is to provide concise insights into the potential of CLDN18.2 as a therapeutic target and guide future clinical decisions in the management of metastatic GC.
Collapse
Affiliation(s)
- Maria Cecília Mathias-Machado
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, São Paulo 04538-132, Brazil; (M.D.D.); (M.P.S.A.); (R.D.P.)
| | | | - Alexandre Jácome
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, Belo Horizonte 30360-680, Brazil;
| | - Mauro Daniel Donadio
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, São Paulo 04538-132, Brazil; (M.D.D.); (M.P.S.A.); (R.D.P.)
| | | | - João Fogacci
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, Rio de Janeiro 22775-003, Brazil;
| | - Renato Guerino Cunha
- Cellular Therapy Program, Division of Hematology, Oncoclínicas, São Paulo 04538-132, Brazil;
| | | | - Renata D’Alpino Peixoto
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, São Paulo 04538-132, Brazil; (M.D.D.); (M.P.S.A.); (R.D.P.)
| |
Collapse
|
18
|
Kubota Y, Shitara K. Zolbetuximab for Claudin18.2-positive gastric or gastroesophageal junction cancer. Ther Adv Med Oncol 2024; 16:17588359231217967. [PMID: 38188462 PMCID: PMC10768589 DOI: 10.1177/17588359231217967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/15/2023] [Indexed: 01/09/2024] Open
Abstract
Claudins (CLDNs) are a family of major membrane proteins that form components of tight junctions. In normal tissues, CLDNs seal the intercellular space in the epithelial sheets to regulate tissue permeability, paracellular transport, and signal transduction. Claudin18.2 (CLDN18.2), a member of the CLDN family, is expressed specifically in gastric mucosal cells in normal tissue, and its expression is often retained in gastric cancer cells. CLDN18.2 is ectopically expressed in many cancers other than gastric cancer such as esophageal cancer, pancreatic cancer, biliary tract cancer, non-small-cell lung cancer, and ovarian cancer. Structurally, CLDN18.2 is localized on the apical side of the cell membrane and has extracellular loops capable of binding monoclonal antibodies. Upon malignant transformation, CLDN18.2 is exposed to the cell surface of the whole membrane, which enables the binding of monoclonal antibodies. Based on these characteristics, CLDN18.2 was considered to be optimal for target therapy, and zolbetuximab was developed which is a first-in-class chimeric immunoglobulin G1 monoclonal antibody highly specific for CLDN18.2. It binds to CLDN18.2 on the tumor cell surface and stimulates cellular and soluble immune effectors that activate antibody-dependent cytotoxicity and complement-dependent cytotoxicity. Recently, zolbetuximab combined with chemotherapy demonstrated a survival benefit in patients with CLDN18.2-positive and HER-2-negative gastric or gastroesophageal junction cancers in the global phase III SPOTLIGHT and GLOW trials. From these clinically meaningful results, CLDN18.2-targeting therapy including zolbetuximab has attracted a lot of attention. In this review, we summarize the clinical implications of CLDN18.2-positive gastric or GEJ cancer, and CLDN18.2-targeting therapy, mainly for zolbetuximab.
Collapse
Affiliation(s)
- Yohei Kubota
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| |
Collapse
|
19
|
Wu M, Yuan S, Liu K, Wang C, Wen F. Gastric Cancer Signaling Pathways and Therapeutic Applications. Technol Cancer Res Treat 2024; 23:15330338241271935. [PMID: 39376170 PMCID: PMC11468335 DOI: 10.1177/15330338241271935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 10/09/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignant tumor and ranks as the second leading cause of death among cancer patients worldwide. Due to its hidden nature and difficulty in detection, GC has a high incidence and poor prognosis. Traditional treatment methods such as systemic chemotherapy, radiotherapy, and surgical resection are commonly used, but they often fail to achieve satisfactory curative effects, resulting in a very low 5-year survival rate for GC patients. Currently, targeted therapy and immunotherapy are prominent areas of research both domestically and internationally. These methods hold promise for the treatment of GC. This article focuses on the signaling pathways associated with the development of GC, as well as the recent advancements and applications of targeted therapy and immunotherapy. The aim is to provide fresh insights for the clinical treatment of GC.
Collapse
Affiliation(s)
- Mingfang Wu
- The Second Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Shiman Yuan
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Kai Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Chenyu Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
20
|
Bunga OD, Danilova NV. [Claudin-18.2 and gastric cancer: from physiology to carcinogenesis]. Arkh Patol 2024; 86:92-99. [PMID: 39686903 DOI: 10.17116/patol20248606192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Today a global problem for humanity is represented by cancer, in particular gastric cancer, which is characterized by high mortality and aggressive course. In this regard, there is a search for new approaches to the diagnosis and therapy of gastric cancer, one of these areas is the study of the expression level of the intercellular adhesion molecule claudin-18.2 in tumor tissue and its use as a target molecule. In the case of various pathological processes, including tumors, the expression profile of claudin-18.2 changes, which indicates its possible role in the initiation and progression of cancer. The aim of this review is to systematize the data on claudin-18.2, its role in normal cell physiology and embryology, as well as in the development of pathological processes in the stomach, its relation to the clinical and morphological characteristics of gastric cancer and importance in biological therapy.
Collapse
Affiliation(s)
- O D Bunga
- Lomonosov Moscow State University, Moscow, Russia
| | - N V Danilova
- Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
21
|
Inamoto R, Takahashi N, Yamada Y. Claudin18.2 in Advanced Gastric Cancer. Cancers (Basel) 2023; 15:5742. [PMID: 38136288 PMCID: PMC10741608 DOI: 10.3390/cancers15245742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Globally, the fifth most common cancer and the fourth leading cause of cancer-related mortality is gastric cancer (GC). Recent clinical trials on solid tumors enrolled patients who possess druggable genetic alterations, protein expression, and immune characteristics. In gastric or gastroesophageal junction (GEJ) cancers, trastuzumab combined with first-line chemotherapy in human epidermal growth factor receptor 2 (HER2)-positive patients and ramucirumab combined with second-line paclitaxel remarkably prolonged overall survival (OS) compared with chemotherapy alone, according to phase 3 trial results. Recently, immune checkpoint inhibitor (ICI) monotherapy was approved as third- or later-line treatment. Chemotherapy plus ICIs as first-line treatment exhibited improved survival compared with chemotherapy alone in HER2-negative patients according to Checkmate 649 trial results. Conversely, systemic chemotherapy prognosis remains poor. although some patients may achieve durable response to treatment and prolonged survival in advanced GC. Recently, a first-in-class, chimeric immunoglobulin G1 monoclonal antibody (zolbetuximab) that targets and binds to claudin 18 isoform 2 (CLDN18.2) has emerged as a new target therapy in GC treatment. Global phase Ⅲ trials revealed that the addition of zolbetuximab to first-line chemotherapy prolonged OS in CLDN18.2-positive and HER2-negative GC patients. This review summarizes recent clinical trials of CLDN18.2-targeted therapy.
Collapse
Affiliation(s)
- Rin Inamoto
- Department of Gastroenterology, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan;
| | - Naoki Takahashi
- Department of Gastroenterology, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan;
| | - Yasuhide Yamada
- Department of Oncology, Comprehensive Cancer Center, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan;
| |
Collapse
|
22
|
Tao D, Guan B, Li H, Zhou C. Expression patterns of claudins in cancer. Heliyon 2023; 9:e21338. [PMID: 37954388 PMCID: PMC10637965 DOI: 10.1016/j.heliyon.2023.e21338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Claudins are four-transmembrane proteins, which were found in tight junctions. They maintain cell barriers and regulate cell differentiation and proliferation. They are involved in maintaining cellular polarity and normal functions. Different claudins show different expression patterns. The expression level and localization of claudins are altered in various cancers. They promote or inhibit proliferation, invasion, and migration of cancer cells through multiple signaling pathways. Therefore, claudins may serve as diagnostic markers, novel therapeutic targets, and prognostic risk factors. The important roles of claudins in cancer aroused our great interest. In the present review, we provide a summary of insights into expression patterns of claudins in cancer, which is more comprehensive and provides new ideas for further research.
Collapse
Affiliation(s)
- Daoyu Tao
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Hui Li
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
23
|
Baccili Cury Megid T, Farooq AR, Wang X, Elimova E. Gastric Cancer: Molecular Mechanisms, Novel Targets, and Immunotherapies: From Bench to Clinical Therapeutics. Cancers (Basel) 2023; 15:5075. [PMID: 37894443 PMCID: PMC10605200 DOI: 10.3390/cancers15205075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Gastric cancer is a global health concern, ranking fifth in cancer diagnoses and fourth in cancer-related deaths worldwide. Despite recent advancements in diagnosis, most cases are detected at advanced stages, resulting in poor outcomes. However, recent breakthroughs in genome analysis have identified biomarkers that hold positive clinical significance for GC treatment. These biomarkers and classifications offer the potential for more precise diagnostic and therapeutic approaches for GC patients. In this review, we explore the classification and molecular pathways in this disease, highlighting potential biomarkers that have emerged in recent studies including targeted therapies and immunotherapies. These advancements provide a promising direction for improving the management of GC.
Collapse
Affiliation(s)
| | | | | | - Elena Elimova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (T.B.C.M.); (A.R.F.); (X.W.)
| |
Collapse
|
24
|
Wang C, Wang Y, Chen J, Wang Y, Pang C, Liang C, Yuan L, Ma Y. CLDN18.2 expression and its impact on prognosis and the immune microenvironment in gastric cancer. BMC Gastroenterol 2023; 23:283. [PMID: 37582713 PMCID: PMC10428652 DOI: 10.1186/s12876-023-02924-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND The investigational use of zolbetuximab (IMAB362), a groundbreaking monoclonal antibody medication targeting claudin 18.2 (CLDN18.2), for treatment of advanced gastrointestinal cancers is currently underway. The unclear clinicopathological characteristics and tumour immune microenvironment of CLDN18.2-positive gastric cancer (GC) make it difficult to develop and optimize CLDN18.2-targeted therapies. METHODS A total of 451 tumour tissues, 342 matched paraneoplastic tissues, and 107 matched metastatic lymph nodes were collected from GC patients. These specimens were stained for CLDN18.2 expression and quantified using immunohistochemistry (IHC). Correlations between CLDN18.2 expression and clinicopathological features as well as immune-related factors were analysed. Survival curves were drawn using the Kaplan‒Meier approach, and independent factors affecting GC prognosis were identified using Cox regression analysis. Information from relevant databases was used for corroboration. RESULTS Expression of the CLDN18.2 gene was significantly lower in gastric tumour tissues than in normal tissues (p < 0.001) but comparable in metastatic lymph nodes (p = 0.851). CLDN18.2 expression was significantly associated with Borrmann type, degree of differentiation, PD-L1 expression, and survival in GC patients and was identified as an independent risk factor for patient prognosis (HR = 1.57, 95% CI 1.16-2.11, p = 0.003). There was no correlation between CLDN18.2 expression and HER2, Lauren type, tumour size, TNM stage, or any other clinicopathological characteristic. In CLDN18.2-positive tumours, fractions of CD4 + T cells and CD8 + T cells were significantly higher than those in CLDN18.2-negative tumours. Patients with CLDN18.2-negative expression and significant CD4 + T-cell or CD8 + T-cell infiltration had the best prognosis (5-year OS: 61.0%, P = 0.036; 5-year OS: 62.2%, P = 0.034). CONCLUSIONS CLDN18.2 is expressed at a low level in tumour tissues and serves as an independent prognostic factor for patients with GC. Furthermore, CLDN18.2 correlates with immune infiltrating cells and PD-L1 expression.
Collapse
Affiliation(s)
- Canming Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Yukai Wang
- The First Clinical Medical College of Zunyi Medical University, Zunyi, 563006, Guizhou, China
| | - Jinxia Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Yi Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Chuhong Pang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Chen Liang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Li Yuan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Yubo Ma
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
25
|
Ouban A, Arabi TZ. Expression of Claudins in Preneoplastic Conditions of the Gastrointestinal Tract: A Review. Cancers (Basel) 2023; 15:4095. [PMID: 37627123 PMCID: PMC10452390 DOI: 10.3390/cancers15164095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Premalignant lesions of the gastrointestinal tract are a group of disorders which act as the harbinger of malignant tumors. They are the ground-zero of neoplastic transformation, and their identification and management offer patients the best opportunity of blocking the progress of cancer. However, diagnoses of some of these conditions are hard to make, and their clinical importance is difficult to assess. Recent reports indicated that several claudin proteins have altered expressions in many cancers, including esophageal, gastric, colon, liver, and pancreatic cancers. The early identification of the aberrant expression of these proteins could lead to the early diagnosis and management of gastrointestinal tumors. Specifically, claudins -1, -2, -3, -4, and -18 are frequently overexpressed in gastrointestinal preneoplastic lesions. These altered expressions have shown clinical value in several tumors, providing diagnostic and prognostic information. In this article, we review the literature on the aberrant expression of claudins in preneoplastic lesions of the gastrointestinal tract. Additionally, we summarize their diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Abderrahman Ouban
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Tarek Ziad Arabi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
26
|
Chen J, Xu Z, Hu C, Zhang S, Zi M, Yuan L, Cheng X. Targeting CLDN18.2 in cancers of the gastrointestinal tract: New drugs and new indications. Front Oncol 2023; 13:1132319. [PMID: 36969060 PMCID: PMC10036590 DOI: 10.3389/fonc.2023.1132319] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Cancers of the gastrointestinal (GI) tract greatly contribute to the global cancer burden and cancer-related death. Claudin-18.2(CLDN18.2), a transmembrane protein, is a major component of tight junctions and plays an important role in the maintenance of barrier function. Its characteristic widespread expression in tumour tissues and its exposed extracellular loops make it an ideal target for researchers to develop targeted strategies and immunotherapies for cancers of the GI tract. In the present review, we focus on the expression pattern of CLDN18.2 and its clinical significance in GI cancer. We also discuss the tumour-promoting and/or tumour-inhibiting functions of CLDN18.2, the mechanisms regulating its expression, and the current progress regarding the development of drugs targeting CLDN18.2 in clinical research.
Collapse
Affiliation(s)
- Jinxia Chen
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Can Hu
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shengjie Zhang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Mengli Zi
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Li Yuan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- *Correspondence: Li Yuan, ; Xiangdong Cheng,
| | - Xiangdong Cheng
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- *Correspondence: Li Yuan, ; Xiangdong Cheng,
| |
Collapse
|
27
|
Urachal carcinoma: The journey so far and the road ahead. Pathol Res Pract 2023; 243:154379. [PMID: 36821941 DOI: 10.1016/j.prp.2023.154379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Urachal carcinoma, a rare cancer arising from urachus, accounts for about 1% of bladder cancer. The diagnosis at stage I shows about 63% 5-year survival whereas only 8% of the patients at stage IV shows a 5-year survival. Above 90% of urachal carcinomas are adenocarcinomas and most of the urachal carcinoma cases are invasive, showing a high resemblance to adenocarcinoma of various origins, making it hard for a conclusive diagnosis. Even though inconclusive, immunohistochemistry can play a significant role in identifying urachal carcinoma. Most cases show the biomarkers CK20 and CDX2, whereas CK7 and β-catenin are expressed at a lesser frequency. Due to the few cases available, there is a lack of evidence regarding specific markers differentiating urachal carcinoma from colorectal or primary bladder adenocarcinomas. In addition to immunohistochemistry, genomic characterization is emerging to play a role in the classification and treatment of the disease. Urachal carcinoma has been reported to have a molecular level similarity with colorectal malignancies regarding certain gene expressions. The TP53 mutations inactivating the tumor suppressor can probably be explored as a possible target in treating urachal carcinoma. Additionally, certain targets identified in gastric and breast cancer along with anti-HER2 treatment strategies can be explored. Immuno-oncology utilizes immune checkpoint inhibitors for the treatment of MSI-H tumors whereas a combination of tyrosine kinase inhibitors along with immune checkpoint inhibitors are being studied to treat MSI stable tumors. The article is an in-depth overview of urachal carcinoma addressing the current landscape with an emphasis on the future scenario.
Collapse
|
28
|
Kubota Y, Kawazoe A, Mishima S, Nakamura Y, Kotani D, Kuboki Y, Bando H, Kojima T, Doi T, Yoshino T, Kuwata T, Shitara K. Comprehensive clinical and molecular characterization of claudin 18.2 expression in advanced gastric or gastroesophageal junction cancer. ESMO Open 2023; 8:100762. [PMID: 36610262 PMCID: PMC10024138 DOI: 10.1016/j.esmoop.2022.100762] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND We conducted comprehensive clinical and molecular characterization of claudin 18.2 expression (CLDN18.2) in advanced gastric or gastroesophageal junction cancer (GC/GEJC). PATIENTS AND METHODS Patients with advanced GC/GEJC who received systemic chemotherapy from October 2015 to December 2019 with available tumor specimens were analyzed. We evaluated clinicopathological features of CLDN18.2 expression with four molecular subtypes: mismatch repair deficient, Epstein-Barr virus-positive, human epidermal growth factor receptor 2-positive, and others. In addition, programmed death-ligand 1 (PD-L1) combined positive score (CPS), genomic alterations, and the expression of immune cell markers were assessed. Clinical outcomes of standard first- or second-line chemotherapy and subsequent anti-programmed cell death protein 1 (anti-PD-1) therapy were also investigated according to CLDN18.2 expression. RESULTS Among 408 patients, CLDN18.2-positive (moderate-to-strong expression in ≥75%) was identified in 98 patients (24.0%) with almost equal distribution in the four molecular subtypes or CPS subgroups. CLDN18.2-positive was associated with Borrmann type 4, KRAS amplification, low CD16, and high CD68 expression. Overall survival with first-line chemotherapy was not significantly different between CLDN18.2-positive and -negative groups [median 18.4 versus 20.1 months; hazard ratio 1.26 (95% confidence interval 0.89-1.78); P = 0.191] regardless of stratification by PD-L1 CPS ≥5. Progression-free survival and objective response rates of first- and second-line chemotherapy, and anti-PD-1 therapy also showed no significant differences according to CLDN18.2 status. CONCLUSIONS CLDN18.2 expression in advanced GC/GEJC was associated with some clinical and molecular features but had no impact on treatment outcomes with chemotherapy or checkpoint inhibition. CLDN18.2-positive also had no impact on overall survival. This information could be useful to interpret the results from currently ongoing clinical trials of CLDN18.2-targeted therapies for advanced GC/GEJC and to consider a treatment strategy for CLDN18.2-positive GC/GEJC.
Collapse
Affiliation(s)
- Y Kubota
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba; Department of Clinical Oncology, St. Marianna University School of Medicine, Kanagawa
| | - A Kawazoe
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba
| | - S Mishima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba
| | - Y Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba
| | - D Kotani
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba
| | - Y Kuboki
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba
| | - H Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba
| | - T Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba
| | - T Doi
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba
| | - T Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba
| | - T Kuwata
- Departments of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Chiba, Japan; Genetics and Clinical Laboratories, National Cancer Center Hospital East, Chiba, Japan
| | - K Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba.
| |
Collapse
|
29
|
Wang DW, Zhang WH, Danil G, Yang K, Hu JK. The role and mechanism of claudins in cancer. Front Oncol 2022; 12:1051497. [PMID: 36620607 PMCID: PMC9818346 DOI: 10.3389/fonc.2022.1051497] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Claudins are a tetraspan membrane protein multigene family that plays a structural and functional role in constructing tight junctions. Claudins perform crucial roles in maintaining cell polarity in epithelial and endothelial cell sheets and controlling paracellular permeability. In the last two decades, increasing evidence indicates that claudin proteins play a major role in controlling paracellular permeability and signaling inside cells. Several types of claudins are dysregulated in various cancers. Depending on where the tumor originated, claudin overexpression or underexpression has been shown to regulate cell proliferation, cell growth, metabolism, metastasis and cell stemness. Epithelial-to-mesenchymal transition is one of the most important functions of claudin proteins in disease progression. However, the exact molecular mechanisms and signaling pathways that explain why claudin proteins are so important to tumorigenesis and progression have not been determined. In addition, claudins are currently being investigated as possible diagnostic and treatment targets. Here, we discuss how claudin-related signaling pathways affect tumorigenesis, tumor progression, and treatment sensitivity.
Collapse
Affiliation(s)
- De-Wen Wang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Galiullin Danil
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Kun Yang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Kun Hu
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jian-Kun Hu,
| |
Collapse
|
30
|
Cao W, Xing H, Li Y, Tian W, Song Y, Jiang Z, Yu J. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark Res 2022; 10:38. [PMID: 35642043 PMCID: PMC9153115 DOI: 10.1186/s40364-022-00385-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
The claudin18.2 (CLDN18.2) protein, an isoform of claudin18, a member of the tight junction protein family, is a highly selective biomarker with limited expression in normal tissues and often abnormal expression during the occurrence and development of various primary malignant tumors, such as gastric cancer/gastroesophageal junction (GC/GEJ) cancer, breast cancer, colon cancer, liver cancer, head and neck cancer, bronchial cancer and non-small-cell lung cancer. CLDN18.2 participates in the proliferation, differentiation and migration of tumor cells. Recent studies have identified CLDN18.2 expression as a potential specific marker for the diagnosis and treatment of these tumors. With its specific expression pattern, CLDN18.2 has become a unique molecule for targeted therapy in different cancers, especially in GC; for example, agents such as zolbetuximab (claudiximab, IMAB362), a monoclonal antibody (mAb) against CLDN18.2, have been developed. In this review, we outline recent advances in the development of immunotherapy strategies targeting CLDN18.2, including monoclonal antibodies (mAbs), bispecific antibodies (BsAbs), chimeric antigen receptor T (CAR-T) cells redirected to target CLDN18.2, and antibody–drug conjugates (ADCs).
Collapse
Affiliation(s)
- Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenliang Tian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
31
|
Moonwiriyakit A, Pathomthongtaweechai N, Steinhagen PR, Chantawichitwong P, Satianrapapong W, Pongkorpsakol P. Tight junctions: from molecules to gastrointestinal diseases. Tissue Barriers 2022; 11:2077620. [PMID: 35621376 PMCID: PMC10161963 DOI: 10.1080/21688370.2022.2077620] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Intestinal epithelium functions as a tissue barrier to prevent interaction between the internal compartment and the external milieu. Intestinal barrier function also determines epithelial polarity for the absorption of nutrients and the secretion of waste products. These vital functions require strong integrity of tight junction proteins. In fact, intestinal tight junctions that seal the paracellular space can restrict mucosal-to-serosal transport of hostile luminal contents. Tight junctions can form both an absolute barrier and a paracellular ion channel. Although defective tight junctions potentially lead to compromised intestinal barrier and the development and progression of gastrointestinal (GI) diseases, no FDA-approved therapies that recover the epithelial tight junction barrier are currently available in clinical practice. Here, we discuss the impacts and regulatory mechanisms of tight junction disruption in the gut and related diseases. We also provide an overview of potential therapeutic targets to restore the epithelial tight junction barrier in the GI tract.
Collapse
Affiliation(s)
- Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Peter R Steinhagen
- Department of Hepatology and Gastroenterology, Charité Medical School, Berlin, Germany
| | | | | | - Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
32
|
Shin HG, Yang HR, Yoon A, Lee S. Bispecific Antibody-Based Immune-Cell Engagers and Their Emerging Therapeutic Targets in Cancer Immunotherapy. Int J Mol Sci 2022; 23:5686. [PMID: 35628495 PMCID: PMC9146966 DOI: 10.3390/ijms23105686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second leading cause of death worldwide after cardiovascular diseases. Harnessing the power of immune cells is a promising strategy to improve the antitumor effect of cancer immunotherapy. Recent progress in recombinant DNA technology and antibody engineering has ushered in a new era of bispecific antibody (bsAb)-based immune-cell engagers (ICEs), including T- and natural-killer-cell engagers. Since the first approval of blinatumomab by the United States Food and Drug Administration (US FDA), various bsAb-based ICEs have been developed for the effective treatment of patients with cancer. Simultaneously, several potential therapeutic targets of bsAb-based ICEs have been identified in various cancers. Therefore, this review focused on not only highlighting the action mechanism, design and structure, and status of bsAb-based ICEs in clinical development and their approval by the US FDA for human malignancy treatment, but also on summarizing the currently known and emerging therapeutic targets in cancer. This review provides insights into practical considerations for developing next-generation ICEs.
Collapse
Affiliation(s)
- Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
| | - Aerin Yoon
- R&D Division, GC Biopharma, Yongin 16924, Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
33
|
Wu H, Zhao D, Wang C, Zhang D, Tang M, Qian S, Xu L, Xia T, Zhou J, Wang G, He Y, Gao L, Chen W, Li L, Yang W, Zhao Q, Hu C, Hu A. All-Trans Retinoic Acid Prevents the Progression of Gastric Precancerous Lesions by Regulating Disordered Retinoic Acid Metabolism. Nutr Cancer 2022; 74:3351-3362. [PMID: 35225106 DOI: 10.1080/01635581.2022.2044062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hanhan Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Didi Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Chen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Daoming Zhang
- Department of Gastroenterology, Lujiang County People’s Hospital, Hefei, Anhui, PR China
| | - Min Tang
- Department of Gastroenterology and Hepatology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Shiqing Qian
- Department of Pathology, Lujiang County People’s Hospital, Hefei, Anhui, PR China
| | - Lina Xu
- Department of Gastroenterology, Lujiang County People’s Hospital, Hefei, Anhui, PR China
| | - Tao Xia
- Department of Gastroenterology, Lujiang County People’s Hospital, Hefei, Anhui, PR China
| | - Juanyan Zhou
- Department of Gastroenterology and Hepatology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Guangjun Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Yue He
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Lei Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Wenjun Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Li Li
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Wanshui Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Chuanlai Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Anla Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
34
|
Claudins and Gastric Cancer: An Overview. Cancers (Basel) 2022; 14:cancers14020290. [PMID: 35053454 PMCID: PMC8773541 DOI: 10.3390/cancers14020290] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Gastric cancer (GC) is one of the most common cancers and the third leading cause of cancer deaths worldwide, with a high frequency of recurrence and metastasis, and a poor prognosis. This review presents novel biological and clinical significance of claudin (CLDN) expression in GC, especially CLDN18, and clinical trials centered around CLDN18.2. It also presents new findings for other CLDNs. Abstract Despite recent improvements in diagnostic ability and treatment strategies, advanced gastric cancer (GC) has a high frequency of recurrence and metastasis, with poor prognosis. To improve the treatment results of GC, the search for new treatment targets from proteins related to epithelial–mesenchymal transition (EMT) and cell–cell adhesion is currently being conducted. EMT plays an important role in cancer metastasis and is initiated by the loss of cell–cell adhesion, such as tight junctions (TJs), adherens junctions, desmosomes, and gap junctions. Among these, claudins (CLDNs) are highly expressed in some cancers, including GC. Abnormal expression of CLDN1, CLDN2, CLDN3, CLDN4, CLDN6, CLDN7, CLDN10, CLDN11, CLDN14, CLDN17, CLDN18, and CLDN23 have been reported. Among these, CLDN18 is of particular interest. In The Cancer Genome Atlas, GC was classified into four new molecular subtypes, and CLDN18–ARHGAP fusion was observed in the genomically stable type. An anti-CLDN18.2 antibody drug was recently developed as a therapeutic drug for GC, and the results of clinical trials are highly predictable. Thus, CLDNs are highly expressed in GC as TJs and are expected targets for new antibody drugs. Herein, we review the literature on CLDNs, focusing on CLDN18 in GC.
Collapse
|
35
|
Kyuno D, Takasawa A, Takasawa K, Ono Y, Aoyama T, Magara K, Nakamori Y, Takemasa I, Osanai M. Claudin-18.2 as a therapeutic target in cancers: cumulative findings from basic research and clinical trials. Tissue Barriers 2022; 10:1967080. [PMID: 34486479 PMCID: PMC8794250 DOI: 10.1080/21688370.2021.1967080] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/25/2022] Open
Abstract
Claudins are major components of tight junctions that maintain cell polarity and intercellular adhesion. The dynamics of claudins in cancer cells have attracted attention as a therapeutic target. During carcinogenesis, claudin expression is generally downregulated; however, overexpression of claudin-18.2 has been observed in several types of cancers. Upregulated and mislocalized claudin-18.2 expression in cancer cells has been suggested as a therapeutic target. Research on claudin-18.2 has revealed its involvement in carcinogenesis. Clinical trials using zolbetuximab, a monoclonal antibody targeting claudin-18.2, for patients with advanced cancer yielded positive results with few high-grade adverse events; thus, it is expected to be a novel and effective therapeutic. Here, we review current insights into the role that claudin-18.2 plays in basic cancer research and clinical applications. A better understanding of these roles will facilitate the development of new treatment strategies for cancer patients with poor prognoses.
Collapse
Affiliation(s)
- Daisuke Kyuno
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Kumi Takasawa
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Yusuke Ono
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Tomoyuki Aoyama
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Kazufumi Magara
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Yuna Nakamori
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Ichiro Takemasa
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University, Sapporo, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
36
|
Arpa G, Fassan M, Guerini C, Quaquarini E, Grillo F, Angerilli V, Guzzardo V, Lonardi S, Bergamo F, Lenti MV, Pedrazzoli P, Paulli M, Di Sabatino A, Vanoli A. Claudin-18 expression in small bowel adenocarcinoma: a clinico-pathologic study. Virchows Arch 2022; 481:853-863. [PMID: 35925388 PMCID: PMC9734203 DOI: 10.1007/s00428-022-03393-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 01/22/2023]
Abstract
Non-ampullary small bowel adenocarcinoma is a rare neoplasm with an ominous prognosis, whose incidence is higher in some chronic immuno-inflammatory conditions, such as coeliac and Crohn's disease. Recently, claudin 18.2, a transmembrane protein normally expressed in gastric mucosa, has been recognized as a novel pan-cancer therapeutic target, and several clinical trials with claudin-18-directed drugs have shown promising results on various gastrointestinal malignancies. This is the first study focusing on claudin-18 expression in small bowel adenocarcinomas. The immunohistochemical expression of claudin-18 (clone 43-14A) was assessed in 81 small bowel adenocarcinomas of diverse aetiologies and correlated with several clinico-pathologic features and patient survival. We found that 28% of adenocarcinomas were immunoreactive for claudin-18, with cutoff values of ≥1% at any intensity, while 6% of cancers showed immunoexpression of ≥75% with 2+/3+ score. Moreover, claudin-18 (≥1%) was positively associated with cytokeratin 7 (CK7) and MUC5AC expression, showing CK7+/MUC5AC+ carcinomas the highest rate of positive cases, whereas a negative correlation was found between claudin-18 and CDX2 expression. In addition, some cancer-adjacent dysplastic growths and foci of gastric-type metaplasia in Crohn's disease-associated cases showed claudin-18 immunoreactivity. Survival analysis showed a non-significant trend towards a worse cancer-specific survival for claudin-18-positive cases. A fraction of small bowel adenocarcinomas, mainly sporadic or Crohn's disease-associated, and often exhibiting a non-intestinal immunoprofile, expressed claudin-18, suggesting that claudin-18-directed targeted therapy is worth investigating in such cancers.
Collapse
Affiliation(s)
- Giovanni Arpa
- grid.8982.b0000 0004 1762 5736Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Via Carlo Forlanini 16-27100, Pavia, Italy ,grid.419425.f0000 0004 1760 3027Anatomic Pathology Unit, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Matteo Fassan
- grid.5608.b0000 0004 1757 3470Department of Medicine, DIMED, University of Padua, Padua, Italy ,grid.419546.b0000 0004 1808 1697Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Camilla Guerini
- grid.8982.b0000 0004 1762 5736Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Via Carlo Forlanini 16-27100, Pavia, Italy ,grid.419425.f0000 0004 1760 3027Anatomic Pathology Unit, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Erica Quaquarini
- Medical Oncology Unit, ICS Maugeri-IRCCS SpA SB, 27100 Pavia, Italy
| | - Federica Grillo
- grid.5606.50000 0001 2151 3065Pathology Unit, Department of Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy ,grid.410345.70000 0004 1756 7871IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Valentina Angerilli
- grid.5608.b0000 0004 1757 3470Department of Medicine, DIMED, University of Padua, Padua, Italy
| | - Vincenza Guzzardo
- grid.5608.b0000 0004 1757 3470Department of Medicine, DIMED, University of Padua, Padua, Italy
| | - Sara Lonardi
- grid.419546.b0000 0004 1808 1697Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Francesca Bergamo
- grid.419546.b0000 0004 1808 1697Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Marco Vincenzo Lenti
- grid.8982.b0000 0004 1762 5736First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Paolo Pedrazzoli
- grid.8982.b0000 0004 1762 5736First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy ,grid.419425.f0000 0004 1760 3027Oncology Unit, IRCCS San Matteo Hospital, Pavia, Italy
| | - Marco Paulli
- grid.8982.b0000 0004 1762 5736Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Via Carlo Forlanini 16-27100, Pavia, Italy ,grid.419425.f0000 0004 1760 3027Anatomic Pathology Unit, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Antonio Di Sabatino
- grid.8982.b0000 0004 1762 5736First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Alessandro Vanoli
- grid.8982.b0000 0004 1762 5736Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Via Carlo Forlanini 16-27100, Pavia, Italy ,grid.419425.f0000 0004 1760 3027Anatomic Pathology Unit, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| |
Collapse
|
37
|
Pereira MA, Ramos MFKP, Dias AR, Cardili L, Ribeiro RRE, de Castria TB, Zilberstein B, Nahas SC, Ribeiro U, de Mello ES. RhoA, Claudin 18, and c-MET in Gastric Cancer: Clinicopathological Characteristics and Prognostic Significance in Curative Resected Patients. Med Sci (Basel) 2021; 10:4. [PMID: 35076580 PMCID: PMC8788521 DOI: 10.3390/medsci10010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Recently, markers related to molecular classification were suggested as promising therapeutic targets for treatment and prediction of prognosis in gastric cancer (GC), including c-MET, RhoA, and Claudin-18 (CLDN18). This study aimed to investigate their expression in GC and its correlation with clinicopathological characteristics and survival. Methods: We retrospectively evaluated GC patients who underwent curative gastrectomy. c-MET, RhoA, and CLDN18 were analyzed through immunohistochemistry (IHC), and groups for analysis were determined according to the median values obtained for each marker. Results: Among the 349 GC evaluated, 180 (51.6%), 59 (16.9%), and 61 (17.5%) patients were completely negative for c-MET, RhoA, and CLDN18, respectively. Total gastrectomy, D1 lymphadenectomy, poorly differentiated histology, and greater inflammatory infiltrate were more frequent in the c-MET-negative group. Diffuse type, greater inflammatory infiltrate, and advanced pT and pTNM stage were associated with low-RhoA GC. The venous invasion was more frequent in the low-CLDN18 group. Furthermore, c-MET was positively correlated with RhoA and negatively with CLDN18. HER2 expression was associated with c-MET-positive and high-CLDN18 GC; and loss of E-cadherin expression in c-MET-negative and low-RhoA GC. c-MET-negative and Low-RhoA were significantly associated with worse disease-free survival. Conclusions: c-MET, RhoA, and CLD18 expression occurred frequently in GC. RhoA GC had distinct clinicopathological characteristics related to prognosis. c-MET and RhoA were associated with survival but were not independent predictors of prognosis.
Collapse
Affiliation(s)
- Marina Alessandra Pereira
- Instituto do Cancer, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, Brazil; (M.F.K.P.R.); (A.R.D.); (L.C.); (R.R.e.R.); (T.B.d.C.); (B.Z.); (S.C.N.); (U.R.J.); (E.S.d.M.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:790387. [PMID: 34790692 PMCID: PMC8591313 DOI: 10.3389/fnut.2021.790387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
39
|
Rao X, Jiang J, Liang Z, Zhang J, Zhuang Z, Qiu H, Luo H, Weng N, Wu X. Down-Regulated CLDN10 Predicts Favorable Prognosis and Correlates With Immune Infiltration in Gastric Cancer. Front Genet 2021; 12:747581. [PMID: 34721537 PMCID: PMC8548647 DOI: 10.3389/fgene.2021.747581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Background: CLDN10, an important component of the tight junctions of epithelial cells, plays a crucial role in a variety of tumors. The effect of CLDN10 expression in gastric cancer, however, has yet to be elucidated. Methods: Differential expression of CLDN10 at the mRNA and protein levels was evaluated using Oncomine, ULCAN, HPA and TIMER2.0 databases. Real-time polymerase chain reaction (RT-PCR) was utilized to further verify the expression of CLDN10 in vitro. Correlations between CLDN10 expression and clinical outcomes of gastric cancer were explored by Kaplan-Meier Plotter. Gene set enrichment analysis (GSEA) and protein-protein interaction (PPI) were performed via LinkedOmics and GeneMANIA. The correlations between CLDN10 expression and immune cell infiltration and somatic copy number alternations (SCNA) in gastric cancer were explored by TIMER2.0 and GEPIA2.0. Results: CLDN10 expression was lower in gastric cancer compared to adjacent normal tissues, and associated with better prognosis. CLDN10 also showed significant differences at different T stages, Lauren classification, treatments and HER2 status. PPI and GSEA analysis showed that CLDN10 might be involved in signal transmission, transmembrane transport and metabolism. In some major immune cells, low expression of CLDN10 was associated with increased levels of immune cell infiltration. In addition, it was found that different SCNA status in CLDN10 might affect the level of immune cell infiltration. Furthermore, the expression of CLDN10 was significantly associated with the expression of several immune cell markers, especially B cell markers, follicular helper T cell (Tfh) markers and T cell exhaustion markers. Conclusion: Down-regulated CLDN10 was associated with better overall survival (OS) in gastric cancer. And CLDN10 may serve as a potential prognostic biomarker and correlate to immune infiltration levels in gastric cancer.
Collapse
Affiliation(s)
- XiongHui Rao
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - JianLong Jiang
- Department of Gastrointestinal Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - ZhiHao Liang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - JianBao Zhang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - ZheHong Zhuang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - HuaiYu Qiu
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Huixing Luo
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Nuoqing Weng
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xiaobin Wu
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
40
|
Pellino A, Brignola S, Riello E, Niero M, Murgioni S, Guido M, Nappo F, Businello G, Sbaraglia M, Bergamo F, Spolverato G, Pucciarelli S, Merigliano S, Pilati P, Cavallin F, Realdon S, Farinati F, Dei Tos AP, Zagonel V, Lonardi S, Loupakis F, Fassan M. Association of CLDN18 Protein Expression with Clinicopathological Features and Prognosis in Advanced Gastric and Gastroesophageal Junction Adenocarcinomas. J Pers Med 2021; 11:1095. [PMID: 34834447 PMCID: PMC8624955 DOI: 10.3390/jpm11111095] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
The tight junction protein claudin-18 (CLDN18), is often expressed in various cancer types including gastric (GC) and gastroesophageal adenocarcinomas (GECs). In the last years, the isoform CLDN18.2 emerged as a potential drug target in metastatic GCs, leading to the development of monoclonal antibodies against this protein. CLDN18.2 is the dominant isoform of CLDN18 in normal gastric and gastric cancer tissues. In this work, we evaluated the immunohistochemical (IHC) profile of CLDN18 and its correlation with clinical and histopathological features including p53, E-cadherin, MSH2, MSH6, MLH1, PMS2, HER2, EBER and PD-L1 combined positive score, in a large real-world and mono-institutional series of advanced GCs (n = 280) and GECs (n = 70). The association of IHC results with survival outcomes was also investigated. High membranous CLDN18 expression (2+ and 3+ intensity ≥75%) was found in 117/350 (33.4%) samples analyzed. CLDN18 expression correlated with age <70 (p = 0.0035), positive EBV status (p = 0.002), high stage (III, IV) at diagnosis (p = 0.003), peritoneal involvement (p < 0.001) and lower incidence of liver metastases (p = 0.013). CLDN18 did not correlate with overall survival. The predictive value of response of CLDN18 to targeted agents is under investigation in several clinical trials and further studies will be needed to select patients who could benefit from these therapies.
Collapse
Affiliation(s)
- Antonio Pellino
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Stefano Brignola
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
- Department of Pathology, Azienda ULSS 2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Erika Riello
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
| | - Monia Niero
- Department of Pathology, Azienda ULSS 2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Sabina Murgioni
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Maria Guido
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
- Department of Pathology, Azienda ULSS 2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Floriana Nappo
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Gianluca Businello
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
| | - Marta Sbaraglia
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
| | - Francesca Bergamo
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Gaya Spolverato
- 1st Surgery Unit, Department of Surgical, Oncological, and Gastroenterological Sciences (DISCOG), University of Padua, 35122 Padua, Italy; (G.S.); (S.P.)
| | - Salvatore Pucciarelli
- 1st Surgery Unit, Department of Surgical, Oncological, and Gastroenterological Sciences (DISCOG), University of Padua, 35122 Padua, Italy; (G.S.); (S.P.)
| | - Stefano Merigliano
- 3rd Surgery Unit, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, 35122 Padua, Italy;
| | - Pierluigi Pilati
- Surgery Unit, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 31033 Castelfranco Veneto, Italy;
| | | | - Stefano Realdon
- Gastroenterology Unit, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy;
| | - Fabio Farinati
- Gastroenterology Unit, Department of Surgical, Oncological, and Gastroenterological Sciences (DISCOG), University of Padua, 35122 Padua, Italy;
| | - Angelo Paolo Dei Tos
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
| | - Vittorina Zagonel
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Sara Lonardi
- Oncology Unit 3, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy;
| | - Fotios Loupakis
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy
| |
Collapse
|
41
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:718356. [PMID: 34589512 PMCID: PMC8475765 DOI: 10.3389/fnut.2021.718356] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelial barrier (IEB) is one of the largest interfaces between the environment and the internal milieu of the body. It is essential to limit the passage of harmful antigens and microorganisms and, on the other side, to assure the absorption of nutrients and water. The maintenance of this delicate equilibrium is tightly regulated as it is essential for human homeostasis. Luminal solutes and ions can pass across the IEB via two main routes: the transcellular pathway or the paracellular pathway. Tight junctions (TJs) are a multi-protein complex responsible for the regulation of paracellular permeability. TJs control the passage of antigens through the IEB and have a key role in maintaining barrier integrity. Several factors, including cytokines, gut microbiota, and dietary components are known to regulate intestinal TJs. Gut microbiota participates in several human functions including the modulation of epithelial cells and immune system through the release of several metabolites, such as short-chain fatty acids (SCFAs). Mediators released by immune cells can induce epithelial cell damage and TJs dysfunction. The subsequent disruption of the IEB allows the passage of antigens into the mucosa leading to further inflammation. Growing evidence indicates that dysbiosis, immune activation, and IEB dysfunction have a role in several diseases, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gluten-related conditions. Here we summarize the interplay between the IEB and gut microbiota and mucosal immune system and their involvement in IBS, IBD, and gluten-related disorders.
Collapse
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
42
|
Li J. Targeting claudins in cancer: diagnosis, prognosis and therapy. Am J Cancer Res 2021; 11:3406-3424. [PMID: 34354852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Abstract
Increasing evidence has linked claudins to signal transduction and tumorigenesis. The expression of claudins is frequently dysregulated in the context of neoplastic transformation, suggesting their promise as biomarkers for diagnosis and prognosis or targets for treatment. Claudin binders (Clostridium perfringens enterotoxin and monoclonal antibody) have been tested in preclinical experiments, and some of them have progressed into clinical trials involving patients with certain cancers. However, the clinical development of many of these agents has not advanced to clinical applications. Herein, I review the current status of preclinical and clinical investigations of agents targeting claudins for diagnosis, prognosis and therapy. I also discuss the potential of combining claudin binders with other currently approved therapeutic agents.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center Mianyang 621000, Sichuan, China
| |
Collapse
|
43
|
Anwar MY, Williams GR, Paluri RK. CAR T Cell Therapy in Pancreaticobiliary Cancers: a Focused Review of Clinical Data. J Gastrointest Cancer 2021; 52:1-10. [PMID: 32700185 DOI: 10.1007/s12029-020-00457-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE CAR T cell therapy is an innovative approach to treat cancers in the modern era. It utilizes the application of chimeric antigen receptors targeted against specific antigens expressed by the tumor cells. Although its efficacy is established in hematological malignancies, the safety and efficacy of this therapy in solid tumors, especially pancreaticobiliary cancers, is a highly investigated aspect. A focused review of clinical data was conducted to examine the outcomes of this therapy in pancreaticobiliary cancers. METHODS A comprehensive literature search was done on Medline and Embase databases through April 24, 2020 for studies that evaluated the outcomes of CAR T cell therapy in pancreaticobiliary cancers. RESULTS There were six phase 1 trials, while one was phase 1/2. Some of these trials were specifically done for pancreaticobiliary cancers, while others included patients of various solid organ cancers, including pancreatic and biliary tract cancers. The target antigens for therapy in these trials included mesothelin, CD133, prostate stem cell antigen, claudin 18.2, epidermal growth factor receptor, and human epidermal growth factor receptor 2. CAR T cell therapy has shown very few grade 3 and 4 side effects. Most of the adverse events are associated with cytokine release syndrome. CONCLUSION CAR T cell therapy has a manageable safety profile based on phase 1 studies, and efficacy assessments are currently ongoing in dose expansion and phase 2 studies.
Collapse
Affiliation(s)
| | - Grant R Williams
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ravi K Paluri
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
44
|
Lü P, Qiu S, Pan Y, Yu F, Chen K. Preclinical Chimeric Antibody Chimeric Antigen Receptor T Cell Progress in Digestive System Cancers. Cancer Biother Radiopharm 2021; 36:307-315. [PMID: 33481647 DOI: 10.1089/cbr.2020.4089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Digestive system cancers, including hepatocellular carcinoma, colorectal and gastric tumors, are characterized by high rates of incidence and mortality. Digestive cancers are difficult to diagnose during the early stages, and the side effects of chemotherapy are often severe and may outweigh the therapeutic benefits. Chimeric antibody chimeric antigen receptor T cell (CAR-T) therapy, a novel immunotherapy, has achieved excellent results for the treatment of hematological tumors. However, CAR-T treatment of solid tumors has struggled due to a lack of target specificity, a difficult tumor microenvironment, and T cell homing. Despite the challenges, CAR-T treatment of digestive cancers is progressing. Combining CAR-T with other targets and/or modifying the CAR may represent the most promising approaches for future treatment of digestive cancers.
Collapse
Affiliation(s)
- Peng Lü
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China.,School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Songlin Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ye Pan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Feng Yu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
45
|
Claudin-18 as a Marker for Identifying the Stomach and Pancreatobiliary Tract as the Primary Sites of Metastatic Adenocarcinoma. Am J Surg Pathol 2021; 44:1643-1648. [PMID: 32925194 DOI: 10.1097/pas.0000000000001583] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Identification of the primary site of cancer is essential for the treatment of patients with cancer. Numerous immunohistochemical markers have been developed to determine the differentiation of tumor cells and suggest possible primary sites, but markers of gastric and pancreatic adenocarcinomas are still lacking. Claudin-18 is a tight-junction protein uniquely expressed in gastric epithelial cells and has been shown to be expressed in gastric and pancreatic adenocarcinoma. Whether claudin-18 can be used as a marker for identifying the primary site of cancer is still unclear. In this study, we used the immunohistochemical method to stain claudin-18 in tissue arrays containing 575 carcinomas from different anatomic sites and representative sections of 157 metastatic adenocarcinomas. In the group of primary tumors, claudin-18 was frequently expressed in gastric, pancreatic, and pulmonary mucinous adenocarcinomas. Half of cholangiocarcinomas and ovarian mucinous carcinomas and some colorectal and pulmonary adenocarcinomas were also positive for claudin-18. In the metastatic cohort, 15 of 17 (88%) gastric adenocarcinomas, 18 of 23 (78%) pancreatic adenocarcinomas, and 4 of 7 (57%) cholangiocarcinomas and gallbladder adenocarcinomas were positive for claudin-18. Only 4 tumors that originated outside the stomach and pancreatobiliary tract were positive for claudin-18. After normalization to the tumor frequency, the sensitivity of claudin-18 for identifying the stomach and pancreatobiliary tract as primary tumor sites was 79%, and the specificity was 93%. The positive and negative predictive values were 76% and 94%, respectively. In conclusion, claudin-18 represents a sensitive and specific marker for stomach and pancreatobiliary adenocarcinoma that may be a useful diagnostic tool in routine surgical pathology.
Collapse
|
46
|
Halimi SA, Maeda D, Ushiku-Shinozaki A, Goto A, Oda K, Osuga Y, Fujii T, Ushiku T, Fukayama M. Comprehensive immunohistochemical analysis of the gastrointestinal and Müllerian phenotypes of 139 ovarian mucinous cystadenomas. Hum Pathol 2020; 109:21-30. [PMID: 33275953 DOI: 10.1016/j.humpath.2020.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022]
Abstract
Mucinous cystadenoma is one of the most common benign ovarian neoplasms. The immunophenotypes and histogenetic relationships of mucinous cystadenomas with a Müllerian-type epithelium have not been fully explored. We elucidated the direction of differentiation of the mucinous epithelium that constitutes mucinous cystadenomas. Special attention was paid to the existence of gastrointestinal (GI)-type mucinous epithelium, and its association with background Müllerian-type epithelium. Immunohistochemistry was performed in 139 cases of mucinous cystadenoma to evaluate the expression of Claudin-18 (CLDN18), a novel marker of gastric differentiation; CDX2, a marker of intestinal differentiation; and estrogen receptor (ER), a marker of Müllerian differentiation. We found that GI differentiation characterized by CLDN18 and/or CDX2 positivity was observed in mucinous epithelium of most mucinous cystadenomas (129/139 cases, 93%). In a subset of these cases, the tumor was composed of mucinous epithelium exhibiting an intermediate GI and Müllerian phenotype (CLDN18+/CDX2±/ER+). Of note, in 12 cases, a transition from background Müllerian-type epithelium to mucinous epithelium with GI differentiation was identified. A minor subset (6%) of mucinous cystadenomas was considered a pure Müllerian type because the epithelium exhibited a CLDN18-/CDX2-/ER + immunophenotype. In conclusion, mucinous cystadenomas consist of three major subtypes: GI, Müllerian, and intermediate types. Most mucinous cystadenomas are GI-type, and they should be considered a precursor of GI-type mucinous borderline tumors. The existence of intermediate-type mucinous cystadenomas, and areas of transition from Müllerian-type to GI-type epithelium suggest that GI-type mucinous epithelium can arise from Müllerian duct derivatives or surface epithelium exhibiting Müllerian metaplasia in the ovary.
Collapse
Affiliation(s)
- Sultan Ahmad Halimi
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan; Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Akita, 010-8543, Japan; Department of Pathology, Kabul University of Medical Sciences, Kabul, 1006, Afghanistan
| | - Daichi Maeda
- Department of Clinical Genomics, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Aya Ushiku-Shinozaki
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Akita, 010-8543, Japan
| | - Katsutoshi Oda
- Department of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan; Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan; Asahi TelePathology Center, Asahi General Hospital, Asahi, Chiba, 289-2511, Japan
| |
Collapse
|
47
|
Role of tight junctions in the epithelial-to-mesenchymal transition of cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183503. [PMID: 33189716 DOI: 10.1016/j.bbamem.2020.183503] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is an essential step in cancer progression. Epithelial cells possess several types of cell-cell junctions, and tight junctions are known to play important roles in maintaining the epithelial program. EMT is characterized by a loss of epithelial markers, including E-cadherin and tight junction proteins. Somewhat surprisingly, the evidence is accumulating that upregulated expression of tight junction proteins plays an important role in the EMT of cancer cells. Tight junctions have distinct tissue-specific and cancer-specific regulatory mechanisms, enabling them to play different roles in EMT. Tight junctions and related signaling pathways are attractive targets for cancer treatments; signal transduction inhibitors and monoclonal antibodies for tight junction proteins may be used to suppress EMT, invasion, and metastasis. Here we review the role of bicellular and tricellular tight junction proteins during EMT. Further investigation of regulatory mechanisms of tight junctions during EMT in cancer cells will inform the development of biomarkers for predicting prognosis as well as novel therapies.
Collapse
|
48
|
Caron TJ, Scott KE, Sinha N, Muthupalani S, Baqai M, Ang LH, Li Y, Turner JR, Fox JG, Hagen SJ. Claudin-18 Loss Alters Transcellular Chloride Flux but not Tight Junction Ion Selectivity in Gastric Epithelial Cells. Cell Mol Gastroenterol Hepatol 2020; 11:783-801. [PMID: 33069918 PMCID: PMC7847960 DOI: 10.1016/j.jcmgh.2020.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Tight junctions form a barrier to the paracellular passage of luminal antigens. Although most tight junction proteins reside within the apical tight junction complex, claudin-18 localizes mainly to the basolateral membrane where its contribution to paracellular ion transport is undefined. Claudin-18 loss in mice results in gastric neoplasia development and tumorigenesis that may or may not be due to tight junction dysfunction. The aim here was to investigate paracellular permeability defects in stomach mucosa from claudin-18 knockout (Cldn18-KO) mice. METHODS Stomach tissue from wild-type, heterozygous, or Cldn18-KO mice were stripped of the external muscle layer and mounted in Ussing chambers. Transepithelial resistance, dextran 4 kDa flux, and potential difference (PD) were calculated from the chambered tissues after identifying differences in tissue histopathology that were used to normalize these measurements. Marker expression for claudins and ion transporters were investigated by transcriptomic and immunostaining analysis. RESULTS No paracellular permeability defects were evident in stomach mucosa from Cldn18-KO mice. RNAseq identified changes in 4 claudins from Cldn18-KO mice, particularly the up-regulation of claudin-2. Although claudin-2 localized to tight junctions in cells at the base of gastric glands, its presence did not contribute overall to mucosal permeability. Stomach tissue from Cldn18-KO mice also had no PD versus a lumen-negative PD in tissues from wild-type mice. This difference resulted from changes in transcellular Cl- permeability with the down-regulation of Cl- loading and Cl- secreting anion transporters. CONCLUSIONS Our findings suggest that Cldn18-KO has no effect on tight junction permeability in the stomach from adult mice but rather affects anion permeability. The phenotype in these mice may thus be secondary to transcellular anion transporter expression/function in the absence of claudin-18.
Collapse
Affiliation(s)
- Tyler J Caron
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kathleen E Scott
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nishita Sinha
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Mahnoor Baqai
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Lay-Hong Ang
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Yue Li
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Jerrold R Turner
- Harvard Medical School, Boston, Massachusetts; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Susan J Hagen
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
49
|
Analysis of the expression and genetic alteration of CLDN18 in gastric cancer. Aging (Albany NY) 2020; 12:14271-14284. [PMID: 32668412 PMCID: PMC7425459 DOI: 10.18632/aging.103457] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Claudin 18 (CLDN18) is a transmembrane protein that localizes to apical regions to form tight junction complexes. Abnormal expression of CLDN18 has been reported in gastric cancer (GC). The expression, genetic alterations, and prognostic role of CLDN18 were analyzed using public data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Human Protein Atlas (HPA) databases using multiple online tools. The biological network of CLDN18 was determined using GeneMANIA. Expression of CLDN18 was restricted to lung and stomach in normal tissues, was significantly downregulated in GC, but was ectopically overexpressed in some other cancer types. There was no correlation between mRNA expression of CLDN18 and the clinicopathology of GC, although expression was higher in the Epstein-Barr virus (EBV)-positive subgroup than other subgroups. Genetic alteration of CLDN18 was not a common event in GC; the main alteration was gene fusion with ARHGAP26. CLDN18 expression did not predict the overall survival (OS) of GC patients. This study summarizes the expression features of CLDN18 in GC and suggests it may serve as a biomarker and therapy target for GC.
Collapse
|
50
|
Jiang H, Shi Z, Wang P, Wang C, Yang L, Du G, Zhang H, Shi B, Jia J, Li Q, Wang H, Li Z. Claudin18.2-Specific Chimeric Antigen Receptor Engineered T Cells for the Treatment of Gastric Cancer. J Natl Cancer Inst 2020; 111:409-418. [PMID: 30203099 DOI: 10.1093/jnci/djy134] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/05/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Claudin18.2 (CLDN18.2), a gastric-specific membrane protein, has been regarded as a potential therapeutic target for gastric cancer and other cancer types. The aim of our study was to elucidate whether chimeric antigen receptor T (CAR T) cells redirected to CLDN18.2 have the potential to be used in the treatment of this deadly disease. METHODS CLDN18.2-specific humanized antibodies were developed using hybridoma and humanization technology. CLDN18.2-specific CAR T cells were prepared by lentiviral vector transduction. In vitro antitumor activities and cytokine production of the CAR T cells to gastric cancer cell lines were examined by cytotoxicity and ELISA assay. In vivo antitumor activities of CAR T cells were evaluated in mice bearing gastric cancer cell line and patient-derived tumor xenograft (PDX) models (n ≥ 6 mice per group). All statistical tests were two-sided. RESULTS Humanized CLDN18.2-specific hu8E5 and hu8E5-2I single-chain fragment variables (scFv) were successfully developed. CLDN18.2-specific CAR T cells were developed using hu8E5 or hu8E5-2I scFv as targeting moieties. Both hu8E5-28Z and hu8E5-2I-28Z CAR T cells comprising the CD28 costimulatory domain potently suppressed tumor growth in a cancer cell line xenograft mouse model (mean [SD] tumor volume: hu8E5-28Z = 118.0 [108.6] mm3 and hu8E5-2I-28Z group = 75.5 [118.7] mm3 vs untransduced T cell group = 731.8 [206.3] mm3 at day 29 after tumor inoculation, P < .001). Partial or complete tumor elimination was observed in CLDN18.2-positive gastric cancer PDX models treated with the hu8E5-2I-28Z CAR T cells (P < .001), which persist well in vivo and infiltrate efficiently into the tumor tissues. Although the CLDN18.2 CAR T cells could lyse target cells expressing murine CLDN18.2 (mCLDN18.2), no obvious deleterious effect on the normal organs including the gastric tissues was observed in the mice. CONCLUSIONS CLDN18.2-specific CAR T cells could be a promising treatment strategy for gastric cancer and potentially other CLDN18.2-positive tumors.
Collapse
Affiliation(s)
- Hua Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Peng Wang
- CARsgen Therapeutics, Shanghai, China
| | - Cong Wang
- CARsgen Therapeutics, Shanghai, China
| | | | - Guoxiu Du
- CARsgen Therapeutics, Shanghai, China
| | | | - Bizhi Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Jia
- CARsgen Therapeutics, Shanghai, China
| | | | | | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,CARsgen Therapeutics, Shanghai, China
| |
Collapse
|