1
|
Valdes Michel MF, Phillips BT. SYS-1/beta-catenin inheritance and regulation by Wnt-signaling during asymmetric cell division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.21.550069. [PMID: 37503055 PMCID: PMC10370182 DOI: 10.1101/2023.07.21.550069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Asymmetric cell division (ACD) allows daughter cells of a polarized mother to acquire different developmental fates. In C. elegans , the Wnt/β-catenin Asymmetry (WβA) pathway oversees many embryonic and larval ACDs; here, a Wnt gradient induces an asymmetric distribution of Wnt signaling components within the dividing mother cell. One terminal nuclear effector of the WβA pathway is the transcriptional activator SYS-1/β-catenin. SYS-1 is sequentially negatively regulated during ACD; first by centrosomal regulation and subsequent proteasomal degradation and second by asymmetric activity of the β-catenin "destruction complex" in one of the two daughter cells, which decreases SYS-1 levels in the absence of WβA signaling. However, the extent to which mother cell SYS-1 influences cell fate decisions of the daughters is unknown. Here, we quantify inherited SYS-1 in the differentiating daughter cells and the role of SYS-1 inheritance in Wnt-directed ACD. Photobleaching experiments demonstrate the GFP::SYS-1 present in daughter cell nuclei is comprised of inherited and de novo translated SYS-1 pools. We used a photoconvertible DENDRA2::SYS-1, to directly observe the dynamics of inherited SYS-1. Photoconversion during mitosis reveals that SYS-1 clearance at the centrosome preferentially degrades older SYS-1, and this accumulation is regulated via dynein trafficking. Photoconversion of the EMS cell during Wnt-driven ACD shows daughter cell inheritance of mother cell SYS-1. Additionally, loss of centrosomal SYS-1 increased inherited SYS-1 and, surprisingly, loss of centrosomal SYS-1 also resulted in increased levels of de novo SYS-1 in both EMS daughter cells. Lastly, we show that daughter cell negative regulation of SYS-1 via the destruction complex member APR-1/APC is key to limit both the de novo and the inherited SYS-1 pools in both the E and the MS cells. We conclude that regulation of both inherited and newly translated SYS-1 via centrosomal processing in the mother cell and daughter cell regulation via Wnt signaling are critical to maintain sister SYS-1 asymmetry during ACD.
Collapse
|
2
|
Delker DA, Wood AC, Snow AK, Samadder NJ, Samowitz WS, Affolter KE, Boucher KM, Pappas LM, Stijleman IJ, Kanth P, Byrne KR, Burt RW, Bernard PS, Neklason DW. Chemoprevention with Cyclooxygenase and Epidermal Growth Factor Receptor Inhibitors in Familial Adenomatous Polyposis Patients: mRNA Signatures of Duodenal Neoplasia. Cancer Prev Res (Phila) 2018; 11:4-15. [PMID: 29109117 PMCID: PMC5754246 DOI: 10.1158/1940-6207.capr-17-0130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/31/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
To identify gene expression biomarkers and pathways targeted by sulindac and erlotinib given in a chemoprevention trial with a significant decrease in duodenal polyp burden at 6 months (P < 0.001) in familial adenomatous polyposis (FAP) patients, we biopsied normal and polyp duodenal tissues from patients on drug versus placebo and analyzed the RNA expression. RNA sequencing was performed on biopsies from the duodenum of FAP patients obtained at baseline and 6-month endpoint endoscopy. Ten FAP patients on placebo and 10 on sulindac and erlotinib were selected for analysis. Purity of biopsied polyp tissue was calculated from RNA expression data. RNAs differentially expressed between endpoint polyp and paired baseline normal were determined for each group and mapped to biological pathways. Key genes in candidate pathways were further validated by quantitative RT-PCR. RNA expression analyses of endpoint polyp compared with paired baseline normal for patients on placebo and drug show that pathways activated in polyp growth and proliferation are blocked by this drug combination. Directly comparing polyp gene expression between patients on drug and placebo also identified innate immune response genes (IL12 and IFNγ) preferentially expressed in patients on drug. Gene expression analyses from tissue obtained at endpoint of the trial demonstrated inhibition of the cancer pathways COX2/PGE2, EGFR, and WNT. These findings provide molecular evidence that the drug combination of sulindac and erlotinib reached the intended tissue and was on target for the predicted pathways. Furthermore, activation of innate immune pathways from patients on drug may have contributed to polyp regression. Cancer Prev Res; 11(1); 4-15. ©2017 AACRSee related editorial by Shureiqi, p. 1.
Collapse
Affiliation(s)
- Don A Delker
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Austin C Wood
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Angela K Snow
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - N Jewel Samadder
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Wade S Samowitz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Kajsa E Affolter
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Kenneth M Boucher
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Lisa M Pappas
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Inge J Stijleman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Priyanka Kanth
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Kathryn R Byrne
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Randall W Burt
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Philip S Bernard
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Deborah W Neklason
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
3
|
Wu DW, Lin PL, Cheng YW, Huang CC, Wang L, Lee H. DDX3 enhances oncogenic KRAS‑induced tumor invasion in colorectal cancer via the β‑catenin/ZEB1 axis. Oncotarget 2017; 7:22687-99. [PMID: 27007150 PMCID: PMC5008392 DOI: 10.18632/oncotarget.8143] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/21/2016] [Indexed: 12/22/2022] Open
Abstract
DDX3 plays a dual role in colorectal cancer; however, the role and underlying mechanism of DDX3 in colorectal tumorigenesis remains unclear. Here, we provide evidence that DDX3 enhances oncogenic KRAS transcription via an increase in SP1 binding to its promoter. Accelerating oncogenic KRAS expression by DDX3 promotes the invasion capability via the ERK/PTEN/AKT/β-catenin cascade. Moreover, the β-catenin/ZEB1 axis is responsible for DDX3-induced cell invasiveness and xenograft lung tumor nodule formation. The xenograft lung tumor nodules induced by DDX3-overexpressing T84 stable clone were nearly suppressed by the inhibitor of AKT (perifosine) or β-catenin (XAV939). Among patients, high KRAS, positive nuclear β-catenin expression and high ZEB1 were more commonly occurred in high-DDX3 tumors than in low-DDX3 tumors. High-DDX3, high-KRAS, positive nuclear β-catenin tumors, and high-ZEB1 exhibited worse overall survival (OS) and relapse free survival (RFS) than their counterparts. In conclusion, DDX3 may play an oncogenic role to promote tumor growth and invasion in colon cancer cells via the β-catenin/ZEB1 axis due to increasing KRAS transcription. We therefore suggest that AKT or β-catenin may potentially act as a therapeutic target to improve tumor regression and outcomes in colorectal cancer patients who harbored high-DDX3 tumors.
Collapse
Affiliation(s)
- De-Wei Wu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Po-Lin Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ya-Wen Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Chi-Chou Huang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Division of Colon and Rectum, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Lee Wang
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Piven OO, Winata CL. The canonical way to make a heart: β-catenin and plakoglobin in heart development and remodeling. Exp Biol Med (Maywood) 2017; 242:1735-1745. [PMID: 28920469 PMCID: PMC5714149 DOI: 10.1177/1535370217732737] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022] Open
Abstract
The main mediator of the canonical Wnt pathway, β-catenin, is a major effector of embryonic development, postnatal tissue homeostasis, and adult tissue regeneration. The requirement for β-catenin in cardiogenesis and embryogenesis has been well established. However, many questions regarding the molecular mechanisms by which β-catenin and canonical Wnt signaling regulate these developmental processes remain unanswered. An interesting question that emerged from our studies concerns how β-catenin signaling is modulated through interaction with other factors. Recent experimental data implicate new players in canonical Wnt signaling, particularly those which modulate β-catenin function in many its biological processes, including cardiogenesis. One of the interesting candidates is plakoglobin, a little-studied member of the catenin family which shares several mechanistic and functional features with its close relative, β-catenin. Here we have focused on the function of β-catenin in cardiogenesis. We also summarize findings on plakoglobin signaling function and discuss possible interplays between β-catenin and plakoglobin in the regulation of embryonic heart development. Impact statement Heart development, function, and remodeling are complex processes orchestrated by multiple signaling networks. This review examines our current knowledge of the role of canonical Wnt signaling in cardiogenesis and heart remodeling, focusing primarily on the mechanistic action of its effector β-catenin. We summarize the generally accepted understanding of the field based on experimental in vitro and in vivo data, and address unresolved questions in the field, specifically relating to the role of canonical Wnt signaling in heart maturation and regeneration. What are the modulators of canonical Wnt, and particularly what are the potential roles of plakoglobin, a close relative of β-catenin, in regulating Wnt signaling?Answers to these questions will enhance our understanding of the mechanism by which the canonical Wnt signaling regulates development of the heart and its regeneration after damage.
Collapse
Affiliation(s)
- Oksana O Piven
- Institute of Molecular Biology and Genetic, Kyiv 0314, Ukraine
| | - Cecilia L Winata
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| |
Collapse
|
5
|
Yan C, Yang Q, Huo X, Li H, Zhou L, Gong Z. Chemical inhibition reveals differential requirements of signaling pathways in kras V12- and Myc-induced liver tumors in transgenic zebrafish. Sci Rep 2017; 7:45796. [PMID: 28378824 PMCID: PMC5381109 DOI: 10.1038/srep45796] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Previously we have generated inducible liver tumor models by transgenic expression of an oncogene and robust tumorigenesis can be rapidly induced by activation of the oncogene in both juvenile and adult fish. In the present study, we aimed at chemical intervention of tumorigenesis for understanding molecular pathways of tumorigenesis and for potential development of a chemical screening tool for anti-cancer drug discovery. Thus, we evaluated the roles of several major signaling pathways in krasV12- or Myc-induced liver tumors by using several small molecule inhibitors: SU5402 and SU6668 for VEGF/FGF signaling; IWR1 and cardionogen 1 for Wnt signaling; and cyclopamine and Gant61 for Hedgehog signaling. Inhibition of VEGF/FGF signaling was found to deter both Myc- and krasV12-induced liver tumorigenesis while suppression of Wnt signaling relaxed only Myc- but not krasV12-induced liver tumorigenesis. Inhibiting Hedgehog signaling did not suppress either krasV12 or Myc-induced tumors. The suppression of liver tumorigenesis was accompanied with a decrease of cell proliferation, increase of apoptosis, distorted liver histology. Collectively, our observations suggested the requirement of VEGF/FGF signaling but not the hedgehog signaling in liver tumorigenesis in both transgenic fry. However, Wnt signaling appeared to be required for liver tumorigenesis only in Myc but not krasV12 transgenic zebrafish.
Collapse
Affiliation(s)
- Chuan Yan
- Department of Biological Sciences, National University of Singapore, Singapore
- National University of Singapore graduate school for integrative sciences and engineering, National University of Singapore, Singapore
| | - Qiqi Yang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Xiaojing Huo
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Hankun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Li Zhou
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore
- National University of Singapore graduate school for integrative sciences and engineering, National University of Singapore, Singapore
| |
Collapse
|
6
|
DDX3 promotes tumor invasion in colorectal cancer via the CK1ε/Dvl2 axis. Sci Rep 2016; 6:21483. [PMID: 26892600 PMCID: PMC4759588 DOI: 10.1038/srep21483] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/25/2016] [Indexed: 02/07/2023] Open
Abstract
DDX3, a subunit of CK1ε, phosphorylates Dvl2 to promote β-catenin activation. Overexpression of the Dvl2 protein results in potent activation of β-catenin/TCF signaling in colorectal cancer. Therefore, we hypothesized that DDX3 might promote tumor invasion via the CK1ε/Dvl2 axis due to β-catenin/TCF activation. Western blotting showed that β-catenin expression was decreased by DDX3 knockdown and increased by DDX3 overexpression in colorectal cancer cells. The TCF promoter activity and invasion capability were concomitantly increased and decreased by DDX3 manipulation in these cells. The invasion capability in colon cancer cells and xenograft lung tumor nodules induced by a DDX3-overexpressing T84 stable clone in tail-vein injection model were nearly suppressed by inhibitors of CK1ε (PF4800567) and β-catenin/TCF signaling (XAV939). Among colorectal cancer patients, DDX3 expression was positively correlated with the expression of pDvl2 and nuclear β-catenin in tumor tissues. The expression of pDvl2 occurred more frequently in high-nuclear than in low-nuclear β-catenin tumors. A prognostic significance of DDX3, pDvl2, and nuclear β-catenin on overall survival and relapse free survival was observed in this study population. We therefore suggest CK1ε or β-catenin/TCF signaling as potential targets for improving tumor regression and outcomes in colorectal cancer, particularly tumors with high-DDX3/high-nuclear β-catenin or high-DDX3/high-pDvl2/high-nuclear β-catenin expression.
Collapse
|
7
|
Tezcan G, Tunca B, Ak S, Cecener G, Egeli U. Molecular approach to genetic and epigenetic pathogenesis of early-onset colorectal cancer. World J Gastrointest Oncol 2016; 8:83-98. [PMID: 26798439 PMCID: PMC4714149 DOI: 10.4251/wjgo.v8.i1.83] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/01/2015] [Accepted: 11/10/2015] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer type and the incidence of this disease is increasing gradually per year in individuals younger than 50 years old. The current knowledge is that early-onset CRC (EOCRC) cases are heterogeneous population that includes both hereditary and sporadic forms of the CRC. Although EOCRC cases have some distinguishing clinical and pathological features than elder age CRC, the molecular mechanism underlying the EOCRC is poorly clarified. Given the significance of CRC in the world of medicine, the present review will focus on the recent knowledge in the molecular basis of genetic and epigenetic mechanism of the hereditary forms of EOCRC, which includes Lynch syndrome, Familial CRC type X, Familial adenomatous polyposis, MutYH-associated polyposis, Juvenile polyposis syndrome, Peutz-Jeghers Syndrome and sporadic forms of EOCRC. Recent findings about molecular genetics and epigenetic basis of EOCRC gave rise to new alternative therapy protocols. Although exact diagnosis of these cases still remains complicated, the present review paves way for better predictions and contributes to more accurate diagnostic and therapeutic strategies into clinical approach.
Collapse
|
8
|
Vrtačnik P, Marc J, Ostanek B. Hypoxia mimetic deferoxamine influences the expression of histone acetylation- and DNA methylation-associated genes in osteoblasts. Connect Tissue Res 2015; 56:228-35. [PMID: 25674819 DOI: 10.3109/03008207.2015.1017573] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF THE STUDY Sufficient oxygen supply to bone tissue is essential for normal bone development and efficient bone repair. Hypoxia and hypoxia-inducible factor 1α (HIF1α) signaling pathway have been shown to exhibit profound effects on proliferation, differentiation as well as gene and protein expression in osteoblasts, osteoclasts and mesenchymal stem cells; however, as epigenetic mechanisms also perform an important regulatory role in these cells, our aim was to elucidate whether hypoxia mimetic deferoxamine could influence epigenetic mechanisms in bone cells by modulating the gene expression levels of chromatin-modifying enzymes. MATERIALS AND METHODS Osteoblast cell line HOS was exposed to deferoxamine, a widely used hypoxia mimetic, and expression profile of 40 genes associated with histone acetylation, deacetylation and DNA methylation was determined using quantitative real time polymerase chain reaction (qPCR) array followed by individual qPCR analyses. In addition, genes associated with hypoxia response, RANK/RANKL/OPG system, WNT/β-catenin signaling pathway and oxidative stress were also analyzed. RESULTS We observed induced expression of histone deacetylase 9 (HDAC9) and suppressed expression of K(lysine) acetyltransferase 5 (KAT5) and DNA methyltransferase 3A (DNMT3A) demonstrating for the first time that expression of genes encoding chromatin-modifying enzymes could be influenced by hypoxia mimetic in HOS cells. CONCLUSIONS Based on our results we can conclude that hypoxia mimetic deferoxamine influences expression of histone acetylation- and DNA methylation-associated genes in osteoblasts and that further studies of hypoxia-induced epigenetic changes in bone cells should be undertaken.
Collapse
Affiliation(s)
- Peter Vrtačnik
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana , Ljubljana , Slovenia
| | | | | |
Collapse
|
9
|
Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene 2014; 34:4914-27. [PMID: 25500543 PMCID: PMC4687460 DOI: 10.1038/onc.2014.416] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 12/14/2022]
Abstract
Aberrant regulation of the Wnt/β-catenin signaling pathway is one of the major causes of colorectal cancer (CRC). Loss-of-function mutations in APC are commonly found in CRC, leading to inappropriate activation of canonical Wnt signaling. Conversely, gain-of-function mutations in KRAS and BRAF genes are detected in up to 60% of CRCs. Whereas KRAS/mitogen-activated protein kinase (MAPK) and canonical Wnt/β-catenin pathways are critical for intestinal tumorigenesis, mechanisms integrating these two important signaling pathways during CRC development are unknown. Results herein demonstrate that transformation of normal intestinal epithelial cells (IECs) by oncogenic forms of KRAS, BRAF or MEK1 was associated with a marked increase in β-catenin/TCF4 and c-MYC promoter transcriptional activities and mRNA levels of c-Myc, Axin2 and Lef1. Notably, expression of a dominant-negative mutant of T-Cell Factor 4 (ΔNTCF4) severely attenuated IEC transformation induced by oncogenic MEK1 and markedly reduced their tumorigenic and metastatic potential in immunocompromised mice. Interestingly, the Frizzled co-receptor LRP6 was phosphorylated in a MEK-dependent manner in transformed IECs and in human CRC cell lines. Expression of LRP6 mutant in which serine/threonine residues in each particular ProlineProlineProlineSerine/ThreonineProline motif were mutated to alanines (LRP6-5A) significantly reduced β-catenin/TCF4 transcriptional activity. Accordingly, MEK inhibition in human CRC cells significantly diminished β-catenin/TCF4 transcriptional activity and c-MYC mRNA and protein levels without affecting β-catenin expression or stability. Lastly, LRP6 phosphorylation was also increased in human colorectal tumors, including adenomas, in comparison with healthy adjacent normal tissues. Our data indicate that oncogenic activation of KRAS/BRAF/MEK signaling stimulates the canonical Wnt/β-catenin pathway, which in turn promotes intestinal tumor growth and invasion. Moreover, LRP6 phosphorylation by ERK1/2 may provide a unique point of convergence between KRAS/MAPK and Wnt/β-catenin signalings during oncogenesis.
Collapse
|
10
|
Yu J, Virshup D. Updating the Wnt pathways. Biosci Rep 2014; 34:e00142. [PMID: 25208913 PMCID: PMC4201215 DOI: 10.1042/bsr20140119] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022] Open
Abstract
In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases.
Collapse
Key Words
- adenomatous polyposis coli
- planar cell polarity (pcp)
- wnt
- apc, adenomatous polyposis coli
- bar, bin-amphiphysin-rvs
- cbp, creb (camp response element-binding)-binding protein
- cop, coat protein complex
- crd, cysteine-rich domain
- ctd, c-terminal domain
- ck1α, casein kinase 1 α
- er, endoplasmic reticulum fap, familial adenomatous polyposis
- fdh, focal dermal hypoplasia
- gsk3β, glycogen synthase kinase 3β
- lef, lymphoid enhancer-binding factor
- lrp, lipoprotein receptor-related protein
- ntd, n-terminal domain
- pcp, planar cell polarity
- porcn, protein porcupine
- ror2, receptor tyrosine kinase-like orphan receptor 2
- rspo, r-spondin
- sfrp, secreted frizzled-related protein
- snx-1, sorting nexin-1
- swim, wingless-interacting molecule
- tcf, t cell-specific factor
Collapse
Affiliation(s)
- Jia Yu
- *Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - David M. Virshup
- *Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
- †Institute of Medical Biology, A*STAR, Singapore 138648, Singapore
- ‡Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
- §Department of Pediatrics, Duke University, Durham, NC 27710, U.S.A
| |
Collapse
|
11
|
Venesio T, Balsamo A, Errichiello E, Ranzani GN, Risio M. Oxidative DNA damage drives carcinogenesis in MUTYH-associated-polyposis by specific mutations of mitochondrial and MAPK genes. Mod Pathol 2013; 26:1371-81. [PMID: 23599153 DOI: 10.1038/modpathol.2013.66] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/29/2022]
Abstract
MUTYH is a DNA-base-excision-repair gene implicated in the activation of nuclear and mitochondrial cell-death pathways. MUTYH germline mutations cause an inherited polyposis, MUTYH-associated-polyposis, characterized by multiple adenomas and increased susceptibility to colorectal cancer. Since this carcinogenesis remains partially unknown, we searched for nuclear and mitochondrial gene alterations that may drive the tumorigenic process. Ninety-six adenomas and 7 carcinomas from 12 MUTYH-associated-polyposis and 13 classical/attenuated adenomatous polyposis patients were investigated by sequencing and pyrosequencing for the presence of mutations in KRAS, BRAF, MT-CO1/MT-CO2 and MT-TD genes. KRAS mutations were identified in 24% MUTYH-associated-polyposis vs 15% classical/attenuated familial polyposis adenomas; mutated MUTYH-associated-polyposis adenomas exhibited only c.34G>T transversions in codon 12, an alteration typically associated with oxidative DNA damage, or mutations in codon 13; neither of these mutations was found in classical/attenuated familial polyposis adenomas (P<0.001). Mutated MUTYH-associated-polyposis carcinomas showed KRAS c.34G>T transversions, prevalently occurring with BRAFV600E; none of the classical/attenuated familial polyposis carcinomas displayed these alterations. Comparing mitochondrial DNA from lymphocytes and adenomas of the same individuals, we detected variants in 82% MUTYH-associated-polyposis vs 38% classical/attenuated familial polyposis patients (P=0.040). MT-CO1/MT-CO2 missense mutations, which cause aminoacid changes, were only found in MUTYH-associated-polyposis lesions and were significantly associated with KRAS mutations (P=0.0085). We provide evidence that MUTYH-associated-polyposis carcinogenesis is characterized by the occurrence of specific mutations in both KRAS and phylogenetically conserved genes of mitochondrial DNA which are involved in controlling oxidative phosphorylation; this implies the existence of a colorectal tumorigenesis in which changes in mitochondrial functions cooperate with RAS-induced malignant transformation.
Collapse
Affiliation(s)
- Tiziana Venesio
- Unit of Pathology, Institute for Cancer Research and Treatment, Candiolo, (Torino), Italy
| | | | | | | | | |
Collapse
|
12
|
Myant K, Cammareri P, McGhee E, Ridgway R, Huels D, Cordero J, Schwitalla S, Kalna G, Ogg EL, Athineos D, Timpson P, Vidal M, Murray G, Greten F, Anderson K, Sansom O. ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell 2013; 12:761-73. [PMID: 23665120 PMCID: PMC3690525 DOI: 10.1016/j.stem.2013.04.006] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 11/27/2012] [Accepted: 04/08/2013] [Indexed: 12/18/2022]
Abstract
The Adenomatous Polyposis Coli (APC) gene is mutated in the majority of colorectal cancers (CRCs). Loss of APC leads to constitutively active WNT signaling, hyperproliferation, and tumorigenesis. Identification of pathways that facilitate tumorigenesis after APC loss is important for therapeutic development. Here, we show that RAC1 is a critical mediator of tumorigenesis after APC loss. We find that RAC1 is required for expansion of the LGR5 intestinal stem cell (ISC) signature, progenitor hyperproliferation, and transformation. Mechanistically, RAC1-driven ROS and NF-κB signaling mediate these processes. Together, these data highlight that ROS production and NF-κB activation triggered by RAC1 are critical events in CRC initiation.
Collapse
Affiliation(s)
- Kevin B. Myant
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Patrizia Cammareri
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Ewan J. McGhee
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Rachel A. Ridgway
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - David J. Huels
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Julia B. Cordero
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Sarah Schwitalla
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Gabriela Kalna
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Erinn-Lee Ogg
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Dimitris Athineos
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Paul Timpson
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Marcos Vidal
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Graeme I. Murray
- Department of Pathology, Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Florian R. Greten
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Kurt I. Anderson
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Owen J. Sansom
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
13
|
Wang C, Zhao R, Huang P, Yang F, Quan Z, Xu N, Xi R. APC loss-induced intestinal tumorigenesis in Drosophila: Roles of Ras in Wnt signaling activation and tumor progression. Dev Biol 2013; 378:122-40. [PMID: 23570874 DOI: 10.1016/j.ydbio.2013.03.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/14/2013] [Accepted: 03/29/2013] [Indexed: 12/15/2022]
Abstract
Adenomatous polyposis coli (APC) and K-ras are the two most frequently mutated genes found in human colorectal cancers. In human colorectal cancers, Wnt signaling activation after the loss of APC is hypothesized to be the key event for adenoma initiation, whereas additional mutations such as Ras activation are required for the progression from adenoma to carcinoma. However, accumulating data have led to conflicting views regarding the precise role of Ras in APC loss-induced tumorigenesis. Here, using Drosophila midgut as a model system, we show that in the absence of Ras, APC mutant epithelial cells cannot initiate hyperplasia, suggesting that Ras plays an essential role in tumor initiation. Conversely, activating Ras by expressing oncogenic Ras or Raf in APC-deficient cells led to a blockage of cell differentiation and to preinvasive tumor outgrowth, characteristics that are shared by advanced colorectal carcinoma in humans. Mechanistically, we find that Ras is not required for Wnt signaling activation after APC loss, although Ras hyperactivation is able to potentiate Wnt signaling by increasing the cytoplasmic and nuclear accumulation of Armadillo/β-catenin via mechanisms independent of JNK/Rac1 or PI3K-Akt signaling, partly owing to the downregulation of DE-cadherin. Together with the data from gene expression analyses, our results indicate that both parallel and cooperative mechanisms of Wnt and Ras signaling are responsible for the initiation and progression of intestinal tumorigenesis after APC loss.
Collapse
Affiliation(s)
- Chenhui Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Zeller E, Hammer K, Kirschnick M, Braeuning A. Mechanisms of RAS/β-catenin interactions. Arch Toxicol 2013; 87:611-32. [PMID: 23483189 DOI: 10.1007/s00204-013-1035-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/28/2013] [Indexed: 12/20/2022]
Abstract
Signaling through the WNT/β-catenin and the RAS (rat sarcoma)/MAPK (mitogen-activated protein kinase) pathways plays a key role in the regulation of various physiological cellular processes including proliferation, differentiation, and cell death. Aberrant mutational activation of these signaling pathways is closely linked to the development of cancer in many organs, in humans as well as in laboratory animals. Over the past years, more and more evidence for a close linkage of the two oncogenic signaling cascades has accumulated. Using different experimental approaches, model systems, and experimental conditions, a variety of molecular mechanisms have been identified by which signal transduction through WNT/β-catenin and RAS interact, either in a synergistic or an antagonistic manner. Mechanisms of interaction comprise an upstream crosstalk at the level of pathway-activating ligands and their receptors, interrelations of cytosolic kinases involved in either pathways, as well as interaction in the nucleus related to the joint regulation of target gene transcription. Here, we present a comprehensive review of the current knowledge on the interaction of RAS/MAPK- and WNT/β-catenin-driven signal transduction in mammalian cells.
Collapse
Affiliation(s)
- Eva Zeller
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Germany
| | | | | | | |
Collapse
|
15
|
Raman R, Kotapalli V, Adduri R, Gowrishankar S, Bashyam L, Chaudhary A, Vamsy M, Patnaik S, Srinivasulu M, Sastry R, Rao S, Vasala A, Kalidindi N, Pollack J, Murthy S, Bashyam M. Evidence for possible non-canonical pathway(s) driven early-onset colorectal cancer in India. Mol Carcinog 2012; 53 Suppl 1:E181-6. [PMID: 23168910 DOI: 10.1002/mc.21976] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/08/2012] [Accepted: 10/12/2012] [Indexed: 12/13/2022]
Abstract
Two genetic instability pathways viz. chromosomal instability, driven primarily by APC mutation induced deregulated Wnt signaling, and microsatellite instability (MSI) caused by mismatch repair (MMR) inactivation, together account for >90% of late-onset colorectal cancer (CRC). Our understanding of early-onset sporadic CRC is however comparatively limited. In addition, most seminal studies have been performed in the western population and analyses of tumorigenesis pathway(s) causing CRC in developing nations have been rare. We performed a comparative analysis of early and late-onset CRC from India with respect to common genetic aberrations including Wnt, KRAS, and p53 (constituting the classical CRC progression sequence) in addition to MSI. Our results revealed the absence of Wnt and MSI in a significant proportion of early-onset as against late-onset CRC in India. In addition, KRAS mutation frequency was significantly lower in early-onset CRC indicating that a significant proportion of CRC in India may follow tumorigenesis pathways distinct from the classical CRC progression sequence. Our study has therefore revealed the possible existence of non-canonical tumorigenesis pathways in early-onset CRC in India.
Collapse
Affiliation(s)
- Ratheesh Raman
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
β-Catenin signaling dosage dictates tissue-specific tumor predisposition in Apc-driven cancer. Oncogene 2012; 32:4579-85. [PMID: 23045279 DOI: 10.1038/onc.2012.449] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/23/2012] [Accepted: 08/09/2012] [Indexed: 12/13/2022]
Abstract
Apc-driven tumor formation in patients and Apc-mutant mouse models is generally attributed to increased levels of β-catenin signaling. We and others have proposed that a specific level of β-catenin signaling is required to successfully initiate tumor formation, and that each tissue prefers different dosages of signaling. This is illustrated by APC genotype-tumor phenotype correlations in cancer patients, and by the different tumor phenotypes displayed by different Apc-mutant mouse models. Apc1638N mice, associated with intermediate β-catenin signaling, characteristically develop intestinal tumors (<10) and extra-intestinal tumors, including cysts and desmoids. Apc1572T mice associated with lower levels of β-catenin signaling are free of intestinal tumors, but instead develop mammary tumors. Although the concept of β-catenin signaling dosage and its impact on tumor growth among tissues is gaining acceptance, it has not been formally proven. Additionally, alternative explanations for Apc-driven tumor formation have been proposed. To obtain direct evidence for the dominant role of β-catenin dosage in tumor formation and tissue-specific tumor predisposition, we crossed Apc1638N mice with heterozygous β-catenin knockout mice, thereby reducing β-catenin levels. Whereas all the Apc1638N;Ctnnb1(+/+) mice developed gastrointestinal tumors, none were present in the Apc1638N;Ctnnb1(-/+) mice. Incidence of other Apc1638N-associated lesions, including desmoids and cysts, was strongly reduced as well. Interestingly, Apc1638N;Ctnnb1(-/+) females showed an increased incidence of mammary tumors, which are normally rarely observed in Apc1638N mice, and the histological composition of the tumors resembled that of Apc1572T-related tumors. Hereby, we provide in vivo genetic evidence confirming the dominant role of β-catenin dosage in tumor formation and in dictating tumor predisposition among tissues in Apc-driven cancer.
Collapse
|
17
|
Albuquerque C, Bakker ERM, van Veelen W, Smits R. Colorectal cancers choosing sides. Biochim Biophys Acta Rev Cancer 2011; 1816:219-31. [PMID: 21855610 DOI: 10.1016/j.bbcan.2011.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/25/2011] [Accepted: 07/28/2011] [Indexed: 12/15/2022]
Abstract
In contrast to the majority of sporadic colorectal cancer which predominantly occur in the distal colon, most mismatch repair deficient tumours arise at the proximal side. At present, these regional preferences have not been explained properly. Recently, we have screened colorectal tumours for mutations in Wnt-related genes focusing specifically on colorectal location. Combining this analysis with published data, we propose a mechanism underlying the side-related preferences of colorectal cancers, based on the specific acquired genetic defects in β-catenin signalling.
Collapse
Affiliation(s)
- Cristina Albuquerque
- Centro de Investigação de Patobiologia Molecular CIPM, Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Prof. Lima Basto 1099-023 Lisboa, Portugal
| | | | | | | |
Collapse
|
18
|
Xu N, Wang SQ, Tan D, Gao Y, Lin G, Xi R. EGFR, Wingless and JAK/STAT signaling cooperatively maintain Drosophila intestinal stem cells. Dev Biol 2011; 354:31-43. [DOI: 10.1016/j.ydbio.2011.03.018] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 01/22/2023]
|
19
|
Abstract
Background: Epigenetic silencing of Wnt antagonists and expression changes in genes associated with Wnt response pathways occur in early sporadic colorectal tumourigenesis, indicating that tumour cells are more sensitive to Wnt growth factors and respond differently. In this study, we have investigated whether similar changes occur in key markers of the Wnt response pathways in the genetic form of the disease, familial adenomatous polyposis (FAP). Methods: We investigated epigenetic and expression changes using pyrosequencing and real-time RT-PCR in samples from seven patients without neoplasia, and matched normal and tumour tissues from 22 sporadic adenoma and 14 FAP patients. Results: We found that 17 out of 24 (71%) FAP adenomas were hypermethylated at sFRP1, compared with 20 out of 22 (91%) of sporadic cases. This was reflected at the level of sFRP1 transcription, where 73% of FAP and 100% of sporadic cases were down-regulated. Increased expression levels of c-myc and FZD3 were less common in FAP (35 and 46% respectively) than sporadic tumours (78 and 67% respectively). Conclusion: Overall, the changes in expression and methylation were comparable, although the degree of change was generally lower in the FAP adenomas. Molecular heterogeneity between multiple adenomas from individual FAP patients may reflect different developmental fates for these premalignant tumours.
Collapse
|
20
|
Fodde R, Tomlinson I. Nuclear β-catenin expression and Wnt signalling: in defence of the dogma. J Pathol 2010; 221:239-41. [DOI: 10.1002/path.2718] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|