1
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Gui F, Yu X, Wu Y, Wu C, Zhang Y. Mechanism of LncHOTAIR Regulating Proliferation, Apoptosis, and Autophagy of Lymphoma Cells through hsa-miR-6511b-5p/ATG7 Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2166605. [PMID: 36248425 PMCID: PMC9560808 DOI: 10.1155/2022/2166605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
Objective To explore the role of LncHOTAIR in apoptosis and autophagy in lymphoma. Methods The interaction between LncHOTAIR and miR-6511b-5p, as well as between miR-6511b-5p and ATG7, was verified by a dual luciferase assay. LncHOTAIR overexpression lentivirus was transducted and siATG7s were transfected into Raji and BJAB lymphoma cells, and the efficiency was verified by qPCR. Lymphocyte proliferation was detected by the cell counting kit-8 (CCK8) test, and autophagy was detected by transmission electron microscopy. The protein expressions of ULK1, Beclin1, ATG7, LC3, Bax, cleaved-caspase 3, and Bcl-2 were detected using Western blots. Results There was a targeting relationship between LncHOTAIR and miR-6511b-5p and between miR-6511b-5p and ATG7. LncHOTAIR overexpression promoted the proliferation and autophagy of Raji and BJAB cells, significantly upregulated ATG7, Beclin1, ULK1, Bcl-2, and LC3-II/LC3-I levels, and downregulated Bax and cleaved-caspase3 levels. siATG7 significantly inhibited the proliferation and autophagy of Raji and BJAB cells and promoted their apoptosis. Conclusion LncHOTAIR/hsa-miR-6511b-5p/ATG7 could regulate the proliferation, apoptosis, and autophagy of Raji and BJAB lymphoma cells.
Collapse
Affiliation(s)
- Fu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xinyi Yu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yemeng Wu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chao Wu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yulan Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
3
|
Karabon L, Andrzejczak A, Ciszak L, Tomkiewicz A, Szteblich A, Bojarska-Junak A, Roliński J, Wołowiec D, Wróbel T, Kosmaczewska A. BTLA Expression in CLL: Epigenetic Regulation and Impact on CLL B Cell Proliferation and Ability to IL-4 Production. Cells 2021; 10:cells10113009. [PMID: 34831232 PMCID: PMC8616199 DOI: 10.3390/cells10113009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/22/2021] [Accepted: 10/31/2021] [Indexed: 12/13/2022] Open
Abstract
In our previous study, while chronic lymphocytic leukemia (CLL) cases showed higher levels of B and T lymphocyte attenuator (BTLA) mRNA compared to controls, lower BTLA protein expression was observed in cases compared to controls. Hence we hypothesize that micro RNA (miR) 155-5p regulates BTLA expression in CLL. In line with earlier data, expression of BTLA mRNA and miR-155-5p is elevated in CLL (p = 0.034 and p = 0.0006, respectively) as well as in MEC-1 cell line (p = 0.009 and 0.016, respectively). Inhibition of miR-155-5p partially restored BTLA protein expression in CLL patients (p = 0.01) and in MEC-1 cell lines (p = 0.058). Additionally, we aimed to evaluate the significance of BTLA deficiency in CLL cells on proliferation and IL-4 production of B cells. We found that secretion of IL-4 is not dependent on BTLA expression, since fractions of BTLA positive and BTLA negative B cells expressing intracellular IL-4 were similar in CLL patients and controls. We demonstrated that in controls the fraction of proliferating cells is lower in BTLA positive than in BTLA negative B cells (p = 0.059), which was not observed in CLL. However, the frequency of BTLA positive Ki67+ B cells in CLL was higher compared to corresponding cells from controls (p = 0.055) while there were no differences between the examined groups regarding frequency of BTLA negative Ki67+ B cells. Our studies suggest that miR-155-5p is involved in BTLA deficiency, affecting proliferation of CLL B cells, which may be one of the mechanisms responsible for CLL pathogenesis.
Collapse
MESH Headings
- Aged
- Base Sequence
- Cell Line, Tumor
- Cell Proliferation/genetics
- Epigenesis, Genetic
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Interleukin-4/biosynthesis
- Ki-67 Antigen/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
Collapse
Affiliation(s)
- Lidia Karabon
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigl 12 Str., 53-114 Wroclaw, Poland; (A.A.); (A.T.)
- Department and Clinic of Urology and Oncologic Urology, Wroclaw Medical University, Borowska Str. 213, 50-556 Wroclaw, Poland
- Correspondence:
| | - Anna Andrzejczak
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigl 12 Str., 53-114 Wroclaw, Poland; (A.A.); (A.T.)
| | - Lidia Ciszak
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigl 12 Str., 53-114 Wroclaw, Poland; (L.C.); (A.S.); (A.K.)
| | - Anna Tomkiewicz
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigl 12 Str., 53-114 Wroclaw, Poland; (A.A.); (A.T.)
| | - Aleksandra Szteblich
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigl 12 Str., 53-114 Wroclaw, Poland; (L.C.); (A.S.); (A.K.)
| | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, ul. Chodźki 4a, 20-093 Lublin, Poland; (A.B.-J.); (J.R.)
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, ul. Chodźki 4a, 20-093 Lublin, Poland; (A.B.-J.); (J.R.)
| | - Dariusz Wołowiec
- Department and Clinic of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Medical University, Wybrzeże Ludwika Pasteura 4, 50-367 Wroclaw, Poland; (D.W.); (T.W.)
| | - Tomasz Wróbel
- Department and Clinic of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Medical University, Wybrzeże Ludwika Pasteura 4, 50-367 Wroclaw, Poland; (D.W.); (T.W.)
| | - Agata Kosmaczewska
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigl 12 Str., 53-114 Wroclaw, Poland; (L.C.); (A.S.); (A.K.)
| |
Collapse
|
4
|
Morales-Martinez M, Vega GG, Neri N, Nambo MJ, Alvarado I, Cuadra I, Duran-Padilla MA, Huerta-Yepez S, Vega MI. MicroRNA-7 Regulates Migration and Chemoresistance in Non-Hodgkin Lymphoma Cells Through Regulation of KLF4 and YY1. Front Oncol 2020; 10:588893. [PMID: 33194748 PMCID: PMC7654286 DOI: 10.3389/fonc.2020.588893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The discovery and description of the role of microRNAs has become very important, specifically due to their participation in the regulation of proteins and transcription factors involved in the development of cancer. microRNA-7 (miR-7) has been described as a negative regulator of several proteins involved in cancer, such as YY1 and KLF4. We have recently reported that YY1 and KLF4 play a role in non-Hodgkin lymphoma (NHL) and that the expression of KLF4 is regulated by YY1. Therefore, in this study we analyzed the role of miR-7 in NHL through the negative regulation of YY1 and KLF4. qRT-PCR showed that there is an inverse expression of miR-7 in relation to the expression of YY1 and KLF4 in B-NHL cell lines. The possible regulation of YY1 and KLF4 by miR-7 was analyzed using the constitutive expression or inhibition of miR-7, as well as using reporter plasmids containing the 3 'UTR region of YY1 or KLF4. The role of miR-7 in NHL, through the negative regulation of YY1 and KLF4 was determined by chemoresistance and migration assays. We corroborated our results in cell lines, in a TMA from NHL patients including DLBCL and follicular lymphoma subtypes, in where we analyzed miR-7 by ISH and YY1 and KLF4 using IHC. All tumors expressing miR-7 showed a negative correlation with YY1 and KLF4 expression. In addition, expression of miR-7 was analyzed using the GEO Database; miR-7 downregulated expression was associated with pour overall-survival. Our results show for the first time that miR-7 is implicate in the cell migration and chemoresistance in NHL, through the negative regulation of YY1 and KLF4. That also support the evidence that YY1 and KLF4 can be a potential therapeutic target in NHL.
Collapse
Affiliation(s)
- Mario Morales-Martinez
- Molecular Signal Pathway in Cancer Laboratory, Unidad de Investigación Medica en Enfermedades Oncologicas (UIMEO), Oncology Hospital, Siglo XXI National Medical Center, Instituto Méxicano del Seguro Social (IMSS), Mexico City, Mexico
- Unidad de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriel G. Vega
- Molecular Signal Pathway in Cancer Laboratory, Unidad de Investigación Medica en Enfermedades Oncologicas (UIMEO), Oncology Hospital, Siglo XXI National Medical Center, Instituto Méxicano del Seguro Social (IMSS), Mexico City, Mexico
- Unidad de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Natividad Neri
- Department of Hematology, Oncology Hospital, National Medical Center, IMSS, Mexico City, Mexico
| | - M. J Nambo
- Department of Hematology, Oncology Hospital, National Medical Center, IMSS, Mexico City, Mexico
| | - Isabel Alvarado
- Servicio de Anatomía Patológica, Hospital de Oncología, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Ivonne Cuadra
- Servicio de Anatomía Patológica, Hospital de Oncología, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - M. A. Duran-Padilla
- Servicio de Patología, Hospital General de México “Eduardo Liceaga”, Facultad de Medicina de la UNAM, Mexico City, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez S.S.A, Mexico City, Mexico
| | - Mario I. Vega
- Molecular Signal Pathway in Cancer Laboratory, Unidad de Investigación Medica en Enfermedades Oncologicas (UIMEO), Oncology Hospital, Siglo XXI National Medical Center, Instituto Méxicano del Seguro Social (IMSS), Mexico City, Mexico
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
5
|
The Oncogenic Kaposi's Sarcoma-Associated Herpesvirus Encodes a Mimic of the Tumor-Suppressive miR-15/16 miRNA Family. Cell Rep 2020; 29:2961-2969.e6. [PMID: 31801064 PMCID: PMC6939447 DOI: 10.1016/j.celrep.2019.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/07/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Many tumor viruses encode oncogenes of cellular origin. Here, we report an oncoviral mimic of a cellular tumor suppressor. The Kaposi’s sarcoma-associated herpesvirus (KSHV) microRNA (miRNA) miR-K6-5p shares sequence similarity to the tumor-suppressive cellular miR-15/16 miRNA family. We show that miR-K6-5p inhibits cell cycle progression, a hallmark function of miR-16. miR-K6-5p regulates conserved miR-15/16 family miRNA targets, including many cell cycle regulators. Inhibition of miR-K6-5p in KSHV-transformed B cells confers a significant growth advantage. Altogether, our data show that KSHV encodes a functional mimic of miR-15/16 family miRNAs. While it is exceedingly well established that oncogenic viruses encode oncogenes of cellular origin, this is an unusual example of an oncogenic virus that encodes a viral mimic of a cellular tumor suppressor. Encoding a tumor-suppressive miRNA could help KSHV balance viral oncogene expression and thereby avoid severe pathogenesis in the healthy host. Morrison et al. report that the tumor virus KSHV encodes a mimic of a cellular tumor suppressor. KSHV miR-K6-5p phenocopies miR-16-induced cell cycle inhibition, shares mRNA targets and binding sites with miR-16, and negatively regulates proliferation in KSHV-infected cells.
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW MiRNAs are critical regulators for gene expression. Numerous studies have revealed how miRNAs contribute to the pathogenesis of hematologic malignancies. RECENT FINDINGS The identification of novel miRNA regulatory factors and pathways crucial for miRNA dysregulation has been linked to hematologic malignancies. miRNA expression profiling has shown their potential to predict outcomes and treatment responses. Recently, targeting miRNA biogenesis or pathways has become a promising therapeutic strategy with recent miRNA-therapeutics being developed. SUMMARY We provide a comprehensive overview of the role of miRNAs for diagnosis, prognosis, and therapeutic potential in hematologic malignancies.
Collapse
Affiliation(s)
- Zhen Han
- Division of Dermatology, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Steven T. Rosen
- Dept of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christiane Querfeld
- Division of Dermatology, City of Hope, Duarte, CA, USA
- Department of Pathology, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| |
Collapse
|
7
|
Van Roosbroeck K, Bayraktar R, Calin S, Bloehdorn J, Dragomir MP, Okubo K, Bertilaccio MTS, Zupo S, You MJ, Gaidano G, Rossi D, Chen SS, Chiorazzi N, Thompson PA, Ferrajoli A, Bertoni F, Stilgenbauer S, Keating MJ, Calin GA. The involvement of microRNA in the pathogenesis of Richter syndrome. Haematologica 2018; 104:1004-1015. [PMID: 30409799 PMCID: PMC6518906 DOI: 10.3324/haematol.2018.203828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022] Open
Abstract
Richter syndrome is the name given to the transformation of the most frequent type of leukemia, chronic lymphocytic leukemia, into an aggressive lymphoma. Patients with Richter syndrome have limited response to therapies and dismal survival. The underlying mechanisms of transformation are insufficiently understood and there is a major lack of knowledge regarding the roles of microRNA that have already proven to be causative for most cases of chronic lymphocytic leukemia. Here, by using four types of genomic platforms and independent sets of patients from three institutions, we identified microRNA involved in the transformation of chronic lymphocytic leukemia to Richter syndrome. The expression signature is composed of miR-21, miR-150, miR-146b and miR-181b, with confirmed targets significantly enriched in pathways involved in cancer, immunity and inflammation. In addition, we demonstrated that genomic alterations may account for microRNA deregulation in a subset of cases of Richter syndrome. Furthermore, network analysis showed that Richter transformation leads to a complete rearrangement, resulting in a highly connected microRNA network. Functionally, ectopic overexpression of miR-21 increased proliferation of malignant B cells in multiple assays, while miR-150 and miR-26a were downregulated in a chronic lymphocytic leukemia xenogeneic mouse transplantation model. Together, our results suggest that Richter transformation is associated with significant expression and genomic loci alterations of microRNA involved in both malignancy and immunity.
Collapse
Affiliation(s)
- Katrien Van Roosbroeck
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address - Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steliana Calin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Mihnea Paul Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keishi Okubo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Simonetta Zupo
- Molecular Diagnostic Laboratory, Pathology Department, IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Rossi
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Shih-Shih Chen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Philip A Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francesco Bertoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | | | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Di Marco M, Ramassone A, Pagotto S, Anastasiadou E, Veronese A, Visone R. MicroRNAs in Autoimmunity and Hematological Malignancies. Int J Mol Sci 2018; 19:ijms19103139. [PMID: 30322050 PMCID: PMC6213554 DOI: 10.3390/ijms19103139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Autoimmunity and hematological malignancies are often concomitant in patients. A causal bidirectional relationship exists between them. Loss of immunological tolerance with inappropriate activation of the immune system, likely due to environmental and genetic factors, can represent a breeding ground for the appearance of cancer cells and, on the other hand, blood cancers are characterized by imbalanced immune cell subsets that could support the development of the autoimmune clone. Considerable effort has been made for understanding the proteins that have a relevant role in both processes; however, literature advances demonstrate that microRNAs (miRNAs) surface as the epigenetic regulators of those proteins and control networks linked to both autoimmunity and hematological malignancies. Here we review the most up-to-date findings regarding the miRNA-based molecular mechanisms that underpin autoimmunity and hematological malignancies.
Collapse
Affiliation(s)
- Mirco Di Marco
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Alice Ramassone
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Sara Pagotto
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Eleni Anastasiadou
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Angelo Veronese
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medicine and Aging Science (DMSI), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Rosa Visone
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
9
|
Szurián K, Csala I, Marosvári D, Rajnai H, Dezső K, Bödör C, Piurkó V, Matolcsy A, Reiniger L. EZH2 is upregulated in the proliferation centers of CLL/SLL lymph nodes. Exp Mol Pathol 2018; 105:161-165. [PMID: 30031020 DOI: 10.1016/j.yexmp.2018.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 01/08/2023]
Abstract
Lymph node involvement of chronic lymphocytic leukaemia/small lymphocytic lymphoma (CLL/SLL) is characterised by the diffuse infiltration of small neoplastic lymphocytes, which is accompanied by the presence of proliferation centres (PCs) comprising prolymphocytes and paraimmunoblasts. There is increasing evidence of accumulation of various molecular alterations in the tumour cells of PCs, which may explain why extended PCs are related to a less favourable prognosis. To further characterize PCs, we compared the expression level of EZH2 protein, the overexpression of which has recently been recognized as poor prognostic factor in CLL/SLL, in the PCs and the intervening small cell areas in lymph nodes of 15 patients with CLL/SLL. We also investigated the mutational profile of EZH2 and the expression of its upstream regulators c-Myc, E2F1, pRB and miR-26a. Our results showed a significantly increased expression of EZH2 in the PCs. No EZH2 mutations were detected, however, overexpression of c-Myc, E2F1 and pRb proteins as well as reduced expression of the tumor suppressor miR-26a were demonstrated in the PCs. In summary our findings indicate that EZH2 pathway is significantly upregulated in the PCs of CLL/SLL lymph nodes, providing further evidence for the distinguished biological features of the PCs.
Collapse
Affiliation(s)
- Kinga Szurián
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Irén Csala
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Dóra Marosvári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Hajnalka Rajnai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Dezső
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- MTA-SE Lendulet Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Violetta Piurkó
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - András Matolcsy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Lilla Reiniger
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE NAP, Brain Metastasis Research Group, Hungarian Academy of Sciences, 2nd Department of Pathology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
10
|
Liu H, Zhong L, Yuan T, Chen S, Zhou Y, An L, Guo Y, Fan M, Li Y, Sun Y, Li W, Shi Q, Weng Y. MicroRNA-155 inhibits the osteogenic differentiation of mesenchymal stem cells induced by BMP9 via downregulation of BMP signaling pathway. Int J Mol Med 2018; 41:3379-3393. [PMID: 29512689 PMCID: PMC5881775 DOI: 10.3892/ijmm.2018.3526] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/12/2018] [Indexed: 02/03/2023] Open
Abstract
Previous studies have indicated that bone morphogenetic protein 9 (BMP9) can promote the osteogenic differentiation of mesenchymal stem cells (MSCs) and increase bone formation in bone diseases. However, the mechanisms involved remained poorly understood. It is necessary to investigate the specific regulatory mechanisms of osteogenic differentiation that were induced by BMP9. During the process of osteogenic differentiation induced by BMP9, the expression of microRNA-155 (miR-155) exhibited a tendency of increasing at first and then decreasing, which made us consider that miR-155 may have a modulatory role in this process, but the roles of this process have not been elucidated. This study aimed to uncover miR-155 capable of concomitant regulation of this process. mmu-miR-155 mimic (miR-155) was transfected into MSCs and osteogenesis was induction by using recombinant adenovirus expressing BMP9. Overexpressed miR-155 in MSCs led to a decrease in alkaline phosphatase (ALP) staining and Alizarin red S staining during osteogenic differentiation, and reduced the expression of osteogenesis-related genes, such as runt-related transcription factor 2 (Runx2), osterix (OSX), osteocalcin (OCN) and osteopontin (OPN). On protein levels, overexpressed miR-155 markedly decreased the expression of phosphorylated Smad1/5/8 (p-Smad1/5/8), Runx2, OCN and OPN. Luciferase reporter assay revealed Runx2 and bone morphogenetic protein receptor 9 (BMPR2) are two direct target genes of miR-155. Downregulation of the expression of Runx2 and BMPR2, respectively could offset the inhibitory effect of miR-155 in the osteogenesis of MSCs. In vivo, subcutaneous ectopic osteogenesis of MSCs in nude mice showed miR-155 inhibited osteogenic differentiation. In conclusion, our results demonstrated that miR-155 can inhibit the osteogenic differentiation induced by BMP9 in MSCs.
Collapse
Affiliation(s)
- Hongxia Liu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liang Zhong
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Taixian Yuan
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Sicheng Chen
- Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| | - Yiqing Zhou
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liqin An
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yangliu Guo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mengtian Fan
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ya Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yanting Sun
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wang Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qiong Shi
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yaguang Weng
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
11
|
Abstract
Our understanding of cancer pathways has been changed by the determination of noncoding transcripts in the human genome in recent years. miRNAs and pseudogenes are key players of the noncoding transcripts from the genome, and alteration of their expression levels provides clues for significant biomarkers in pathogenesis of diseases. Especially, miRNAs and pseudogenes have both oncogenic and tumor-suppressive roles in each step of cancer tumorigenesis. In this current study, association between oncogenes and miRNAs-pseudogenes was reviewed and determined in human cancer by the CellMiner web-tool.
Collapse
Affiliation(s)
- Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ahi Evran University, Kırşehir, Turkey
| | - Aykut Özgür
- Division of Biochemistry, Department of Basic Sciences, Faculty of Pharmacy, Cumhuriyet University, 58140, Sivas, Turkey
| | - Yusuf Tutar
- Division of Biochemistry, Department of Basic Sciences, Faculty of Pharmacy, Cumhuriyet University, 58140, Sivas, Turkey.
- Department of Nutrition and Dietetics, Health Sciences Faculty, University of Health Sciences, Üsküdar, Istanbul, 34668, Turkey.
| |
Collapse
|
12
|
Khodadi E, Asnafi AA, Mohammadi-Asl J, Hosseini SA, Malehi AS, Saki N. Evaluation of miR-21 and miR-150 expression in immune thrombocytopenic purpura pathogenesis: a case-control study. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-017-1466-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Kotaki R, Koyama-Nasu R, Yamakawa N, Kotani A. miRNAs in Normal and Malignant Hematopoiesis. Int J Mol Sci 2017; 18:ijms18071495. [PMID: 28696359 PMCID: PMC5535985 DOI: 10.3390/ijms18071495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 02/07/2023] Open
Abstract
Lineage specification is primarily regulated at the transcriptional level and lineage-specific transcription factors determine cell fates. MicroRNAs (miRNAs) are 18–24 nucleotide-long non-coding RNAs that post-transcriptionally decrease the translation of target mRNAs and are essential for many cellular functions. miRNAs also regulate lineage specification during hematopoiesis. This review highlights the roles of miRNAs in B-cell development and malignancies, and discusses how miRNA expression profiles correlate with disease prognoses and phenotypes. We also discuss the potential for miRNAs as therapeutic targets and diagnostic tools for B-cell malignancies.
Collapse
Affiliation(s)
- Ryutaro Kotaki
- Department of Hematology and Oncology, Tokai University School of Medicine, Hiratsuka 259-1193, Japan.
| | - Ryo Koyama-Nasu
- Department of Hematology and Oncology, Tokai University School of Medicine, Hiratsuka 259-1193, Japan.
| | - Natsuko Yamakawa
- Department of Hematology and Oncology, Tokai University School of Medicine, Hiratsuka 259-1193, Japan.
| | - Ai Kotani
- Department of Hematology and Oncology, Tokai University School of Medicine, Hiratsuka 259-1193, Japan.
| |
Collapse
|
14
|
Szurián K, Csala I, Piurkó V, Deák L, Matolcsy A, Reiniger L. Quantitative miR analysis in chronic lymphocytic leukaemia/small lymphocytic lymphoma – proliferation centres are characterized by high miR-92a and miR-155 and low miR-150 expression. Leuk Res 2017; 58:39-42. [DOI: 10.1016/j.leukres.2017.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 02/06/2023]
|
15
|
Wang M, Gao W, Lu D, Teng L. MiR-1271 Inhibits Cell Growth in Prostate Cancer by Targeting ERG. Pathol Oncol Res 2017; 24:385-391. [DOI: 10.1007/s12253-017-0254-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
|
16
|
BRG1 regulation by miR-155 in human leukemia and lymphoma cell lines. Clin Transl Oncol 2017; 19:1010-1017. [PMID: 28251496 DOI: 10.1007/s12094-017-1633-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/18/2017] [Indexed: 02/01/2023]
Abstract
INTRODUCTION/PURPOSE BRG1 is a key regulator of leukemia stem cells. Indeed, it has been observed that this type of cells is unable to divide, survive and develop new tumors when BRG1 is down-regulated. MATERIALS AND METHODS We assessed BRG1 and miR-155 expression in 23 leukemia cell lines, and two no pathological lymphocyte samples using qPCR. MiR-155 transfection and western blot were used to analyze the relationship between miR-155 and its validated target, BRG1, by measuring protein expression levels. The effect of miR-155 on cell proliferation and prednisolone sensitivity were studied with resazurin assay. RESULTS BRG1 expression levels could correlate negatively with miR-155 expression levels, at least in Burkitt's lymphoma and diffuse large B cell lymphoma (DLBCL) cell lines. To clarify the role of miR-155 in the regulation of BRG1 expression, we administrated miR-155 mimics in different leukemia/lymphoma cell lines. Our results suggest that miR-155 regulate negatively and significantly the BRG1 expression at least in the MOLT4 cell line. CONCLUSION Our study revealed a previously unknown miR-155 heterogeneity that could result in differences in the treatment with miRNAs in our attempt to inhibit BRG1. However, the expression levels of BRG1 and miR-155, before prednisolone treatment were not statistically significantly associated prednisolone sensitive leukemia cells.
Collapse
|
17
|
Asnafi AA, Khodadi E, Golchin N, Alghasi A, Tavakolifar Y, Saki N. Association between microRNA-21, microRNA-150, and micro-RNA-451 expression and clinical outcome of patients with acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-016-1437-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Danielson KM, Rubio R, Abderazzaq F, Das S, Wang YE. High Throughput Sequencing of Extracellular RNA from Human Plasma. PLoS One 2017; 12:e0164644. [PMID: 28060806 PMCID: PMC5218574 DOI: 10.1371/journal.pone.0164644] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/28/2016] [Indexed: 01/03/2023] Open
Abstract
The presence and relative stability of extracellular RNAs (exRNAs) in biofluids has led to an emerging recognition of their promise as ‘liquid biopsies’ for diseases. Most prior studies on discovery of exRNAs as disease-specific biomarkers have focused on microRNAs (miRNAs) using technologies such as qRT-PCR and microarrays. The recent application of next-generation sequencing to discovery of exRNA biomarkers has revealed the presence of potential novel miRNAs as well as other RNA species such as tRNAs, snoRNAs, piRNAs and lncRNAs in biofluids. At the same time, the use of RNA sequencing for biofluids poses unique challenges, including low amounts of input RNAs, the presence of exRNAs in different compartments with varying degrees of vulnerability to isolation techniques, and the high abundance of specific RNA species (thereby limiting the sensitivity of detection of less abundant species). Moreover, discovery in human diseases often relies on archival biospecimens of varying age and limiting amounts of samples. In this study, we have tested RNA isolation methods to optimize profiling exRNAs by RNA sequencing in individuals without any known diseases. Our findings are consistent with other recent studies that detect microRNAs and ribosomal RNAs as the major exRNA species in plasma. Similar to other recent studies, we found that the landscape of biofluid microRNA transcriptome is dominated by several abundant microRNAs that appear to comprise conserved extracellular miRNAs. There is reasonable correlation of sets of conserved miRNAs across biological replicates, and even across other data sets obtained at different investigative sites. Conversely, the detection of less abundant miRNAs is far more dependent on the exact methodology of RNA isolation and profiling. This study highlights the challenges in detecting and quantifying less abundant plasma miRNAs in health and disease using RNA sequencing platforms.
Collapse
Affiliation(s)
- Kirsty M. Danielson
- Cardiovascular Institute, Massachusetts General Hospital, Boston, MA, United States of America
| | - Renee Rubio
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Fieda Abderazzaq
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Saumya Das
- Cardiovascular Institute, Massachusetts General Hospital, Boston, MA, United States of America
- * E-mail: (YEW); (SD)
| | - Yaoyu E. Wang
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, United States of America
- * E-mail: (YEW); (SD)
| |
Collapse
|
19
|
Filip AA, Grenda A, Popek S, Koczkodaj D, Michalak-Wojnowska M, Budzyński M, Wąsik-Szczepanek E, Zmorzyński S, Karczmarczyk A, Giannopoulos K. Expression of circulating miRNAs associated with lymphocyte differentiation and activation in CLL-another piece in the puzzle. Ann Hematol 2017; 96:33-50. [PMID: 27730344 PMCID: PMC5203831 DOI: 10.1007/s00277-016-2840-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/25/2016] [Indexed: 11/28/2022]
Abstract
Expression of microRNAs is altered in cancer. Circulating miRNA level assessed in body fluids commonly reflects their expression in tumor cells. In leukemias, however, both leukemic and nonleukemic cells compose circulating miRNA expression profile of peripheral blood. The latter contribution to extracellular miRNA pool may result in specific microenvironmental signaling, which promotes proliferation and survival. In our study, we used qT-PCR to assay peripheral blood serum of 22 chronic lymphocytic leukemia (CLL) patients for the expression of 84 miRNAs associated with activation and differentiation of B and T lymphocytes. Results were analyzed regarding the most important prognostic factors. We have found that the general expression of examined miRNAs in CLL patients was lower as compared to healthy volunteers. Only miR-34a-5p, miR31-5p, miR-155-5p, miR-150-5p, miR-15a-3p, and miR-29a-3p were expressed on a higher level. Alterations of expression observed in CLL patients involved miRNAs associated both with B and T lymphocyte differentiation and activation. The most important discriminating factors for all functional miRNA groups were trisomy 12, CD38 expression, B2M level, WBC, and NOTCH1 gene mutation. Correlation of expression of miRNAs related to T lymphocytes with prognostic factors proves their supportive function in a leukemic microenvironment. Further studies utilizing a larger test group of patients may warrant the identification of circulating miRNAs that are key players in intercellular interactions and should be considered in the design of microenvironment-targeted therapies.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- B-Lymphocytes/physiology
- Base Sequence
- Cell Differentiation/physiology
- Cells, Cultured
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Male
- MicroRNAs/biosynthesis
- MicroRNAs/blood
- MicroRNAs/genetics
- Middle Aged
- T-Lymphocytes/physiology
Collapse
Affiliation(s)
- Agata A Filip
- Department of Cancer Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland.
| | - Anna Grenda
- Department of Cancer Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Sylwia Popek
- Department of Cancer Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Dorota Koczkodaj
- Department of Cancer Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | | | - Michał Budzyński
- Department of Cancer Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Ewa Wąsik-Szczepanek
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Szymon Zmorzyński
- Department of Cancer Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | | | | |
Collapse
|
20
|
Fernandes Q. MicroRNA: Defining a new niche in Leukemia. Blood Rev 2016; 31:129-138. [PMID: 28087197 DOI: 10.1016/j.blre.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/10/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are endogenous short non-coding RNAs found to play key roles in the pathogenesis of leukemia. Apart from being traditionally identified as modulators of oncogenes, the potential roles of miRNAs seems to be growing with novel and recent findings among different subtypes of hematological malignancies. Leukemia is one of the earliest malignancies to be linked to abnormal expression of miRNAs. However, a clear understanding of the involvement of miRNAs in intricate mechanisms of leukemogenesis is still a necessity. This review summarizes the multiple roles of miRNAs in the pathogenesis of leukemia and highlights major research findings contributing to these aspects.
Collapse
|
21
|
Hernández-Sánchez M, Rodríguez-Vicente AE, Hernández JÁ, Lumbreras E, Sarasquete ME, Martín AÁ, Benito R, Vicente-Gutiérrez C, Robledo C, Heras NDL, Rodríguez JN, Alcoceba M, Coca AGD, Aguilar C, González M, Hernández-Rivas JM. MiRNA expression profile of chronic lymphocytic leukemia patients with 13q deletion. Leuk Res 2016; 46:30-6. [DOI: 10.1016/j.leukres.2016.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/29/2016] [Accepted: 04/08/2016] [Indexed: 01/02/2023]
|
22
|
Due H, Svendsen P, Bødker JS, Schmitz A, Bøgsted M, Johnsen HE, El-Galaly TC, Roug AS, Dybkær K. miR-155 as a Biomarker in B-Cell Malignancies. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9513037. [PMID: 27294145 PMCID: PMC4884835 DOI: 10.1155/2016/9513037] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/03/2016] [Indexed: 12/22/2022]
Abstract
MicroRNAs have the potential to be useful biomarkers in the development of individualized treatment since they are easy to detect, are relatively stable during sample handling, and are important determinants of cellular processes controlling pathogenesis, progression, and response to treatment of several types of cancers including B-cell malignancies. miR-155 is an oncomiR with a crucial role in tumor initiation and development of several B-cell malignancies. The present review elucidates the potential of miR-155 as a diagnostic, prognostic, or predictive biomarker in B-cell malignancies using a systematic search strategy to identify relevant literature. miR-155 was upregulated in several malignancies compared to nonmalignant controls and overexpression of miR-155 was further associated with poor prognosis. Elevated expression of miR-155 shows potential as a diagnostic and prognostic biomarker in diffuse large B-cell lymphoma and chronic lymphocytic leukemia. Additionally, in vitro and in vivo studies suggest miR-155 as an efficient therapeutic target, supporting its oncogenic function. The use of inhibiting anti-miR structures indicates promising potential as novel anticancer therapeutics. Reports from 53 studies prove that miR-155 has the potential to be a molecular tool in personalized medicine.
Collapse
Affiliation(s)
- Hanne Due
- Department of Haematology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
- Department of Haematology, Aarhus University Hospital, Tage-Hansens Gade 2, 8000 Aarhus C, Denmark
| | - Pernille Svendsen
- Department of Haematology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
| | - Julie Støve Bødker
- Department of Haematology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
| | - Alexander Schmitz
- Department of Haematology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
| | - Martin Bøgsted
- Department of Haematology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
- Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 5, 9100 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Fredrik Bajers Vej 5, 9100 Aalborg, Denmark
| | - Hans Erik Johnsen
- Department of Haematology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Fredrik Bajers Vej 5, 9100 Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
| | - Tarec Christoffer El-Galaly
- Department of Haematology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Fredrik Bajers Vej 5, 9100 Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
| | - Anne Stidsholt Roug
- Department of Haematology, Aarhus University Hospital, Tage-Hansens Gade 2, 8000 Aarhus C, Denmark
| | - Karen Dybkær
- Department of Haematology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Fredrik Bajers Vej 5, 9100 Aalborg, Denmark
| |
Collapse
|
23
|
Bansode RR, Khatiwada JR, Losso JN, Williams LL. Targeting MicroRNA in Cancer Using Plant-Based Proanthocyanidins. Diseases 2016; 4:E21. [PMID: 28933401 PMCID: PMC5456277 DOI: 10.3390/diseases4020021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022] Open
Abstract
Proanthocyanidins are oligomeric flavonoids found in plant sources, most notably in apples, cinnamon, grape skin and cocoa beans. They have been also found in substantial amounts in cranberry, black currant, green tea, black tea and peanut skins. These compounds have been recently investigated for their health benefits. Proanthocyanidins have been demonstrated to have positive effects on various metabolic disorders such as inflammation, obesity, diabetes and insulin resistance. Another upcoming area of research that has gained widespread interest is microRNA (miRNA)-based anticancer therapies. MicroRNAs are short non-coding RNA segments, which plays a crucial role in RNA silencing and post-transcriptional regulation of gene expression. Currently, miRNA based anticancer therapies are being investigated either alone or in combination with current treatment methods. In this review, we summarize the current knowledge and investigate the potential of naturally occurring proanthocyanidins in modulating miRNA expression. We will also assess the strategies and challenges of using this approach as potential cancer therapeutics.
Collapse
Affiliation(s)
- Rishipal R Bansode
- Center for Excellence in Post-Harvest Technologies, North Carolina Research Campus, North Carolina Agricultural and Technical State University, Kannapolis, NC 28081, USA.
| | - Janak R Khatiwada
- Center for Excellence in Post-Harvest Technologies, North Carolina Research Campus, North Carolina Agricultural and Technical State University, Kannapolis, NC 28081, USA.
| | - Jack N Losso
- School of Nutrition & Food Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Leonard L Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Research Campus, North Carolina Agricultural and Technical State University, Kannapolis, NC 28081, USA.
| |
Collapse
|
24
|
Almanza G, Zanetti M. High-efficiency Generation of Multiple Short Noncoding RNA in B-cells and B-cell-derived Extracellular Vesicles. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e271. [PMID: 26670278 PMCID: PMC5014536 DOI: 10.1038/mtna.2015.44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 10/22/2015] [Indexed: 11/09/2022]
Abstract
Short noncoding (snc)RNAs are important new players in the landscape of biologics with therapeutic potential. Recently, we reported on a new method for the synthesis and delivery of snc RNA in B-cells transfected with plasmid DNA. Here using the same approach, we demonstrate that B-cells can be programmed for the enforced biogenesis and synchronous release of multiple sncRNAs. Our data show that this goal is feasible and that multiple sncRNA are released in the extracellular compartment in amounts comparable to those from B-cells programmed to express and secrete one scnRNA only. Furthermore, we found that the cargo of extracellular vescicles (EVs) isolated from programmed B-cells is remarkably enriched for multiple sncRNA. On average, we found that the content of multiple sncRNAs in EVs is 3.6 copynumber/EV. Collectively, we demonstrate that B-cells can be easily programmed toward the synthesis and release of multiple sncRNAs, including sncRNA-laden EVs, efficiently and specifically.
Collapse
Affiliation(s)
- Gonzalo Almanza
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, California, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, California, USA
| |
Collapse
|
25
|
El Tayebi HM, Waly AA, Assal RA, Hosny KA, Esmat G, Abdelaziz AI. Transcriptional activation of the IGF-II/IGF-1R axis and inhibition of IGFBP-3 by miR-155 in hepatocellular carcinoma. Oncol Lett 2015; 10:3206-3212. [PMID: 26722313 DOI: 10.3892/ol.2015.3725] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 05/29/2015] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by the aberrant expression of a number of genes that govern crucial signaling pathways. The insulin-like growth factor (IGF) axis is important in this context, and the precise regulation of expression of members of this axis is known to be lost in HCC. miR-155 is a well-established oncogene in numerous types of cancer. However, to the best of our knowledge, its effect on the regulation of the IGF axis has not been investigated to date. The present study aimed to elucidate the interactions between miR-155 and key components of the IGF axis, in addition to examining its effect on HCC development. Reverse transcription-quantitative polymerase chain reaction was used to measure the expression of miR-155 in HCC and cirrhotic tissues, in addition to HCC cell lines. Furthermore, the effect of the induction of miR-155 expression on the expression of three members of the IGF axis [IGF II, IGF type-1 receptor (IGF-1R) and IGF-binding protein 3 (IGFBP-3)], was analyzed. Finally, the effect of miR-155 on HCC cell proliferation, migration and clonogenicity was also examined. Quantification of the expression of miR-155 demonstrated that it is upregulated in HCC. Induction of the expression of miR-155 in HCC cell lines led to the upregulation of IGF-II and IGF-IR, and the downregulation of IGFBP-3. In addition, the proliferation, migration and clonogenicity of HCC was increased following induction of miR-155 expression. miR-155 is an oncomiR, which upregulates the oncogenes, IGF-II and IGF-IR, and downregulates the tumor suppressor, IGFBP-3, thereby resulting in increased HCC cell carcinogenicity. Therefore, miR-155 may be a therapeutic target in HCC.
Collapse
Affiliation(s)
- Hend M El Tayebi
- The Molecular Pathology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11432, Egypt
| | - Amr A Waly
- The Molecular Pathology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11432, Egypt
| | - Reem A Assal
- The Molecular Pathology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11432, Egypt
| | - Karim A Hosny
- Department of General Surgery, Faculty of Medicine, Cairo University, Cairo 11835, Egypt
| | - Gamal Esmat
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Cairo 11835, Egypt
| | - Ahmed I Abdelaziz
- The Molecular Pathology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11432, Egypt
| |
Collapse
|
26
|
Tutar L, Tutar E, Özgür A, Tutar Y. Therapeutic Targeting of microRNAs in Cancer: Future Perspectives. Drug Dev Res 2015; 76:382-8. [PMID: 26435382 DOI: 10.1002/ddr.21273] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Preclinical Research The discovery of microRNAs (miRNAs) and their link with cancer has opened a new era in cancer therapeutics. Approximately, 18 - 24 nucleotides long, miRNAs can up-regulate or down-regulate gene expression in many cancer types and are respectively categorized as oncogenes (oncomirs) or tumor suppressors. Expression profiles of miRNAs with biomarker potential can be used for the classification, diagnosis, therapeutic treatment, and prognosis of different cancer types. miRNA mimics and miRNA antagonists are the two main approaches to miRNA-based cancer therapies that respectively inhibit oncomirs or restore the expression of tumor suppressive miRNAs. This review serves to provide some general insight into miRNA biogenesis, cancer related miRNAs, and miRNA therapeutics.
Collapse
Affiliation(s)
- Lütfi Tutar
- Faculty of Science and Letters, Department of Biology, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Esen Tutar
- Graduate School of Natural and Applied Sciences, Department of Bioengineering and Sciences, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Aykut Özgür
- Faculty of Natural Sciences and Engineering, Department of Bioengineering, Gaziosmanpasa University, Tokat, Turkey
| | - Yusuf Tutar
- Faculty of Pharmacy, Department of Basic Sciences, Division of Biochemistry, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
27
|
Danilova OV, Paiva C, Kaur P, Kamal A, Sempere LF, Danilov AV. MIR21 is differentially expressed in the lymphoid tissue and modulated by stromal signalling in chronic lymphocytic leukaemia. Br J Haematol 2015; 170:272-5. [PMID: 25643738 DOI: 10.1111/bjh.13282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Cody Paiva
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Prabhjot Kaur
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Ahsan Kamal
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Lorenzo F Sempere
- Center for Translational Medicine at Van Andel Research Institute, Grand Rapids, MI, USA
| | - Alexey V Danilov
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
28
|
Stamatopoulos B, Van Damme M, Crompot E, Dessars B, Housni HE, Mineur P, Meuleman N, Bron D, Lagneaux L. Opposite Prognostic Significance of Cellular and Serum Circulating MicroRNA-150 in Patients with Chronic Lymphocytic Leukemia. Mol Med 2015; 21:123-33. [PMID: 25584781 DOI: 10.2119/molmed.2014.00214] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/07/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (or miRs) play a crucial role in chronic lymphocytic leukemia (CLL) physiopathology and prognosis. In addition, circulating microRNAs in body fluids have been proposed as new biomarkers. We investigated the expression of matched cellular and serum circulating microRNA-150 by quantitative real-time PCR (qPCR) from purified CD19(+) cells or from CLL serums obtained at diagnosis in a cohort of 273/252 CLL patients with a median follow-up of 78 months (range 7-380) and correlated it to other biological or clinical parameters. We showed that miR-150 was significantly overexpressed in CLL cells/serums compared with healthy subjects (P < 0.0001). Among CLL patients, a low cellular miR-150 expression level was associated with tumor burden, disease aggressiveness and poor prognostic factors. In contrast, a high level of serum miR-150 was associated with tumor burden markers and some markers of poor prognosis. Similarly, cellular and serum miR-150 also predicted treatment-free survival (TFS) and overall survival (OS) in an opposite manner: patients with low cellular/serum miR-150 levels have median TFS of 40/111 months compared with high-level patients who have a median TFS of 122/60 months (P < 0.0001/P = 0.0066). Similar results were observed for OS. We also found that cellular and serum miR-150 levels vary in an opposite manner during disease progression and that cellular miR-150 could be regulated by its release into the extracellular space. Cellular and serum levels of miR-150 are associated with opposite clinical prognoses and could be used to molecularly monitor disease evolution as a new prognostic factor in CLL.
Collapse
Affiliation(s)
- Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, Faculty of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Michaël Van Damme
- Laboratory of Clinical Cell Therapy, Faculty of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Emerence Crompot
- Laboratory of Clinical Cell Therapy, Faculty of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Barbara Dessars
- Department of Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Hakim El Housni
- Department of Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Mineur
- Department of Hemato-Oncology, Grand Hôpital de Charleroi, Gilly, Belgium
| | | | - Dominique Bron
- Department of Hematology, Institut Jules Bordet, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Faculty of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
29
|
Godbersen JC, Humphries LA, Danilova OV, Kebbekus PE, Brown JR, Eastman A, Danilov AV. The Nedd8-activating enzyme inhibitor MLN4924 thwarts microenvironment-driven NF-κB activation and induces apoptosis in chronic lymphocytic leukemia B cells. Clin Cancer Res 2014; 20:1576-89. [PMID: 24634471 DOI: 10.1158/1078-0432.ccr-13-0987] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Stromal-mediated signaling enhances NF-κB pathway activity in chronic lymphocytic leukemia (CLL) B cells, leading to cell survival and chemoresistance. Ubiquitination of IκBα may partially account for constitutive activation of NF-κB. MLN4924 is an investigational agent that inhibits the Nedd8-activating enzyme, thereby neutralizing Cullin-RING ubiquitin ligases and preventing degradation of their substrates. EXPERIMENTAL DESIGN We conducted a preclinical assessment of MLN4924 in CLL. Primary CLL cells were cocultured in vitro with CD40L-expressing stroma to mimic the prosurvival conditions present in lymphoid tissue. The effect of MLN4924 on CLL cell apoptosis, NF-κB pathway activity, Bcl-2 family members, and cell cycle was assessed by flow cytometry, Western blotting, PCR, and immunocytochemistry. RESULTS CD40L-expressing stroma protected CLL cells from spontaneous apoptosis and induced resistance to multiple drugs, accompanied by NF-κB activation and Bim repression. Treatment with MLN4924 induced CLL cell apoptosis and circumvented stroma-mediated resistance. This was accompanied by accumulation of phospho-IκBα, decreased nuclear translocation of p65 and p52 leading to inhibition of both the canonical and noncanonical NF-κB pathways, and reduced transcription of their target genes, notably chemokines. MLN4924 promoted induction of Bim and Noxa in the CLL cells leading to rebalancing of Bcl-2 family members toward the proapoptotic BH3-only proteins. siRNA-mediated knockdown of Bim or Noxa decreased sensitivity to MLN4924. MLN4924 enhanced the antitumor activity of the inhibitors of B-cell receptor (BCR)-associated kinases. CONCLUSIONS MLN4924 disrupts NF-κB activation and induces Bim expression in CLL cells, thereby preventing stroma-mediated resistance. Our data provide rationale for further evaluation of MLN4924 in CLL.
Collapse
Affiliation(s)
- J Claire Godbersen
- Authors' Affiliations: Departments of Medicine and Pathology, Dartmouth-Hitchcock Medical Center, Lebanon; Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire; and Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
30
|
Palagani A, Op de Beeck K, Naulaerts S, Diddens J, Sekhar Chirumamilla C, Van Camp G, Laukens K, Heyninck K, Gerlo S, Mestdagh P, Vandesompele J, Berghe WV. Ectopic microRNA-150-5p transcription sensitizes glucocorticoid therapy response in MM1S multiple myeloma cells but fails to overcome hormone therapy resistance in MM1R cells. PLoS One 2014; 9:e113842. [PMID: 25474406 PMCID: PMC4256227 DOI: 10.1371/journal.pone.0113842] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 11/01/2014] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids (GCs) selectively trigger cell death in the multiple myeloma cell line MM1S which express NR3C1/Glucocorticoid Receptor (GR) protein, but fail to kill MM1R cells which lack GR protein. Given recent demonstrations of altered microRNA profiles in a diverse range of haematological malignancies and drug resistance, we characterized GC inducible mRNA and microRNA transcription profiles in GC sensitive MM1S as compared to GC resistant MM1R cells. Transcriptome analysis revealed that GCs regulate expression of multiple genes involved in cell cycle control, cell organization, cell death and immunological disease in MM1S cells, which remain unaffected in MM1R cells. With respect to microRNAs, mir-150-5p was identified as the most time persistent GC regulated microRNA, out of 5 QPCR validated microRNAs (mir-26b, mir-125a-5p, mir-146-5p, mir-150-5p, and mir-184), which are GC inducible in MM1S but not in MM1R cells. Functional studies further revealed that ectopic transfection of a synthetic mir-150-5p mimics GR dependent gene expression changes involved in cell death and cell proliferation pathways. Remarkably, despite the gene expression changes observed, overexpression of mir-150-5p in absence of GCs did not trigger significant cytotoxicity in MM1S or MM1R cells. This suggests the requirement of additional steps in GC induced cell death, which can not be mimicked by mir-150-5p overexpression alone. Interestingly, a combination of mir-150-5p transfection with low doses GC in MM1S cells was found to sensitize therapy response, whereas opposite effects could be observed with a mir-150-5p specific antagomir. Although mir-150-5p overexpression did not substantially change GR expression levels, it was found that mir-150-5p evokes GR specific effects through indirect mRNA regulation of GR interacting transcription factors and hormone receptors, GR chaperones, as well as various effectors of unfolded protein stress and chemokine signalling. Altogether GC-inducible mir-150-5p adds another level of regulation to GC specific therapeutic responses in multiple myeloma.
Collapse
Affiliation(s)
- Ajay Palagani
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University, Ghent, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Stefan Naulaerts
- Biomedical Informatics Research Center Antwerp (Biomina), University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
- Advanced Database Research and Modelling (ADReM), Department of Mathematics & Computer sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Jolien Diddens
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Chandra Sekhar Chirumamilla
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Biomedical Informatics Research Center Antwerp (Biomina), University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
- Advanced Database Research and Modelling (ADReM), Department of Mathematics & Computer sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Karen Heyninck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University, Ghent, Belgium
| | - Sarah Gerlo
- VIB-UGent Department of Medical Protein Research, Ghent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Joke Vandesompele
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
31
|
García-Muñoz R, Llorente L. Chronic lymphocytic leukaemia: could immunological tolerance mechanisms be the origin of lymphoid neoplasms? Immunology 2014; 142:536-50. [PMID: 24645778 PMCID: PMC4107664 DOI: 10.1111/imm.12285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/06/2014] [Accepted: 03/13/2014] [Indexed: 12/12/2022] Open
Abstract
Immunological tolerance theory in chronic lymphocytic leukaemia (CLL): we suggest that B cells that express B-cell receptors (BCR) that recognize their own BCR epitopes are viewed by immune system as 'dangerous cells'. BCR autonomous signalling may induce constant receptor editing and mistakes in allelic exclusion. The fact that whole BCR recognizes a self-antigen or foreing antigen may be irrelevant in early B cell development. In early B cells, autonomous signalling induced by recognition of the BCR's own epitopes simulates an antigen-antibody engagement. In the bone marrow this interaction is viewed as recognition of self-molecules and induces receptor editing. In mature B cells autonomous signalling by the BCR may promote 'reversible anergy' and also may correct self-reactivity induced by the somatic hypermutation mechanisms in mutated CLL B cells. However, in unmutated CLL B cells, BCR autonomous signalling in addition to self-antigen recognition augments B cell activation, proliferation and genomic instability. We suggest that CLL originates from a coordinated normal immunologic tolerance mechanism to destroy self-reactive B cells. Additional genetic damage induced by tolerance mechanisms may immortalize self-reactive B cells and transform them into a leukemia.
Collapse
Affiliation(s)
| | - Luis Llorente
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico City, México
| |
Collapse
|
32
|
MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood 2014; 124:546-54. [PMID: 24914134 DOI: 10.1182/blood-2014-03-559690] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High-level leukemia cell expression of micro-RNA 155 (miR-155) is associated with more aggressive disease in patients with chronic lymphocytic leukemia (CLL), including those cases with a low-level expression of ζ-chain-associated protein of 70 kD. CLL with high-level miR-155 expressed lower levels of Src homology-2 domain-containing inositol 5-phosphatase 1 and were more responsive to B-cell receptor (BCR) ligation than CLL with low-level miR-155. Transfection with miR-155 enhanced responsiveness to BCR ligation, whereas transfection with a miR-155 inhibitor had the opposite effect. CLL in lymphoid tissue expressed higher levels of miR155HG than CLL in the blood of the same patient. Also, isolated CD5(bright)CXCR4(dim) cells, representing CLL that had been newly released from the microenvironment, expressed higher levels of miR-155 and were more responsive to BCR ligation than isolated CD5(dim)CXCR4(bright) cells of the same patient. Treatment of CLL or normal B cells with CD40-ligand or B-cell-activating factor upregulated miR-155 and enhanced sensitivity to BCR ligation, effects that could be blocked by inhibitors to miR-155. This study demonstrates that the sensitivity to BCR ligation can be enhanced by high-level expression of miR-155, which in turn can be induced by crosstalk within the tissue microenvironment, potentially contributing to its association with adverse clinical outcome in patients with CLL.
Collapse
|
33
|
Mortuza R, Feng B, Chakrabarti S. miR-195 regulates SIRT1-mediated changes in diabetic retinopathy. Diabetologia 2014; 57:1037-46. [PMID: 24570140 DOI: 10.1007/s00125-014-3197-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/31/2014] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Endothelial cell (EC) damage is a key mechanism causing retinal microvascular injury in diabetes. Several microRNAs (miRNAs) have been found to regulate sirtuin 1 (SIRT1, which is involved in regulation of the cell cycle, survival and metabolism) in various tissues and disease states, but no studies have been conducted on the role of miRNA in regulation of SIRT1 in diabetic retinopathy. Here we investigated the effect of miRNA-195 (miR-195), a SIRT1-targeting miRNA, on the development of diabetes-induced changes in ECs and retina. METHODS The level of miR-195 was measured in human retinal and dermal microvascular ECs (HRECs, HMECs) following exposure to 25 mmol/l glucose (high glucose, HG) and 5 mmol/l glucose (normal glucose, NG). SIRT1 and fibronectin levels were examined following transfection with miR-195 mimic or antagomir or forced expression of SIRT1. Retinal tissues from diabetic rats were similarly studied following intravitreal injection of an miR-195 antagomir or mimic. In situ hybridisation was used to localise retinal miR-195. RESULTS HG caused increased miR-195 levels and decreased SIRT1 expression (compared with NG) in both HRECs and HMECs. Transfection with miR-195 antagomir and forced expression of SIRT1 prevented such changes, whereas transfection with miR-195 mimic produced HG-like effects. A luciferase assay confirmed the binding of miR-195 to the 3' untranslated region of SIRT1. miR-195 expression was upregulated in retinas of diabetic rats and intravitreal injection of miR-195 antagomir ameliorated levels of SIRT1. CONCLUSIONS/INTERPRETATION These studies identified a novel mechanism whereby miR-195 regulates SIRT1-mediated tissue damage in diabetic retinopathy.
Collapse
Affiliation(s)
- Rokhsana Mortuza
- Department of Pathology, Schulich School of Medicine and Dentistry, Western University, DSB - 4033, London, ON, Canada, N6A 5C1
| | | | | |
Collapse
|
34
|
Pei N, Jie F, Luo J, Wan R, Zhang Y, Chen X, Liang Z, Du H, Li A, Chen B, Zhang Y, Sumners C, Li J, Gu W, Li H. Gene expression profiling associated with angiotensin II type 2 receptor-induced apoptosis in human prostate cancer cells. PLoS One 2014; 9:e92253. [PMID: 24658029 PMCID: PMC3962398 DOI: 10.1371/journal.pone.0092253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/19/2014] [Indexed: 11/30/2022] Open
Abstract
Increased expression of angiotensin II type 2 receptor (AT2R) induces apoptosis in numerous tumor cell lines, with either Angiotensin II-dependent or Angiotensin II-independent regulation, but its molecular mechanism remains poorly understood. Here, we used PCR Array analysis to determine the gene and microRNA expression profiles in human prostate cancer cell lines transduced with AT2R recombinant adenovirus. Our results demonstrated that AT2R over expression leads to up-regulation of 6 apoptosis-related genes (TRAIL-R2, BAG3, BNIPI, HRK, Gadd45a, TP53BP2), 2 cytokine genes (IL6 and IL8) and 1 microRNA, and down-regulation of 1 apoptosis-related gene TNFSF10 and 2 cytokine genes (BMP6, BMP7) in transduced DU145 cells. HRK was identified as an up-regulated gene in AT2R-transduced PC-3 cells by real-time RT-PCR. Next, we utilized siRNAs to silence the up-regulated genes to further determine their roles on AT2R overexpression mediated apoptosis. The results showed downregulation of Gadd45a reduced the apoptotic effect by ∼30% in DU145 cells, downregulation of HRK reduced AT2R-mediated apoptosis by more than 50% in PC-3 cells, while downregulation of TRAIL-R2 enhanced AT2R-mediated apoptosis more than 4 times in DU145 cells. We also found that the effects on AT2R-mediated apoptosis caused by downregulation of Gadd45a, TRAIL-R2 and HRK were independent in activation of p38 MAPK, p44/42 MAPK and p53. Taken together, our results demonstrated that TRAIL-R2, Gadd45a and HRK may be novel target genes for further study of the mechanism of AT2R-mediated apoptosis in prostate cancer cells.
Collapse
Affiliation(s)
- Nana Pei
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Feilong Jie
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Luo
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Renqiang Wan
- Department of Otolaryngology-Head and Neck Surgery, Guangdong No. 2 Provincial People’s Hospital, Guangzhou, Guangdong, China
| | - Yanling Zhang
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinglu Chen
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhibing Liang
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyan Du
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Andrew Li
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
| | - Baihong Chen
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Zhang
- Department of Pharmacology, University of Florida, Gainesville, Florida, United States of America
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, United States of America
| | - Jinlong Li
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (JL); (WG); (HL)
| | - Weiwang Gu
- Institute of Comparative Medicine and Center of Laboratory Animals, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (JL); (WG); (HL)
| | - Hongwei Li
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (JL); (WG); (HL)
| |
Collapse
|
35
|
Agathangelidis A, Vardi A, Baliakas P, Stamatopoulos K. Stereotyped B-cell receptors in chronic lymphocytic leukemia. Leuk Lymphoma 2014; 55:2252-61. [DOI: 10.3109/10428194.2013.879715] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
The Role of miRNA in Haematological Malignancy. BONE MARROW RESEARCH 2013; 2013:269107. [PMID: 24416592 PMCID: PMC3876682 DOI: 10.1155/2013/269107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/01/2013] [Indexed: 12/19/2022]
Abstract
Currently, there are over 1,800 annotated human miRNAs, many of which have tissue-specific expression. Numerous studies have highlighted their role in haematopoietic differentiation and proliferation, acting as master regulators of haematopoietic stem cell function. Aberrant expression of miRNAs has been observed in haematological cancers, exhibiting unique expression signatures in comparison to normal counterparts. Functional and target analyses as well as animal models have attempted to annotate how different miRNA may contribute to the pathophysiology of these malignancies from modulating cancer associated genes, functioning directly as oncogenes or tumour suppressor genes or acting as bystanders or regulators of the epigenetic mechanisms in cancer. miRNAs have also been shown to play a role in modulating drug resistance and determining prognosis between the various subtypes of blood cancers. This review discusses the important role that miRNAs play in haematological malignancies by exploring associations that exist between the two and trying to examine evidence of causality to support the tantalising possibility that miRNAs might serve as therapeutic targets in blood cancers.
Collapse
|
37
|
Sekar TV, Mohanram RK, Foygel K, Paulmurugan R. Therapeutic evaluation of microRNAs by molecular imaging. Am J Cancer Res 2013; 3:964-85. [PMID: 24396507 PMCID: PMC3881098 DOI: 10.7150/thno.4928] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/22/2013] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) function as regulatory molecules of gene expression with multifaceted activities that exhibit direct or indirect oncogenic properties, which promote cell proliferation, differentiation, and the development of different types of cancers. Because of their extensive functional involvement in many cellular processes, under both normal and pathological conditions such as various cancers, this class of molecules holds particular interest for cancer research. MiRNAs possess the ability to act as tumor suppressors or oncogenes by regulating the expression of different apoptotic proteins, kinases, oncogenes, and other molecular mechanisms that can cause the onset of tumor development. In contrast to current cancer medicines, miRNA-based therapies function by subtle repression of gene expression on a large number of oncogenic factors, and therefore are anticipated to be highly efficacious. Given their unique mechanism of action, miRNAs are likely to yield a new class of targeted therapeutics for a variety of cancers. More than thousand miRNAs have been identified to date, and their molecular mechanisms and functions are well studied. Furthermore, they are established as compelling therapeutic targets in a variety of cellular complications. However, the notion of using them as therapeutic tool was proposed only recently, given that modern imaging methods are just beginning to be deployed for miRNA research. In this review, we present a summary of various molecular imaging methods, which are instrumental in revealing the therapeutic potential of miRNAs, especially in various cancers. Imaging methods have recently been developed for monitoring the expression levels of miRNAs and their target genes by fluorescence-, bioluminescence- and chemiluminescence-based imaging techniques. Mature miRNAs bind to the untranslated regions (UTRs) of the target mRNAs and regulate target genes expressions. This concept has been used for the development of fluorescent reporter-based imaging strategies to monitor the functional status of endogenous miRNAs, or the respective miRNAs transiently co-expressed in cells. Bioluminescence-based imaging strategies have been used to investigate various stages of miRNA processing and its involvement in different cellular processes. Similarly, chemiluminsecence methods were developed for in vitro miRNA imaging such as monitoring their therapeutic roles in various cancer cell lines.
Collapse
|
38
|
Huang S, Chen Y, Wu W, Ouyang N, Chen J, Li H, Liu X, Su F, Lin L, Yao Y. miR-150 promotes human breast cancer growth and malignant behavior by targeting the pro-apoptotic purinergic P2X7 receptor. PLoS One 2013; 8:e80707. [PMID: 24312495 PMCID: PMC3846619 DOI: 10.1371/journal.pone.0080707] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/06/2013] [Indexed: 11/18/2022] Open
Abstract
The P2X7 receptor regulates cell growth through mediation of apoptosis. Low level expression of P2X7 has been linked to cancer development because tumor cells harboring a defective P2X7 mechanism can escape P2X7 pro-apoptotic control. microRNAs (miRNAs) function as negative regulators of post-transcriptional gene expression, playing major roles in cellular differentiation, proliferation, and metastasis. In this study, we found that miR-150 was over-expressed in breast cancer cell lines and tissues. In these breast cancer cell lines, blocking the action of miR-150 with inhibitors leads to cell death, while ectopic expression of the miR-150 results in increased cell proliferation. We deploy a microRNA sponge strategy to inhibit miR-150 in vitro, and the result demonstrates that the 3′-untranslated region (3′UTR) of P2X7 receptor contains a highly conserved miR-150-binding motif and its direct interaction with miR-150 down-regulates endogenous P2X7 protein levels. Furthermore, our findings demonstrate that miR-150 over-expression promotes growth, clonogenicity and reduces apoptosis in breast cancer cells. Meanwhile, these findings can be decapitated in nude mice with breast cancer xenografts. Finally, these observations strengthen our working hypothesis that up-regulation of miR-150 in breast cancer is inversely associated with P2X7 receptor expression level. Together, these findings establish miR-150 as a novel regulator of P2X7 and a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Songyin Huang
- Department of Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yongsong Chen
- Department of Endocrinology, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Wei Wu
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Nengyong Ouyang
- Department of Gynaecology and Obstetrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianing Chen
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hongyu Li
- Department of Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaoqiang Liu
- Department of Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fengxi Su
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ling Lin
- Department of Rheumatology, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- * E-mail: (LL); (YDY)
| | - Yandan Yao
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail: (LL); (YDY)
| |
Collapse
|
39
|
Li X, Kong M, Jiang D, Qian J, Duan Q, Dong A. MicroRNA-150 aggravates H2O2-induced cardiac myocyte injury by down-regulating c-myb gene. Acta Biochim Biophys Sin (Shanghai) 2013; 45:734-41. [PMID: 23824072 DOI: 10.1093/abbs/gmt067] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MicroRNAs (miRNAs) are one class of non-coding RNAs that play an important role in post-transcriptional regulation via the degradation or translational inhibition of their target genes. MicroRNA-150 (miR-150) plays a vital role in regulating the development of B and T lymphocytes. Although the dysregulation of miR-150 was confirmed in human myocardial infarction, little is known regarding the biological functions of miR-150 in response to reactive oxygen species (ROS)-mediated gene regulation in cardiac myocytes. Using quantitative real-time reverse transcription-polymerase chain reaction, we demonstrated that the level of miR-150 was up-regulated in cardiac myocytes after treatment with hydrogen peroxide (H2O2). To identify the potential roles of miR-150 in H2O2-mediated gene regulation, we modulated expression of miR-150 using miR-150 inhibitor and miR-150 mimics. Results showed that silencing expression of miR-150 decreased H2O2-induced cardiac cell death and apoptosis. In lymphocytes, c-myb was a direct target of miR-150. In cardiac myocytes, we found that c-myb was also involved in miR-150-mediated H2O2-induced cardiac cell death. These results suggested that miR-150 participates in H2O2-mediated gene regulation and functional modulation in cardiac myocytes. MiR-150 may play an essential role in heart diseases related to ROS, such as cardiac hypertrophy, heart failure, myocardial infarction, and myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Xuebiao Li
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
40
|
The role of miR-150 in normal and malignant hematopoiesis. Oncogene 2013; 33:3887-93. [PMID: 23955084 DOI: 10.1038/onc.2013.346] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 12/18/2022]
Abstract
MicroRNAs are a class of small non-coding RNAs that have been implicated to mediate gene regulation in virtually all important biological processes. Recently there is accumulating evidence showing that miR-150 has essential regulatory roles in both normal and malignant hematopoiesis and holds great potential as a therapeutic target in treating various types of hematopoietic malignancies. The purpose of this review is to summarize our current knowledge about the expression patterns, biological functions and regulatory mechanisms of miR-150 in normal and malignant hematopoiesis, and to highlight the important questions to be answered in this burgeoning field.
Collapse
|
41
|
Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia. Blood 2013; 122:1891-9. [PMID: 23821659 DOI: 10.1182/blood-2013-01-478222] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Noncoding RNAs play a pivotal role in the pathogenesis of chronic lymphocytic leukemia (CLL). We hypothesized that microRNAs (miRs) are involved in the transition from monoclonal B-cell lymphocytosis (MBL) to CLL and tested miR-15a/16-1 cluster, miR-21, and miR-155 expression in purified B cells of normal individuals, individuals with MBL, and patients with CLL. When we analyzed 224 samples from 2 independent training and validation cohorts, we found that miR-155 was overexpressed in B cells from individuals with MBL, and even more so in B cells from patients with CLL, when compared with B cells from normal individuals. Furthermore, we were able to identify miR-155 in circulating microvesicles from both individuals with MBL and patients with CLL. Next, to examine the prognostic role of miR-155, we measured its expression level in plasma samples collected before treatment initiation in 228 patients with CLL. We found significantly higher miR-155 expression levels in patients who failed to achieve a complete response compared with those who experienced complete response. Our findings support the use of cellular and plasma levels of miR-155 as biomarkers for the risk of progression in individuals with MBL, as well as to identify patients with CLL who may not respond well to therapy.
Collapse
|
42
|
Yan XL, Jia YL, Chen L, Zeng Q, Zhou JN, Fu CJ, Chen HX, Yuan HF, Li ZW, Shi L, Xu YC, Wang JX, Zhang XM, He LJ, Zhai C, Yue W, Pei XT. Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology 2013; 57:2274-86. [PMID: 23316018 DOI: 10.1002/hep.26257] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/19/2012] [Indexed: 12/15/2022]
Abstract
UNLABELLED Cancer-associated mesenchymal stem cells (MSCs) play a pivotal role in modulating tumor progression. However, the interactions between liver cancer-associated MSCs (LC-MSCs) and hepatocellular carcinoma (HCC) remain unreported. Here, we identified the presence of MSCs in HCC tissues. We also showed that LC-MSCs significantly enhanced tumor growth in vivo and promoted tumor sphere formation in vitro. LC-MSCs also promoted HCC metastasis in an orthotopic liver transplantation model. Complementary DNA (cDNA) microarray analysis showed that S100A4 expression was significantly higher in LC-MSCs compared with liver normal MSCs (LN-MSCs) from adjacent cancer-free tissues. Importantly, the inhibition of S100A4 led to a reduction of proliferation and invasion of HCC cells, while exogenous S100A4 expression in HCC cells resulted in heavier tumors and more metastasis sites. Our results indicate that S100A4 secreted from LC-MSCs can promote HCC cell proliferation and invasion. We then found the expression of oncogenic microRNA (miR)-155 in HCC cells was significantly up-regulated by coculture with LC-MSCs and by S100A4 ectopic overexpression. The invasion-promoting effects of S100A4 were significantly attenuated by a miR-155 inhibitor. These results suggest that S100A4 exerts its effects through the regulation of miR-155 expression in HCC cells. We demonstrate that S100A4 secreted from LC-MSCs promotes the expression of miR-155, which mediates the down-regulation of suppressor of cytokine signaling 1, leading to the subsequent activation of STAT3 signaling. This promotes the expression of matrix metalloproteinases 9, which results in increased tumor invasiveness. CONCLUSION S100A4 secreted from LC-MSCs is involved in the modulation of HCC progression, and may be a potential therapeutic target. (HEPATOLOGY 2013).
Collapse
Affiliation(s)
- Xin-Long Yan
- Stem Cells and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Papakonstantinou N, Ntoufa S, Chartomatsidou E, Papadopoulos G, Hatzigeorgiou A, Anagnostopoulos A, Chlichlia K, Ghia P, Muzio M, Belessi C, Stamatopoulos K. Differential microRNA profiles and their functional implications in different immunogenetic subsets of chronic lymphocytic leukemia. Mol Med 2013; 19:115-23. [PMID: 23615967 DOI: 10.2119/molmed.2013.00005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/16/2013] [Indexed: 01/13/2023] Open
Abstract
Critical processes of B-cell physiology, including immune signaling through the B-cell receptor (BcR) and/or Toll-like receptors (TLRs), are targeted by microRNAs. With this in mind and also given the important role of BcR and TLR signaling and microRNAs in chronic lymphocytic leukemia (CLL), we investigated whether microRNAs could be implicated in shaping the behavior of CLL clones with distinct BcR and TLR molecular and functional profiles. To this end, we examined 79 CLL cases for the expression of 33 microRNAs, selected on the following criteria: (a) deregulated in CLL versus normal B-cells; (b) differentially expressed in CLL subgroups with distinct clinicobiological features; and, (c) if meeting (a) + (b), having predicted targets in the immune signaling pathways. Significant upregulation of miR-150, miR-29c, miR-143 and miR-223 and downregulation of miR-15a was found in mutated versus unmutated CLL, with miR-15a showing the highest fold difference. Comparison of two major subsets with distinct stereotyped BcRs and signaling signatures, namely subset 1 [IGHV1/5/7-IGKV1(D)-39, unmutated, bad prognosis] versus subset 4 [IGHV4-34/IGKV2-30, mutated, good prognosis] revealed differences in the expression of miR-150, miR-29b, miR-29c and miR-101, all down-regulated in subset 1. We were also able to link these distinct microRNA profiles with cellular phenotypes, importantly showing that, in subset 1, miR-101 downregulation is associated with overexpression of the enhancer of zeste homolog 2 (EZH2) protein, which has been associated with clinical aggressiveness in other B-cell lymphomas. In conclusion, specific miRNAs differentially expressed among CLL subgroups with distinct BcR and/or TLR signaling may modulate the biological and clinical behavior of the CLL clones.
Collapse
Affiliation(s)
- Nikos Papakonstantinou
- Laboratory of Molecular Immunobiology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Farhana L, Dawson MI, Murshed F, Das JK, Rishi AK, Fontana JA. Upregulation of miR-150* and miR-630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R. PLoS One 2013; 8:e61015. [PMID: 23675407 PMCID: PMC3651232 DOI: 10.1371/journal.pone.0061015] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/05/2013] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs have been implicated in many critical cellular processes including apoptosis. We have previously found that apoptosis in pancreatic cancer cells was induced by adamantyl retinoid-related (ARR) molecule 3-Cl-AHPC. Here we report that 3-Cl-AHPC-dependent apoptosis involves regulating a number of microRNAs including miR-150* and miR-630. 3-Cl-AHPC stimulated miR-150* expression and caused decreased expression of c-Myb and IGF-1R in the pancreatic cancer cells. 3-Cl-AHPC-mediated reduction of c-Myb resulted in diminished binding of c-Myb with IGF-1R and Bcl-2 promoters, thereby causing repression of their transcription and protein expression. Over-expression of miR-150* also resulted in diminished levels of c-Myb and Bcl-2 proteins. Furthermore, the addition of the miRNA inhibitor 2′-O-methylated miR-150 blocked 3-Cl-AHPC-mediated increase in miR-150* levels and abrogated loss of c-Myb protein. Knockdown of c-Myb in PANC-1 cells resulted in enhanced apoptosis both in the presence or absence of 3-Cl-AHPC confirming the anti-apoptotic property of c-Myb. Overexpression of miR-630 also induced apoptosis in the pancreatic cancer cells and inhibited target protein IGF-1R mRNA and protein expression. Together these results implicate key roles for miR-150* and miR-630 and their targeting of IGF-1R to promote apoptosis in pancreatic cancer cells.
Collapse
Affiliation(s)
- Lulu Farhana
- Department of Oncology, Wayne Sate University, Detroit, Michigan, United States of America
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Wayne State University, Detroit, Michigan, United States of America
- Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Marcia I. Dawson
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Farhan Murshed
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
| | - Jayanta K. Das
- Department of Oncology, Wayne Sate University, Detroit, Michigan, United States of America
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Wayne State University, Detroit, Michigan, United States of America
| | - Arun K. Rishi
- Department of Oncology, Wayne Sate University, Detroit, Michigan, United States of America
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Wayne State University, Detroit, Michigan, United States of America
- Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Joseph A. Fontana
- Department of Oncology, Wayne Sate University, Detroit, Michigan, United States of America
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Wayne State University, Detroit, Michigan, United States of America
- Karmanos Cancer Institute, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
45
|
Wagner S, Willenbrock S, Nolte I, Murua Escobar H. Comparison of non-coding RNAs in human and canine cancer. Front Genet 2013; 4:46. [PMID: 23579348 PMCID: PMC3619122 DOI: 10.3389/fgene.2013.00046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 03/13/2013] [Indexed: 12/21/2022] Open
Abstract
The discovery of the post-transcriptional gene silencing (PTGS) by small non-protein-coding RNAs is considered as a major breakthrough in biology. In the last decade we just started to realize the biologic function and complexity of gene regulation by small non-coding RNAs. PTGS is a conserved phenomenon which was observed in various species such as fungi, worms, plants, and mammals. Micro RNAs (miRNA) and small interfering RNAs (siRNAs) are two gene silencing mediators constituting an evolutionary conserved class of non-coding RNAs regulating many biological processes in eukaryotes. As this small RNAs appear to regulate gene expression at translational and transcriptional level it is not surprising that during the last decade many human diseases among them Alzheimer's disease, cardiovascular diseases, and various cancer types were associated with deregulated miRNA expression. Consequently small RNAs are considered to hold big promises as therapeutic agents. However, despite of the enormous therapeutic potential many questions remain unanswered. A major critical point, when evaluating novel therapeutic approaches, is the transfer of in vitro settings to an in vivo model. Classical animal models rely on the laboratory kept animals under artificial conditions and often missing an intact immune system. Model organisms with spontaneously occurring tumors as e.g., dogs provide the possibility to evaluate therapeutic agents under the surveillance of an in intact immune system and thereby providing an authentic tumor reacting scenario. Considering the genomic similarity between canines and humans and the advantages of the dog as cancer model system for human neoplasias the analyses of the complex role of small RNAs in canine tumor development could be of major value for both species. Herein we discuss comparatively the role of miRNAs in human and canine cancer development and highlight the potential and advantages of the model organism dog for tumor research.
Collapse
Affiliation(s)
- Siegfried Wagner
- Small Animal Clinic, University of Veterinary Medicine Hannover Hannover, Germany
| | | | | | | |
Collapse
|
46
|
Innes CL, Hesse JE, Palii SS, Helmink BA, Holub AJ, Sleckman BP, Paules RS. DNA damage activates a complex transcriptional response in murine lymphocytes that includes both physiological and cancer-predisposition programs. BMC Genomics 2013; 14:163. [PMID: 23496831 PMCID: PMC3602184 DOI: 10.1186/1471-2164-14-163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/27/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Double strand (ds) DNA breaks are a form of DNA damage that can be generated from both genotoxic exposures and physiologic processes, can disrupt cellular functions and can be lethal if not repaired properly. Physiologic dsDNA breaks are generated in a variety of normal cellular functions, including the RAG endonuclease-mediated rearrangement of antigen receptor genes during the normal development of lymphocytes. We previously showed that physiologic breaks initiate lymphocyte development-specific transcriptional programs. Here we compare transcriptional responses to physiological DNA breaks with responses to genotoxic DNA damage induced by ionizing radiation. RESULTS We identified a central lymphocyte-specific transcriptional response common to both physiologic and genotoxic breaks, which includes many lymphocyte developmental processes. Genotoxic damage causes robust alterations to pathways associated with B cell activation and increased proliferation, suggesting that genotoxic damage initiates not only the normal B cell maturation processes but also mimics activated B cell response to antigenic agents. Notably, changes including elevated levels of expression of Kras and mmu-miR-155 and the repression of Socs1 were observed following genotoxic damage, reflecting induction of a cancer-prone phenotype. CONCLUSIONS Comparing these transcriptional responses provides a greater understanding of the mechanisms cells use in the differentiation between types of DNA damage and the potential consequences of different sources of damage. These results suggest genotoxic damage may induce a unique cancer-prone phenotype and processes mimicking activated B cell response to antigenic agents, as well as the normal B cell maturation processes.
Collapse
Affiliation(s)
- Cynthia L Innes
- Environmental Stress and Cancer Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Sionov RV. MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies. ISRN HEMATOLOGY 2013; 2013:348212. [PMID: 23431463 PMCID: PMC3569899 DOI: 10.1155/2013/348212] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
Abstract
The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Ein-Kerem, 91120 Jerusalem, Israel
| |
Collapse
|
48
|
Honda N, Jinnin M, Kira-Etoh T, Makino K, Kajihara I, Makino T, Fukushima S, Inoue Y, Okamoto Y, Hasegawa M, Fujimoto M, Ihn H. miR-150 Down-Regulation Contributes to the Constitutive Type I Collagen Overexpression in Scleroderma Dermal Fibroblasts via the Induction of Integrin β3. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:206-16. [DOI: 10.1016/j.ajpath.2012.09.023] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 09/13/2012] [Accepted: 09/26/2012] [Indexed: 01/08/2023]
|
49
|
Fonte E, Apollonio B, Scarfò L, Ranghetti P, Fazi C, Ghia P, Caligaris-Cappio F, Muzio M. In vitro sensitivity of CLL cells to fludarabine may be modulated by the stimulation of Toll-like receptors. Clin Cancer Res 2012; 19:367-79. [PMID: 23224401 DOI: 10.1158/1078-0432.ccr-12-1922] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The emerging role of Toll-like receptors (TLR) in the pathogenesis of chronic lymphocytic leukemia (CLL) led us to ask whether TLR stimulation may protect CLL cells from drug-induced apoptosis. EXPERIMENTAL DESIGN We cultured in vitro malignant B cells freshly isolated from 44 patients with CLLs in the presence or the absence of different concentrations of fludarabine before or after 24-hour TLR stimulation with specific ligands and evaluated cell viability, apoptosis, and molecular pathways involved. RESULTS Heterogeneity was observed among samples. In leukemic cells from patients bearing adverse prognostic factors, TLR stimulation caused a significant increase of protection to fludarabine treatment, whereas this did not occur in the cells from patients with good prognosis. To identify novel molecular mechanisms accounting for the dichotomy of response between the two groups of patients, we conducted an apoptosis gene expression profile on leukemic cells either unstimulated or stimulated with TLR9 ligand. Strikingly, TLR9 stimulation specifically upregulated the expression of lymphotoxin-α in cells where an increased protection to fludarabine treatment was observed. Also, the expression of miR-155-3p was significantly increased after stimulation of distinct TLR in cells where fludarabine treatment was less effective. CONCLUSIONS These results suggest that at least in a proportion of patients, in vitro sensitivity to fludarabine may be modulated by the stimulation of TLR, likely mimicking microenvironmental signals occurring in vivo.
Collapse
Affiliation(s)
- Eleonora Fonte
- San Raffaele Scientific Institute, Division of Molecular Oncology; Università Vita-Salute San Raffaele, Via Olgettina 58, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The relatively recent discovery of microRNAs (miRNAs) has exposed an extra layer of gene expression regulation that affects many physiological and pathological processes of biology. Dysregulation of miRNAs is a ubiquitous feature of cancer in general, including lymphomas. The identity of these aberrantly-expressed miRNAs has been thoroughly investigated in all but a few types of lymphomas, however their functional role in lymphomagenesis much less so. This review focuses on those miRNAs that have an experimentally confirmed functional role in the pathogenesis of the most frequent forms of lymphoma. In particular, the MIR15A/16-1 cluster, MIR21, MIR155, MIR17HG (MIR17-92 cluster), MIR34A and MIR125B, which have in vivo animal model evidence for their involvement in lymphomagenesis, are highlighted.
Collapse
|