1
|
Pant A, Moar K, Maurya PK. Impact of estradiol in inducing endometrial cancer using RL95-2. Pathol Res Pract 2024; 263:155640. [PMID: 39383736 DOI: 10.1016/j.prp.2024.155640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Endometrial cancer is the most common gynecological malignancy that originates from the inner lining of the uterus and predominantly affects postmenopausal women. Prolonged exposure to estrogen, family history of endometrial cancer, obesity, and hormonal imbalance are some of the risk factors associated with endometrial cancer. In our study, we investigated the effect of estradiol, a potent form of estrogen at various concentrations on endometrial cell line RL95-2. METHODS Endometrial cell RL95-2 were cultured in DMEM medium with optimal conditions required to maintain the cells. MTT assay and colony formation assay were further performed after treating the cells with different concentrations of estradiol (1, 10, and 100 nM) and TAM (100 nM). Moreover, the effect of genes regulated by estradiol was also examined using microarray and validated using real-time polymerase chain reaction (qRT-PCR). RESULTS Time-dependent MTT assay shows a significant change in the ability of the cells to survive relative to concentrations. Colony formation was found to be directly proportional to the concentration of the estradiol (p < 0.05). Among genes, MMP14 (p = 0.03), SPARCL1 (p = 0.005), and CLU (p = 0.06) showed a significant up-regulation in their expression after estradiol treatment while NRN1 (p < 0.001) showed significant downregulation in expression pattern compared to control. However, the TAM treatment was found to be significantly effective after 72 h (p < 0.001) compared to control and 100 nM E2 (p = 0.0206). CONCLUSION Our study suggests that estradiol significantly contributes to regulating the viability, colony formation, and expression of genes associated with endometrial cancer.
Collapse
Affiliation(s)
- Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
2
|
Wang F, Zhou C, Zhu Y, Keshavarzi M. The microRNA Let-7 and its exosomal form: Epigenetic regulators of gynecological cancers. Cell Biol Toxicol 2024; 40:42. [PMID: 38836981 PMCID: PMC11153289 DOI: 10.1007/s10565-024-09884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Many types of gynecological cancer (GC) are often silent until they reach an advanced stage, and are therefore often diagnosed too late for effective treatment. Hence, there is a real need for more efficient diagnosis and treatment for patients with GC. During recent years, researchers have increasingly studied the impact of microRNAs cancer development, leading to a number of applications in detection and treatment. MicroRNAs are a particular group of tiny RNA molecules that regulate regular gene expression by affecting the translation process. The downregulation of numerous miRNAs has been observed in human malignancies. Let-7 is an example of a miRNA that controls cellular processes as well as signaling cascades to affect post-transcriptional gene expression. Recent research supports the hypothesis that enhancing let-7 expression in those cancers where it is downregulated may be a potential treatment option. Exosomes are tiny vesicles that move through body fluids and can include components like miRNAs (including let-7) that are important for communication between cells. Studies proved that exosomes are able to enhance tumor growth, angiogenesis, chemoresistance, metastasis, and immune evasion, thus suggesting their importance in GC management.
Collapse
Affiliation(s)
- Fei Wang
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Chundi Zhou
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Yanping Zhu
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China.
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Chen S, Zhang W, Xia Z, Xie J, Li Z, Liu Z, Yu N, Wang X. MicroRNAs Associated with Keloids Identified by Microarray Analysis and In Vitro Experiments. Mol Biotechnol 2024:10.1007/s12033-024-01058-0. [PMID: 38393632 DOI: 10.1007/s12033-024-01058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024]
Abstract
MicroRNAs (miRNAs) play a crucial role in gene regulation and the development of keloid. This research aimed to identify and verify miRNAs associated with keloids by microarray analysis and in vitro experiments, shedding light on seeking for potential therapeutic molecular targets. In this study, the weighted gene co-expression network analysis was performed based on the GSE113620. The key miRNA module most relevant to the keloid was further screened to identify hub miRNAs, and then hub miRNAs was verified by the microarray analysis and qRT-PCR experiments. Additionally, targeted genes of hub miRNAs were predicted and verified. Gene ontology (GO) analysis and KEGG enrichment analysis were also conducted. Five miRNA modules were divided, and the blue module exhibited the highest correlation with keloids. Then, hsa-miR-127-3p, hsa-miR-214-3p, hsa-miR-155-5p, hsa-miR-409-5p, and hsa-miR-542-5p were identified as the hub miRNAs. Subsequently, the microarray analysis and qRT-PCR results demonstrated that the expression of five miRNAs were upregulated in keloid tissues. The GO analysis revealed that the target genes of these miRNAs were mainly enriched in biological processes including gene transcription, protein phosphorylation and the MAPK (mitogen-activated protein kinase) cascade, and the KEGG pathway enrichment analysis showed that the PI3K-AKT signaling pathway were significantly enriched. In conclusion, these five miRNAs (hsa-miR-127-3p, hsa-miR-155-5p, hsa-miR-214-3p, hsa-miR-409-5p, and hsa-miR-542-5p) play vital roles in the pathogenesis of keloid and might be potential therapeutic targets. These miRNAs might regulate genes enriched in gene transcription, protein phosphorylation, the MAPK cascade, and the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Sichao Chen
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenchao Zhang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zenan Xia
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangmiao Xie
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhijin Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nanze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of International Medical Service, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiaojun Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Gatius S, Matias Guiu X, Davidson B. Molecular features for timely cancer diagnosis and treatment - tumors of the ovary, fallopian tube and endometrium. Virchows Arch 2024; 484:339-351. [PMID: 38099957 DOI: 10.1007/s00428-023-03710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 03/19/2024]
Abstract
Gynecologic pathology has moved, within only a few years, from being a diagnostic area devoid of molecular testing into a diagnostic discipline in which such analyses are becoming routine. The direct relevance of molecular characterization to the choice of treatment of patients with carcinomas originating in both the uterus and adnexae makes it likely that such testing will only expand along with our understanding of the molecular make-up of these tumors. As a consequence, gynecologic pathologists have become an integral part of patient management, rather than lab personnel providing external services.In parallel, molecular testing is expanding as a tool for diagnosing rare tumors affecting these organs, including soft tissue tumors, sex cord-stromal tumors and germ cell tumors, as well as other rare entities. Increased knowledge in this area bears directly on the ability to diagnose these tumors in a reproducible manner, as well as recognize and consult on genetic diseases. Hopefully, despite the inherent difficulty in studying rare cancers, it will also translate into new therapeutic options for the malignant ones among these rare cancers.
Collapse
Affiliation(s)
- Sonia Gatius
- Department of Pathology, Hospital Universitari Arnau de Vilanova de Lleida, Universitat de Lleida, IRBLleida, CIBERONC, Lleida, Spain.
| | - Xavier Matias Guiu
- Department of Pathology, Hospital Universitari Arnau de Vilanova de Lleida, Universitat de Lleida, IRBLleida, CIBERONC, Lleida, Spain
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital Montebello, Norwegian Radium Hospital, N-0310, Oslo, Norway.
- University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316, Oslo, Norway.
| |
Collapse
|
5
|
Makk E, Bohonyi N, Oszter A, Éles K, Tornóczky T, Tóth A, Kálmán E, Kovács K. Comparative analysis of EZH2, p16 and p53 expression in uterine carcinosarcomas. Pathol Oncol Res 2023; 29:1611547. [PMID: 38146588 PMCID: PMC10749357 DOI: 10.3389/pore.2023.1611547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023]
Abstract
Introduction: The role of p16 and p53 immunohistochemistry in the diagnosis of rare and aggressive uterine carcinosarcoma (UCS) has been well established. However, enhancer of zeste homolog 2 (EZH2), a histone methyltransferase and a member of the polycomb group family is a relatively new biomarker, with limited published data on its significance in this tumor type. The goal of this study was to examine EZH2 expression in UCS and its components, in correlation with morphological features, and p16 and p53 staining patterns. Methods: Twenty-eight UCSs were included in the study. EZH2, p16 and p53 immunoreactivity were assessed independently by two pathologists in both tumor components (epithelial and mesenchymal). EZH2 and p16 immunostains were scored semiquantitatively: based on the percentage and intensity of tumor cell staining a binary staining index ("high- or low-expressing") was calculated. The p53 staining pattern was evaluated as wild-type or aberrant (diffuse nuclear, null, or cytoplasmic expression). Statistical tests were used to evaluate the correlation between staining patterns for all three markers and the different tumor components and histotypes. Results: High EZH2 and p16 expression and aberrant p53 patterns were present in 89.3% 78.6% and 85.7% of the epithelial component and in 78.6%, 62.5% and 82.1% of the mesenchymal component, respectively. Differences among these expression rates were not found to be significant (p > 0.05). Regarding the epithelial component, aberrant p53 pattern was found to be significantly (p = 0.0474) more frequent in the serous (100%) than in endometrioid (66.6%) histotypes. Within the mesenchymal component, p53 null expression pattern occurred significantly (p = 0.0257) more frequently in heterologous sarcoma components (71.4%) compared to the homologous histotype (18.8%). Conclusion: In conclusion, EZH2, p16 and p53 seem to play a universal role in the pathogenesis of UCS; however, a distinctive pattern of p53 expression appears to exist between the serous and endometrioid carcinoma components and also between the homologous and heterologous sarcoma components.
Collapse
Affiliation(s)
- Evelin Makk
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Noémi Bohonyi
- Department of Obstretrics and Gynaecology, University of Pécs Medical School, Pécs, Hungary
| | - Angéla Oszter
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Klára Éles
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Tornóczky
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Arnold Tóth
- Department of Medical Imaging, University of Pécs Medical School, Pécs, Hungary
| | - Endre Kálmán
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Krisztina Kovács
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| |
Collapse
|
6
|
Saito A, Nishikawa T, Yoshida H, Mizoguchi C, Kitadai R, Yamamoto K, Yazaki S, Kojima Y, Ishikawa M, Kato T, Yonemori K. Folate receptor alpha is widely expressed and a potential therapeutic target in uterine and ovarian carcinosarcoma. Gynecol Oncol 2023; 176:115-121. [PMID: 37506533 DOI: 10.1016/j.ygyno.2023.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVE Folate receptor alpha (FRα), which is expressed in various cancers, is a potential therapeutic target. However, its expression and clinical significance in uterine (UCS) and ovarian carcinosarcoma (OCS) remain to be elucidated. METHODS This retrospective study included patients with gynecologic carcinosarcoma who underwent primary surgery between 1997 and 2019 at our institution. Immunohistochemical staining of surgical FFPE specimens was performed for FRα and HER2. FRα was evaluated using the H-score and the 4-tired scoring system (0 to 3+). Subsequently, FRα expression (≥5% of tumor cells with ≥1+ intensity) and FRα-high (score 2+ and 3+) were evaluated. HER2 was scored according to the modified ASCO/CAP criteria. The association between FRα-high and clinicopathological features, HER2 expression, and survival was assessed in UCS. RESULTS A total of 120 patients with UCS and nine patients with OCS were included. In UCS, FRα expression was observed in all patients, whereas FRα-high status was present in 20% of patients. Among HER2-negative UCS, 34% exhibited FRα-high. No significant association was observed between clinicopathological characteristics and FRα status. During the follow-up period (median 34.5 mo), FRα-high was not strongly associated with progression, free survival, and overall survival. All the OCS tumor specimens showed FRα-high expression. CONCLUSIONS FRα expression was observed in all the UCS and OCS specimens, including HER2-negative UCS patients. This widespread FRα expression suggests that FRα-targeted therapies may hold promise for the treatment for gynecologic carcinosarcoma. However, in uterine carcinosarcoma, no significant relationship was observed between FRα expression and clinicopathological features or prognosis.
Collapse
Affiliation(s)
- Ayumi Saito
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tadaaki Nishikawa
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Chiharu Mizoguchi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Rui Kitadai
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kasumi Yamamoto
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shu Yazaki
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuki Kojima
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Mitsuya Ishikawa
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| |
Collapse
|
7
|
Prendecka-Wróbel M, Pigoń-Zając D, Sondej D, Grzywna K, Kamińska K, Szuta M, Małecka-Massalska T. Can Dietary Actives Affect miRNAs and Alter the Course or Prevent Colorectal Cancer? Int J Mol Sci 2023; 24:10142. [PMID: 37373289 DOI: 10.3390/ijms241210142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer is a diet-related cancer. There is much research into the effects of nutrients on the prevention, modulation, and treatment of colorectal cancer. Researchers are trying to find a correlation between epidemiological observations indicating certain dietary components as the originator in the process of developing colorectal cancer, such as a diet rich in saturated animal fats, and dietary components that could eliminate the impact of harmful elements of the daily nutritional routine, i.e., substances such as polyunsaturated fatty acids, curcumin, or resveratrol. Nevertheless, it is very important to understand the mechanisms underlying how food works on cancer cells. In this case, microRNA (miRNA) seems to be a very significant research target. MiRNAs participate in many biological processes connected to carcinogenesis, progression, and metastasis. However, this is a field with development prospects ahead. In this paper, we review the most significant and well-studied food ingredients and their effects on various miRNAs involved in colorectal cancer.
Collapse
Affiliation(s)
- Monika Prendecka-Wróbel
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Dominika Pigoń-Zając
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Daria Sondej
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Karolina Grzywna
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Kamińska
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Mariusz Szuta
- Chair of Oral Surgery, Jagiellonian University Medical College, 31-155 Kraków, Poland
| | - Teresa Małecka-Massalska
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| |
Collapse
|
8
|
Rosati A, Vargiu V, Certelli C, Arcieri M, Vizza E, Legge F, Cosentino F, Ferrandina G, Fanfani F, Scambia G, Corrado G. Is the sarcomatous component (homologous vs heterologous) the prognostic "driving force" in early-stage uterine carcinosarcomas? A retrospective multicenter study. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04594-5. [PMID: 36773091 PMCID: PMC10356890 DOI: 10.1007/s00432-023-04594-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/18/2023] [Indexed: 02/12/2023]
Abstract
PURPOSE Uterine carcinosarcomas (UCSs) are aggressive biphasic malignancies, with a carcinomatous/epithelial component and a sarcomatous/mesenchymal counterpart. The aim of this study was to evaluate the impact of the sarcomatous component (homologous vs heterologous) on the overall survival (OS) and progression-free survival (PFS). METHODS This is a multicenter observational retrospective study conducted in patients with stage I and II UCSs. RESULTS Ninety-five women with histological diagnosis of early-stage UCSs were retrieved: 60 (63.2%) had tumors with homologous sarcomatous components, and 35 (36.8%) with heterologous. At univariate analysis, a stromal invasion ≥ 50%, the presence of clear cell, serous or undifferentiated carcinomatous component, the heterologous sarcomatous component and FIGO stage IB and II were shown to be variables with a statistically significant negative impact on PFS. Similarly, a depth of invasion ≥ 50%, the heterologous sarcomatous component and FIGO stage IB and II were statistically negative prognostic factors also concerning OS. At multivariate analysis, only the heterologous sarcomatous component was confirmed to be a statistically significant negative prognostic factor both on PFS (HR 2.362, 95% CI 1.207-4.623, p value = 0.012) and on OS (HR 1.950, 95% CI 1.032-3.684, p = 0.040). CONCLUSION Carcinomatous and sarcomatous components both played a role in tumor progression and patients' survival. However, only the sarcomatous component retained a statistical significance at the multivariable model suggesting its preeminent prognostic role in early-stage UCSs.
Collapse
Affiliation(s)
- A Rosati
- Dipartimento Scienze della Salute della Donna, del Bambino, e di Sanità Pubblica, Ginecologia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168, Rome, Italy
| | - V Vargiu
- Department of Gynecologic Oncology, Gemelli Molise, Campobasso, Italy
| | - C Certelli
- Dipartimento Scienze della Salute della Donna, del Bambino, e di Sanità Pubblica, Ginecologia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168, Rome, Italy
| | - M Arcieri
- Dipartimento Scienze della Salute della Donna, del Bambino, e di Sanità Pubblica, Ginecologia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168, Rome, Italy
| | - E Vizza
- Department of Experimental Clinical Oncology, Gynecologic Oncology Unit, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - F Legge
- Gynecologic Oncology Unit, Dept. Obstetrics/Gynecology "F. Miulli" General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
| | - F Cosentino
- Department of Gynecologic Oncology, Gemelli Molise, Campobasso, Italy.,Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio" Università degli studi del Molise, Campobasso, Italy
| | - G Ferrandina
- Dipartimento Scienze della Salute della Donna, del Bambino, e di Sanità Pubblica, Ginecologia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italia
| | - F Fanfani
- Dipartimento Scienze della Salute della Donna, del Bambino, e di Sanità Pubblica, Ginecologia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italia
| | - G Scambia
- Dipartimento Scienze della Salute della Donna, del Bambino, e di Sanità Pubblica, Ginecologia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italia
| | - G Corrado
- Dipartimento Scienze della Salute della Donna, del Bambino, e di Sanità Pubblica, Ginecologia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168, Rome, Italy.
| |
Collapse
|
9
|
Li R, Rao JN, Smith AD, Chung HK, Xiao L, Wang JY, Turner DJ. miR-542-5p targets c-myc and negates the cell proliferation effect of SphK1 in intestinal epithelial cells. Am J Physiol Cell Physiol 2023; 324:C565-C572. [PMID: 36622069 PMCID: PMC9942902 DOI: 10.1152/ajpcell.00145.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023]
Abstract
Intestinal epithelial barrier defects occur commonly during a variety of pathological conditions, though their underlying mechanisms are not completely understood. Sphingosine-1-phosphate (S1P) has been shown to be a critical regulator of proliferation and of maintenance of an intact intestinal epithelial barrier, as is also sphingosine kinase 1 (SphK1), the rate-limiting enzyme for S1P synthesis. SphK1 has been shown to modulate its effect on intestinal epithelial proliferation through increased levels of c-myc. We conducted genome-wide profile analysis to search for differential microRNA expression related to overexpressed SphK1 demonstrating adjusted expression of microRNA 542-5p (miR-542-5p). Here, we show that miR-542-5p is regulated by SphK1 activity and is an effector of c-myc translation that ultimately serves as a critical regulator of the intestinal epithelial barrier. miR-542-5p directly regulates c-myc translation through direct binding to the c-myc mRNA. Exogenous S1P analogs administered in vivo protect murine intestinal barrier from damage due to mesenteric ischemia reperfusion, and damaged intestinal tissue had increased levels of miR-542-5p. These results indicate that miR-542-5p plays a critical role in the regulation of S1P-mediated intestinal barrier function, and may highlight a novel role in potential therapies.
Collapse
Affiliation(s)
- Ruiyun Li
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore VA Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore VA Medical Center, Baltimore, Maryland
| | - Alexis D Smith
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore VA Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore VA Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore VA Medical Center, Baltimore, Maryland
- Cell Biology Group, Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore VA Medical Center, Baltimore, Maryland
| |
Collapse
|
10
|
Duan HP, Yan JH, Nie L, Wang Y, Xie H. A noval prognostic signature of the N7-methylguanosine (m7G)-related miRNA in lung adenocarcinoma. BMC Pulm Med 2023; 23:14. [PMID: 36635678 PMCID: PMC9838007 DOI: 10.1186/s12890-022-02290-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is characterized by high morbidity and mortality rates and poor prognosis. N7-methylguanosine play an increasingly vital role in lung adenocarcinoma. However, the prognostic value of N7-methylguanosine related-miRNAs in lung adenocarcinoma remains unclear. METHODS In the study, the mRNA and miRNA expression profiles and corresponding clinical informations were downloaded from the public database. The prognostic signature was built using least absolute shrinkage and selection operator Cox analysis. The Kaplan-Meier method was used to compare survival outcomes between the high- and low-risk groups. Signatures for the development of lung adenocarcinoma were tested using univariate and multivariate Cox regression models. Single-sample gene set enrichment analysis was used to determine the immune cell infiltration score. First, we predicted METTL1 and WDR4 chemosensitivities based on a public pharmacogenomics database. The area under the receiver operating characteristic curve showed that the performance of signature in 1-,3-, and 5-year survival predictions were 0.68, 0.65, and 0.683, respectively. RESULTS We established a novel prognostic signature consisting of 9 N7-Methylguanosine related miRNAs using least absolute shrinkage and selection operator Cox analysis. Patients in the high-risk group had shorter survival times than those in the low-risk group did. The calibration curves at 1, 3, and 5-year also illustrate the high predictive power of the structure. Signature was corrected using the Toumor stage. The expression levels of METTL1 and WDR4 significantly correlated with the sensitivity of cancer cells to antitumor drugs. CONCLUSIONS A novel signature constructed using 9 N7-methylguanosine related-miRNAs can be used for prognostic prediction.
Collapse
Affiliation(s)
- Han-ping Duan
- grid.449838.a0000 0004 1757 4123Department of Nuclear Medicine, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000 Hunan Province People’s Republic of China
| | - Jian-hui Yan
- grid.449838.a0000 0004 1757 4123Department of General Medicine, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000 Hunan Province People’s Republic of China
| | - Lin Nie
- grid.449838.a0000 0004 1757 4123Department of Radiology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000 Hunan Province People’s Republic of China
| | - Ye Wang
- grid.449838.a0000 0004 1757 4123Department of Thoracic Surgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000 Hunan Province People’s Republic of China
| | - Hui Xie
- grid.449838.a0000 0004 1757 4123Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, No. 25, Renmin West Road, Chenzhou, 423000 Hunan Province People’s Republic of China ,Key Laboratory of Medical Imaging and Artifical Intelligence of Hunan Province, 423000 Chenzhou, People’s Republic of China
| |
Collapse
|
11
|
Kim SI, Kim JH, Lee C, Ha J, Jung KW, Lim MC. Incidence and survival rates of primary uterine carcinosarcoma in Korea: a National Cancer Registry study. J Gynecol Oncol 2023; 34:e9. [PMID: 36366811 DOI: 10.3802/jgo.2023.34.e9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/12/2022] [Accepted: 09/24/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To investigate the incidence and survival rates of primary uterine carcinosarcoma (UCS) in Korea. METHODS From the Korea Central Cancer Registry, we identified patients diagnosed with primary UCS between 1999 and 2018 and collected their information, including age at diagnosis, Surveillance, Epidemiology, and End Results (SEER) summary stage, and treatment. Age-standardized incidence rates (ASRs) and annual percent changes (APCs) were calculated. Baseline characteristics and overall survival (OS) were compared by study periods, ages, and stages at initial diagnosis. RESULTS Overall, the incidence rate of primary UCS increased markedly during the time period: ASRs, 0.02 per 100,000 in 1999 and 0.25 per 100,000 in 2018 (APC, 13.9%; p<0.001). No difference in OS was observed between patients diagnosed in 1999-2008 and those diagnosed in 2009-2018 (5-year survival rate, 46.0% vs. 48.6%; p=0.871). Considering the mean patient age at diagnosis of UCS, we divided the study population into 2 groups. Patients aged ≥60 years had a more frequent prior radiation history, received less multi-modality treatment, and showed worse OS than those aged <60 years (5-year survival rate, 42.7% vs. 53.6%; p=0.001). In multivariate analysis, both old age at diagnosis (≥60 years) and the SEER summary stage were identified as independent poor prognostic factors for OS, whereas radiation history before the diagnosis of UCS was not. CONCLUSION The incidence rate of UCS in Korea increased significantly from 1999 to 2018. Advanced stage and old age (≥60 years) at diagnosis might be poor prognostic factors for survival, but not prior radiation history.
Collapse
Affiliation(s)
- Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hyun Kim
- Center for Gynecologic Cancer, National Cancer Center, Goyang, Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Johyun Ha
- Korea Central Cancer Registry, National Cancer Center, Goyang, Korea.,Division of Cancer Registration and Surveillance, National Cancer Control Institute, National Cancer Center, Goyang, Korea
| | - Kyu-Won Jung
- Korea Central Cancer Registry, National Cancer Center, Goyang, Korea.,Division of Cancer Registration and Surveillance, National Cancer Control Institute, National Cancer Center, Goyang, Korea.
| | - Myong Cheol Lim
- Center for Gynecologic Cancer, National Cancer Center, Goyang, Korea.,Department of Cancer Control and Policy, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.,Rare & Pediatric Cancer Branch and Immuno-oncology Branch, Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang, Korea.
| |
Collapse
|
12
|
Zhang Y, Han XX, Lin XM, Li Z, Zhang JH. miR-450a exerts oncosuppressive effects in breast carcinoma by targeting CREB1. Kaohsiung J Med Sci 2022; 38:643-652. [PMID: 35451558 DOI: 10.1002/kjm2.12547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/12/2022] [Accepted: 03/09/2022] [Indexed: 12/30/2022] Open
Abstract
Emerging evidence greatly implicates that microRNA-450a (miR-450a) plays an essential role in cancer pathobiology. While the pathological role of miR-450a in breast carcinogenesis remains enigmatic. Herein, we showed that miR-450a was lowly expressed in breast cancer cell lines compared with normal, and low miR-450a expression was associated with poor survival in patients with breast cancer. We revealed that miR-450a mimic transfected breast cancer cells (T47D and BT474) exhibited attenuated capacities of proliferation, migration, and invasion in vitro, and miR-450a suppressed T47D cell growth in a xenograft tumor model. Mechanistically, cAMP response element-binding protein 1 (CREB1) was negatively targeted by miR-450a, and CREB1 deletion mimicked the effects of miR-450a mimic treatment. Bioinformatics analysis further revealed that elevated expression of CREB1 correlated with poor prognosis in patients with breast cancer and miR-450a level was negatively correlated with CREB1 level in breast cancer. Additionally, miR-450a inhibited the phosphorylation of phosphatidylinositol 3-kinase/V-akt murine thymoma viral oncogene homolog (PI3K/AKT) and the activities of matrix metalloproteinase-2/9 (MMP-2/9). The following rescue assay indicated that CREB1 was implicated in the anti-tumoral effect of mR-450a in breast carcinoma. All these observations disclosed that miR-450a negatively regulates the growth and metastatic property of breast carcinoma cells.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Breast Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Xiao-Xu Han
- Department of Breast Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Xiao-Meng Lin
- Department of Breast Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Zhong Li
- Department of Breast Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Jun-Hua Zhang
- Department of Breast Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei, China
| |
Collapse
|
13
|
Morovat P, Morovat S, Ashrafi AM, Teimourian S. Identification of potentially functional circular RNAs hsa_circ_0070934 and hsa_circ_0004315 as prognostic factors of hepatocellular carcinoma by integrated bioinformatics analysis. Sci Rep 2022; 12:4933. [PMID: 35322101 PMCID: PMC8943026 DOI: 10.1038/s41598-022-08867-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide, which has a high mortality rate and poor treatment outcomes with yet unknown molecular basis. It seems that gene expression plays a pivotal role in the pathogenesis of the disease. Circular RNAs (circRNAs) can interact with microRNAs (miRNAs) to regulate gene expression in various malignancies by acting as competitive endogenous RNAs (ceRNAs). However, the potential pathogenesis roles of the ceRNA network among circRNA/miRNA/mRNA in HCC are unclear. In this study, first, the HCC circRNA expression data were obtained from three Gene Expression Omnibus microarray datasets (GSE164803, GSE94508, GSE97332), and the differentially expressed circRNAs (DECs) were identified using R limma package. Also, the liver hepatocellular carcinoma (LIHC) miRNA and mRNA sequence data were retrieved from TCGA and differentially expressed miRNAs (DEMIs) and mRNAs (DEGs) were determined using the R DESeq2 package. Second, CSCD website was used to uncover the binding sites of miRNAs on DECs. The DECs' potential target miRNAs were revealed by conducting an intersection between predicted miRNAs from CSCD and downregulated DEMIs. Third, candidate genes were uncovered by intersecting targeted genes predicted by miRWalk and targetscan online tools with upregulated DEGs. The ceRNA network was then built using the Cytoscape software. The functional enrichment and the overall survival time of these potential targeted genes were analyzed, and a PPI network was constructed in the STRING database. Network visualization was performed by Cytoscape, and ten hub genes were detected using the CytoHubba plugin tool. Four DECs (hsa_circ_0000520, hsa_circ_0008616, hsa_circ_0070934, hsa_circ_0004315) were obtained and six miRNAs (hsa-miR-542-5p, hsa-miR-326, hsa-miR-511-5p, hsa-miR-195-5p, hsa-miR-214-3p, and hsa-miR-424-5p) which are regulated by the above DECs were identified. Then 543 overlapped genes regulated by six miRNAs mentioned above were predicted. Functional enrichment analysis showed that these genes are mostly associated with regulatory pathways in cancer. Ten hub genes (TTK, AURKB, KIF20A, KIF23, CEP55, CDC6, DTL, NCAPG, CENPF, PLK4) have been screened from the PPI network of the 204 survival-related genes. KIF20A, NCAPG, TTK, PLK4, and CDC6 were selected for the highest significance p-values. At the end, a circRNA-miRNA-mRNA regulatory axis was established for five final selected hub genes. This study implies the potential pathogenesis of the obtained network and proposes that the two DECs (has_circ_0070934 and has_circ_0004315) may be important prognostic markers for HCC.
Collapse
Affiliation(s)
- Pejman Morovat
- Department of Medical Biotechnology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
| | - Saman Morovat
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Arash M Ashrafi
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shahram Teimourian
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
14
|
Qian X, Wang Y, Hu W, Xu X, Gao L, Meng Y, Yan J. MiR-369-5p inhibits the proliferation and migration of hepatocellular carcinoma cells by down-regulating HOXA13 expression. Tissue Cell 2022; 74:101721. [DOI: 10.1016/j.tice.2021.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
|
15
|
Wang M, Hui P. A Timely Update of Immunohistochemistry and Molecular Classification in the Diagnosis and Risk Assessment of Endometrial Carcinomas. Arch Pathol Lab Med 2021; 145:1367-1378. [PMID: 34673912 DOI: 10.5858/arpa.2021-0098-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Endometrial carcinoma is the most common gynecologic malignancy in the United States and has been traditionally classified based on histology. However, the distinction of certain histologic subtypes based on morphology is not uncommonly problematic, and as such, immunohistochemical study is often needed. Advances in comprehensive tumor sequencing have provided novel molecular profiles of endometrial carcinomas. Four distinct molecular subtypes with different prognostic values have been proposed by The Cancer Genome Atlas program: polymerase epsilon ultramutated, microsatellite instability hypermutated, copy number low (microsatellite stable or no specific molecular profile), and copy number high (serouslike, p53 mutant). OBJECTIVE.— To discuss the utilities of commonly used immunohistochemical markers for the classification of endometrial carcinomas and to review the recent advancements of The Cancer Genome Atlas molecular reclassification and their potential impact on treatment strategies. DATA SOURCES.— Literature review and authors' personal practice experience. CONCLUSIONS.— The current practice of classifying endometrial cancers is predominantly based on morphology. The use of ancillary testing, including immunohistochemistry, is helpful in the identification, differential diagnosis, and classification of these cancers. New developments such as molecular subtyping have provided insightful prognostic values for endometrial carcinomas. The proposed The Cancer Genome Atlas classification is poised to gain further prominence in guiding the prognostic evaluation for tailored treatment strategies in the near future.
Collapse
Affiliation(s)
- Minhua Wang
- From the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Pei Hui
- From the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
16
|
The Diagnostic, Prognostic and Therapeutic Role of miRNAs in Adrenocortical Carcinoma: A Systematic Review. Biomedicines 2021; 9:biomedicines9111501. [PMID: 34829730 PMCID: PMC8614733 DOI: 10.3390/biomedicines9111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a dismal prognosis and a high rate of recurrence and mortality. Therapeutic options are limited. In some cases, the distinction of ACCs from benign adrenal neoplasms with the existing widely available pathological and histopathological tools is difficult. Thus, new biomarkers have been tested. We conducted a review of the recent literature on the advances of the diagnostic, prognostic and therapeutic role of miRNAs on ACC patients. More than 10 miRNAs validated by multiple studies were found to present a diagnostic and prognostic role for ACC patients, from which miR-483-5p and miR-195 were the most frequently met biomarkers. In particular, upregulation of miR-483-5p and downregulation of miR-195 were the most commonly validated molecular alterations. Unfortunately, data on the therapeutic role of miRNA are still scarce and limited mainly at the experimental level. Thus, the role of miRNA regulation in ACC remains an area of active research.
Collapse
|
17
|
Dissemination patterns and chronology of distant metastasis affect survival of patients with head and neck squamous cell carcinoma. Oral Oncol 2021; 119:105356. [PMID: 34034098 DOI: 10.1016/j.oraloncology.2021.105356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/25/2021] [Accepted: 05/16/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To define metastatic categories based on their prognostic significance. We hypothesized that oligometastasis in patients with head and neck squamous cell carcinoma (HNSCC) is associated with better post-distant metastasis disease specific survival (post-DM DSS) compared to patients with polymetastasis. Furthermore, the impact on survival of synchronous versus metachronous distant metastasis (DM) occurrence was assessed. MATERIALS AND METHODS Retrospective cohort study in which patients with DM were stratified into three groups: oligometastasis (maximum of 3 metastatic foci in ≤2 anatomic sites), explosive metastasis (≥4 metastatic foci at one anatomic site) and explosive-disseminating metastasis (spread to ≥3 anatomic sites or >3 metastatic foci in 2 anatomic sites). In addition, patients were divided into synchronous versus metachronous DM. RESULTS Between January 1, 2006 and December 31, 2013, a total of 2687 patients with HNSCC were identified, of which 324 patients developed DM. In this group, 115 (35.5%) patients had oligometastasis, 64 (19.8%) patients had explosive metastasis and 145 (44.8%) patients had explosive-disseminating metastasis. Their median post-DM DSS were 4.7 months, 4.1 months and 1.7 months respectively (p < .001). Synchronous DM was associated with more favorable survival rates in univariable and multivariable analyses than metachronous DM with recurrence of the index tumor (6-month post-DM DSS probability of 0.51 vs 0.17, p < .001). CONCLUSION Oligometastasis in HNSCC signifies a better prognosis than a polymetastatic pattern. Metachronous DM occurrence with recurrence of the primary index tumor is associated with an unfavorable prognosis.
Collapse
|
18
|
What we can learn from embryos to understand the mesenchymal-to-epithelial transition in tumor progression. Biochem J 2021; 478:1809-1825. [PMID: 33988704 DOI: 10.1042/bcj20210083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial plasticity involved the terminal and transitional stages that occur during epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET), both are essential at different stages of early embryonic development that have been co-opted by cancer cells to undergo tumor metastasis. These processes are regulated at multiple instances, whereas the post-transcriptional regulation of key genes mediated by microRNAs is gaining major attention as a common and conserved pathway. In this review, we focus on discussing the latest findings of the cellular and molecular basis of the less characterized process of MET during embryonic development, with special attention to the role of microRNAs. Although we take in consideration the necessity of being cautious when extrapolating the obtained evidence, we propose some commonalities between early embryonic development and cancer progression that can shed light into our current understanding of this complex event and might aid in the design of specific therapeutic approaches.
Collapse
|
19
|
Moukarzel LA, Ferrando L, Da Cruz Paula A, Brown DN, Geyer FC, Pareja F, Piscuoglio S, Papanastasiou AD, Fusco N, Marchiò C, Abu‐Rustum NR, Murali R, Brogi E, Wen HY, Norton L, Soslow RA, Vincent‐Salomon A, Reis‐Filho JS, Weigelt B. The genetic landscape of metaplastic breast cancers and uterine carcinosarcomas. Mol Oncol 2021; 15:1024-1039. [PMID: 33021035 PMCID: PMC8024717 DOI: 10.1002/1878-0261.12813] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/04/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Metaplastic breast carcinoma (MBC) and uterine carcinosarcoma (UCS) are rare aggressive cancers, characterized by an admixture of adenocarcinoma and areas displaying mesenchymal/sarcomatoid differentiation. We sought to define whether MBCs and UCSs harbor similar patterns of genetic alterations, and whether the different histologic components of MBCs and UCSs are clonally related. Whole-exome sequencing (WES) data from MBCs (n = 35) and UCSs (n = 57, The Cancer Genome Atlas) were reanalyzed to define somatic genetic alterations, altered signaling pathways, mutational signatures, and genomic features of homologous recombination DNA repair deficiency (HRD). In addition, the carcinomatous and sarcomatous components of an additional cohort of MBCs (n = 11) and UCSs (n = 6) were microdissected separately and subjected to WES, and their clonal relatedness was assessed. MBCs and UCSs harbored recurrent genetic alterations affecting TP53, PIK3CA, and PTEN, similar patterns of gene copy number alterations, and an enrichment in alterations affecting the epithelial-to-mesenchymal transition (EMT)-related Wnt and Notch signaling pathways. Differences were observed, however, including a significantly higher prevalence of FAT3 and FAT1 somatic mutations in MBCs compared to UCSs, and conversely, UCSs significantly more frequently harbored somatic mutations affecting FBXW7 and PPP2R1A as well as HER2 amplification than MBCs. Genomic features of HRD and biallelic alterations affecting bona fide HRD-related genes were found to be more prevalent in MBCs than in UCSs. The distinct histologic components of MBCs and UCSs were clonally related in all cases, with the sarcoma component likely stemming from a minor subclone of the carcinoma component in the samples with interpretable chronology of clonal evolution. Despite the similar histologic features and pathways affected by genetic alterations, UCSs differ from MBCs on the basis of FBXW7 and PPP2R1A mutations, HER2 amplification, and lack of HRD, supporting the notion that these entities are more than mere phenocopies of the same tumor type in different anatomical sites.
Collapse
Affiliation(s)
- Lea A. Moukarzel
- Department of SurgeryMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Lorenzo Ferrando
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Department of Internal MedicineUniversity of GenoaItaly
| | | | - David N. Brown
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Felipe C. Geyer
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Fresia Pareja
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Salvatore Piscuoglio
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Visceral Surgery Research Laboratory, ClarunisDepartment of BiomedicineUniversity of BaselSwitzerland
| | - Anastasios D. Papanastasiou
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Department of Biomedical SciencesUniversity of West AtticaAthensGreece
| | - Nicola Fusco
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Division of PathologyFondazione IRCCS Ca' Grande – Ospedale Maggiore PoliclinicoMilanItaly
| | - Caterina Marchiò
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Department of Medical SciencesUniversity of TurinItaly
| | | | - Rajmohan Murali
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Edi Brogi
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Hannah Y. Wen
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Larry Norton
- Department of MedicineMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Robert A. Soslow
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | | | | | - Britta Weigelt
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| |
Collapse
|
20
|
Li H, Liu D, Liu L, Huang S, Ma A, Zhang X. The role of HOTAIR/miR-152-3p/LIN28B in regulating the progression of endometrial squamous carcinoma. Arch Med Sci 2021; 17:434-448. [PMID: 33747279 PMCID: PMC7959016 DOI: 10.5114/aoms.2019.89632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/12/2019] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION There is growing evidence that long non-coding RNAs (lncRNAs) are correlated with malignancy in the modulation of tumor progression. This study aims to investigate the effect of homeobox protein (HOX) transcript antisense RNA (HOTAIR) on the migration and invasion of ESC. MATERIAL AND METHODS Starbase was used to identify miRNAs with complementary base pairing with HOTAIR. RNA pull-down and qRT-PCR were employed to investigate the effect of HOTAIR on miR-152-3p. In vitro cell migration and invasion assays were performed to assess the effects of HOTAIR and miR-152-3p on ESC. Computational software, TargetScan, was then used to identify the potential target of miR-152-3p, and their relationship was verified by immunoblotting analysis, qRT-PCR and luciferase reporter assay. RESULTS Starbase predicted a potential miR-152-3p binding site in HOTAIR, which was validated by RNA pull-down assay. HOTAIR was negatively correlated with miR-152-3p in ESC. Moreover, HOTAIR promoted migration and invasion of ESC. The oncogenic activity of HOTAIR was partly through its negative regulation of miR-152-3p. LIN28B was identified to be a direct target of miR-152-3p. A negative correlation between LIN28B and miR-152-3p was observed in ESC. In addition, overexpression of miR-152-3p suppressed the progression of ESC by directly targeting and regulating LIN28B. CONCLUSIONS Our results reveal that HOTAIR may be a driver of ESC through inhibiting miR-152-3p, a tumor suppressor, suggesting that miR-152-3p may be a potential target for advanced ESC therapeutic treatment.
Collapse
Affiliation(s)
- Hao Li
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| | - Dan Liu
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| | - Liping Liu
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| | - Sanxiu Huang
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| | - Aiping Ma
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| | - Xiaohong Zhang
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| |
Collapse
|
21
|
Matsuzaki S, Klar M, Matsuzaki S, Roman LD, Sood AK, Matsuo K. Uterine carcinosarcoma: Contemporary clinical summary, molecular updates, and future research opportunity. Gynecol Oncol 2020; 160:586-601. [PMID: 33183764 DOI: 10.1016/j.ygyno.2020.10.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/31/2020] [Indexed: 12/16/2022]
Abstract
Uterine carcinosarcoma (UCS) is a biphasic aggressive high-grade endometrial cancer in which the sarcoma element has de-differentiated from the carcinoma element. UCS is considered a rare tumor, but its incidence has gradually increased in recent years (annual percent change from 2000 to 2016 1.7%, 95% confidence interval 1.2-2.2) as has the proportion of UCS among endometrial cancer, exceeding 5% in recent years. UCS typically affects the elderly, but in recent decades patients became younger. Notably, a stage-shift has occurred in recent years with increasing nodal metastasis and decreasing distant metastasis. The concept of sarcoma dominance may be new in UCS, and a sarcomatous element >50% of the uterine tumor is associated with decreased survival. Multimodal treatment is the mainstay of UCS. Lymphadenectomy, chemotherapy, and brachytherapy have increased in the past few decades, but survival outcomes remain dismal: the median survival is less than two years, and the 5-year overall survival rate has not changed in decades (31.9% in 1975 to 33.8% in 2012). Carboplatin/paclitaxel adjuvant chemotherapy improves progression-free survival compared with ifosfamide/paclitaxel, particularly in stages III-IV disease (GOG-261 trial). Twenty-six clinical trials previously examined therapeutic effectiveness in recurrent/metastatic UCS. The median response rate and progression-free survival were 37.5% and 5.9 months, respectively, after first-line therapy, but after later therapies, the outcomes were far worse (5.5% and 1.8 months, respectively). One significant discovery was that epithelial-mesenchymal transition (EMT) plays a pivotal role in the pathogenesis of sarcomatous dedifferentiation in UCS and that heterologous sarcoma is associated with a higher EMT signature compared with homologous sarcoma. Furthermore, next-generation sequencing has revealed that UCS tumors are serous-like and that common somatic mutations include those in TP53, PIK3CA, FBXW7, PTEN, and ARID1A. This contemporary review highlights recent clinical and molecular updates in UCS. A possible therapeutic target of EMT in UCS is also discussed.
Collapse
Affiliation(s)
- Shinya Matsuzaki
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Maximilian Klar
- Department of Obstetrics and Gynecology, University of Freiburg, Freiburg, Germany
| | - Satoko Matsuzaki
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Lynda D Roman
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas, MD-Anderson Cancer Center, Houston, TX, USA
| | - Koji Matsuo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Zhao Y, Pan Z, Namburi S, Pattison A, Posner A, Balachander S, Paisie CA, Reddi HV, Rueter J, Gill AJ, Fox S, Raghav KPS, Flynn WF, Tothill RW, Li S, Karuturi RKM, George J. CUP-AI-Dx: A tool for inferring cancer tissue of origin and molecular subtype using RNA gene-expression data and artificial intelligence. EBioMedicine 2020; 61:103030. [PMID: 33039710 PMCID: PMC7553237 DOI: 10.1016/j.ebiom.2020.103030] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cancer of unknown primary (CUP), representing approximately 3-5% of all malignancies, is defined as metastatic cancer where a primary site of origin cannot be found despite a standard diagnostic workup. Because knowledge of a patient's primary cancer remains fundamental to their treatment, CUP patients are significantly disadvantaged and most have a poor survival outcome. Developing robust and accessible diagnostic methods for resolving cancer tissue of origin, therefore, has significant value for CUP patients. METHODS We developed an RNA-based classifier called CUP-AI-Dx that utilizes a 1D Inception convolutional neural network (1D-Inception) model to infer a tumor's primary tissue of origin. CUP-AI-Dx was trained using the transcriptional profiles of 18,217 primary tumours representing 32 cancer types from The Cancer Genome Atlas project (TCGA) and International Cancer Genome Consortium (ICGC). Gene expression data was ordered by gene chromosomal coordinates as input to the 1D-CNN model, and the model utilizes multiple convolutional kernels with different configurations simultaneously to improve generality. The model was optimized through extensive hyperparameter tuning, including different max-pooling layers and dropout settings. For 11 tumour types, we also developed a random forest model that can classify the tumour's molecular subtype according to prior TCGA studies. The optimised CUP-AI-Dx tissue of origin classifier was tested on 394 metastatic samples from 11 tumour types from TCGA and 92 formalin-fixed paraffin-embedded (FFPE) samples representing 18 cancer types from two clinical laboratories. The CUP-AI-Dx molecular subtype was also independently tested on independent ovarian and breast cancer microarray datasets FINDINGS: CUP-AI-Dx identifies the primary site with an overall top-1-accuracy of 98.54% in cross-validation and 96.70% on a test dataset. When applied to two independent clinical-grade RNA-seq datasets generated from two different institutes from the US and Australia, our model predicted the primary site with a top-1-accuracy of 86.96% and 72.46% respectively. INTERPRETATION The CUP-AI-Dx predicts tumour primary site and molecular subtype with high accuracy and therefore can be used to assist the diagnostic work-up of cancers of unknown primary or uncertain origin using a common and accessible genomics platform. FUNDING NIH R35 GM133562, NCI P30 CA034196, Victorian Cancer Agency Australia.
Collapse
Affiliation(s)
- Yue Zhao
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, USA
| | - Ziwei Pan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Sandeep Namburi
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, USA
| | - Andrew Pattison
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Parkville, Melbourne, Australia
| | - Atara Posner
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Parkville, Melbourne, Australia
| | - Shiva Balachander
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Parkville, Melbourne, Australia
| | - Carolyn A Paisie
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, USA
| | - Honey V Reddi
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, USA; The Jackson Laboratory Cancer Center, Bar Harbor, ME, USA
| | - Jens Rueter
- The Jackson Laboratory Cancer Center, Bar Harbor, ME, USA
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, New South Wales 2065 Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, New South Wales 2065 Australia; Department of Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, New South Wales 2113 Australia; University of Sydney, Sydney, New South Wales 2006 Australia
| | - Stephen Fox
- Peter MacCallum Cancer Centre, Department of Pathology, University of Melbourne, Victoria, Australia
| | - Kanwal P S Raghav
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William F Flynn
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, USA
| | - Richard W Tothill
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Parkville, Melbourne, Australia; Peter MacCallum Cancer Centre, Parkville, Melbourne, Australia.
| | - Sheng Li
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, USA; The Jackson Laboratory Cancer Center, Bar Harbor, ME, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA; Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA.
| | - R Krishna Murthy Karuturi
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, USA; The Jackson Laboratory Cancer Center, Bar Harbor, ME, USA; Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA.
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, USA; The Jackson Laboratory Cancer Center, Bar Harbor, ME, USA.
| |
Collapse
|
23
|
Al-Othman N, Ahram M, Alqaraleh M. Role of androgen and microRNA in triple-negative breast cancer. Breast Dis 2020; 39:15-27. [PMID: 31839601 DOI: 10.3233/bd-190416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Breast cancer (BC) is the most frequent type of malignancy affecting females worldwide. Molecular-based studies resulted in an identification of at least four subtypes of breast carcinoma, including luminal A and luminal B, Human growth factor receptor (HER-2)-enriched and triple-negative tumors (basal-like and normal breast-like). A proportion of BC cases are of the triple-negative breast cancer (TNBC) type. TNBC lacks the expression of estrogen receptor (ER), progesterone receptor (PR), and HER-2, and is known to express androgen receptor (AR) at considerable levels. AR has been shown to promote the progression of TNBC. However, the exact mechanisms have yet to be unraveled. One of these mechanisms could be through regulating the expression of microRNA (miRNA) molecules, which play an important regulatory role in BC through post-transcriptional gene silencing. Activation of AR controls the expression of miRNA molecules, which target selective mRNAs, consequently, affecting protein expression. In this review we attempt to elucidate the relations between AR and miRNA in TNBC.
Collapse
Affiliation(s)
- Nihad Al-Othman
- Division of Anatomy, Biochemistry and Genetic, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Moath Alqaraleh
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| |
Collapse
|
24
|
Tochimoto M, Oguri Y, Hashimura M, Konno R, Matsumoto T, Yokoi A, Kodera Y, Saegusa M. S100A4/non-muscle myosin II signaling regulates epithelial-mesenchymal transition and stemness in uterine carcinosarcoma. J Transl Med 2020; 100:682-695. [PMID: 31857700 DOI: 10.1038/s41374-019-0359-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 11/09/2022] Open
Abstract
Uterine carcinosarcoma (UCS) represents a true example of cancer associated with epithelial-mesenchymal transition (EMT), which exhibits cancer stem cell (CSC)-like traits. Although S100A4 is an inducer of EMT, little is known about its involvement in UCS tumorigenesis. Herein, we focused on the functional role of S100A4 during development of UCS. Expression of S100A4 and molecules associated with its function were also examined in 35 UCS cases. In endometrial carcinoma cell lines, S100A4 promoter activity and mRNA levels were significantly increased by the transfection of NF-κB/p65, independent of a putative κB-binding site in the promoter. Cells stably overexpressing S100A4 showed enhancement of CSC properties, along with decreased cell proliferation and acceleration of cell migration. These phenotypes were abrogated in S100A4-knockdown cells. A combination of S100A4 antibody-mediated co-immunoprecipitation and shotgun proteomics analysis revealed that S100A4 strongly interacted with non-muscle myosin II (NMII) heavy chains, including myosin 9 and myosin 14. Specific inhibition of NMII by blebbistatin phenocopied S100A4 overexpression and induced a fibroblast-like morphology. In clinical samples, S100A4 score was significantly higher in sarcomatous as compared with carcinomatous components of UCS, and was positively correlated with ALDH1, Slug, and vimentin scores, and inversely with Ki-67 labeling indices. These findings suggest that an S100A4/NMII-related signaling cascade may contribute to the establishment and maintenance of EMT/CSC properties, along with changes in cell proliferation and migration capability. These events may be initiated in carcinomatous components in UCS and lead to divergent sarcomatous differentiation.
Collapse
Affiliation(s)
- Masataka Tochimoto
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yasuko Oguri
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Ryo Konno
- Center for Disease Proteomics, School of Science, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Ako Yokoi
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoshio Kodera
- Center for Disease Proteomics, School of Science, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
25
|
Toro MD, Reibaldi M, Avitabile T, Bucolo C, Salomone S, Rejdak R, Nowomiejska K, Tripodi S, Posarelli C, Ragusa M, Barbagallo C. MicroRNAs in the Vitreous Humor of Patients with Retinal Detachment and a Different Grading of Proliferative Vitreoretinopathy: A Pilot Study. Transl Vis Sci Technol 2020; 9:23. [PMID: 32821520 PMCID: PMC7409223 DOI: 10.1167/tvst.9.6.23] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Although the expression of microRNAs (miRNAs) in retinal pigment epithelial (RPE) cells undergoing epithelial-mesenchymal transition (EMT) is involved in the pathogenesis of proliferative vitreoretinopathy (PVR), its expression in the vitreous of patients with primary retinal detachment (RD) and different PVR grading has not yet been investigated. We assessed the expression of miRNAs in the vitreous humor (VH) of patients diagnosed with RD and different grading of PVR. Methods The VH was extracted from the core of the vitreous chamber in patients who had undergone standard vitrectomy for primary RD. RNA was extracted and TaqMan Low-Density Arrays (TLDAs) were used for miRNA profiling that was performed by single TaqMan assays. A gene ontology (GO) analysis was performed on the differentially expressed miRNAs. Results A total of 15 eyes with RD, 3 eyes for each grade of PVR (A, B, C, and D) and 3 from unaffected individuals, were enrolled in this prospective comparative study. Twenty miRNAs were altered in the comparison among pathological groups. Interestingly, the expression of miR-143-3p, miR-224-5p, miR-361-5p, miR-452-5p, miR-486-3p, and miR-891a-5p increased with the worsening of PVR grading. We also identified 34 miRNAs showing differential expression in PVR compared to control vitreous samples. GO analysis showed that the deregulated miRNAs participate in processes previously associated with PVR pathogenesis. Conclusions The present pilot study suggested that dysregulated vitreal miRNAs may be considered as a biomarker of PVR and associated with the PVR-related complications in patients with RD. Translational Relevance The correlation between vitreal miRNAs and the pathological phenotypes are essential to identify the novel miRNA-based mechanisms underlying the PVR disease that would improve the diagnosis and treatment of the condition.
Collapse
Affiliation(s)
- Mario Damiano Toro
- Department of General Ophthalmology, Medical University of Lublin, Lublin, Poland
- Eye Clinic, University of Catania, Catania, Italy
| | | | | | - Claudio Bucolo
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Robert Rejdak
- Department of General Ophthalmology, Medical University of Lublin, Lublin, Poland
- Department of Experimental Pharmacology, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Sarah Tripodi
- Department of Ophthalmology, Hospital C. Cantù, Abbiategrasso, Italy
| | - Chiara Posarelli
- Department of Surgical, Medical, Molecular Pathology, and of Critical Area, University of Pisa, Pisa, Italy
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Oasi Research Institute-IRCSS, Troina, Italy
| | - Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
26
|
Zhu T, Fan D, Ye K, Liu B, Cui Z, Liu Z, Tian Y. Role of miRNA-542-5p in the tumorigenesis of osteosarcoma. FEBS Open Bio 2020; 10:627-636. [PMID: 32105410 PMCID: PMC7137799 DOI: 10.1002/2211-5463.12824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma, one of the most common malignant bone tumors, is characterized by a high rate of metastasis, and the survival rate of patients with metastatic osteosarcoma is poor. Previous studies have reported that miRNAs often regulate the occurrence and development of various tumors. In this work, we identified miRNA‐542‐5p as a critical miRNA in osteosarcoma by overlapping three Gene Expression Omnibus datasets, and then evaluated miRNA‐542‐5p expression profiles using Gene Expression Omnibus and Sarcoma‐microRNA Expression Database. We used MISIM to investigate miRNAs correlated with miR‐542 and identified potential target genes of miRNA‐542‐5p using miRWalk. Functional and pathway enrichment analyses were performed using The Database for Annotation, Visualization and Integrated Discovery. Protein–protein interaction was performed using Search Tool for the Retrieval of Interacting Genes and Cytoscape. We report that the relative level of miRNA‐542‐5p was significantly higher in osteosarcoma than in healthy bone. Expressions of hsa‐miR‐330 and hsa‐miR‐1202 were found to be strongly correlated with that of miR‐542‐5p. Furthermore, we identified a total of 514 down‐regulated genes as possible targets of miR‐542‐5p. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that the putative target genes of miR‐542‐5p were most enriched in the cell‐cycle process. The differentially expressed genes CDCA5, PARP12 and HSPD1 were found to be hub genes in protein–protein interaction networks. Finally, transfection of the osteosarcoma cell line U2OS with miR‐542‐5p mimics or inhibitor revealed that miR‐542‐5p can promote cell proliferation. In conclusion, our results suggest that miR‐542‐5p may promote osteosarcoma proliferation; thus, this miRNA may have potential as a biomarker for diagnosis and prognosis.
Collapse
Affiliation(s)
- Tengjiao Zhu
- Department of Orthopedic, Third Hospital of Peking University, Beijing, China
| | - Daoyang Fan
- Department of Orthopedic, Third Hospital of Peking University, Beijing, China
| | - Kaifeng Ye
- Department of Orthopedic, Third Hospital of Peking University, Beijing, China
| | - Bingchuan Liu
- Department of Orthopedic, Third Hospital of Peking University, Beijing, China
| | - Zhiyong Cui
- Department of Orthopedic, Third Hospital of Peking University, Beijing, China
| | - Zhongjun Liu
- Department of Orthopedic, Third Hospital of Peking University, Beijing, China
| | - Yun Tian
- Department of Orthopedic, Third Hospital of Peking University, Beijing, China
| |
Collapse
|
27
|
Fang YY, Tan MR, Zhou J, Liang L, Liu XY, Zhao K, Bao EC. miR-214-3p inhibits epithelial-to-mesenchymal transition and metastasis of endometrial cancer cells by targeting TWIST1. Onco Targets Ther 2019; 12:9449-9458. [PMID: 31819476 PMCID: PMC6875683 DOI: 10.2147/ott.s181037] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 12/05/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Substantive studies have described the ectopic microRNAs as a determinant of the pathogenesis of endometrial cancer (EC). miR-214-3p has been reported to be significantly downregulated in EC tissues, and its overexpression has been shown to inhibit the proliferation, migration, and invasion of EC cells. Our study sought to explore the molecular mechanism underlying the inhibitory effect of miR-214-3p on metastasis of EC cells. METHODS The expressions of miR-214-3p and TWIST1 in EC tissues and cells were detected by quantitative real-time PCR. Cell migration, invasion, and epithelial-to-mesenchymal transition (EMT) were measured by transwell and Western blot analyses, respectively. The interaction between miR-214-3p and TWIST1 was confirmed by luciferase reporter assay. Xenograft tumor assay was performed to verify the role and underlying mechanism of miR-214-3p in EC in vivo. RESULTS miR-214-3p was downregulated and TWIST1 was upregulated in EC tissues and cells. miR-214-3p was negatively correlated with TWIST1 expression in EC tissues. Overexpression of miR-214-3p suppressed migration, invasion, and EMT in EC cells. TWIST1 was identified as a target of miR-214-3p in EC cells, and its overexpression significantly restored the inhibitory effects of miR-214-3p on cell migration, invasion, and EMT while its knockdown remarkably abolished miR-214-3p inhibitor-mediated promotion of progression of EC cells. Additionally, addition of miR-214-3p inhibited tumor growth by regulating EMT in vivo. CONCLUSION miR-214-3p suppressed the EMT and metastasis of EC cells by targeting TWIST1, providing a novel biomarker for treatment of EC.
Collapse
Affiliation(s)
- Yuan-Yuan Fang
- Department of Gynaecology, Xu Zhou Maternal and Child Health Care Hospital, Xuzhou221009, China
| | - Ming-Rong Tan
- Department of Operation Room, Xiangyang No 1 People’s Hospital, Hubei University of Medicine, Xiangyang441000, China
| | - Jian Zhou
- Department of Gynaecology, Xu Zhou Maternal and Child Health Care Hospital, Xuzhou221009, China
| | - Li Liang
- Department of Gynaecology, Xu Zhou Maternal and Child Health Care Hospital, Xuzhou221009, China
| | - Xiao-Yun Liu
- Central Laboratory, The Affiliated Hospital of Xu Zhou Medical University, Xuzhou221009, China
| | - Kun Zhao
- Department of Laboratory, Xu Zhou Maternal and Child Health Care Hospital, Xuzhou221009, China
| | - Er-Chen Bao
- Department of Gynaecology, Xinyi People’s Hospital, Xinyi221400, China
| |
Collapse
|
28
|
MLH1 promoter hypermethylation in uterine carcinosarcoma rarely coexists with TP53 mutation. Contemp Oncol (Pozn) 2019; 23:202-207. [PMID: 31992951 PMCID: PMC6978758 DOI: 10.5114/wo.2019.89635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Introduction Carcinosarcoma (CS) is an infrequent neoplasm composed of a carcinomatous and a sarcomatous element. Its molecular pathogenesis is poorly understood. In this study, we investigated the disturbances in the immunohistochemical expression of p53 and mismatch repair (MMR) proteins, as well as their molecular background. Material and methods The study group consisted of 20 uterine CSs. We analysed their morphology and immunohistochemical expression of hMLH1, hPMS2, hMSH2, MSH6, and p53 as well as the presence of mutations in TP53 and promoter methylation of the hMLH1. Loss of hMLH1 and PMS2 was found in 3/20 tumours. All cases were positive for hMSH2 and hMSH6. The TP53 mutation was detected in 8/19 tumours (42.1%), whereas MLH1 promoter hypermethylation in 4/19 cases (21%), and one case with synchronous aberrations (5%). Agreement between the results of the genetic and immunohistochemical study was moderate for p53 (k = 0.615, p< 0.01) and strong for MLH1 (k = 0.826, p< 0.01). Results and conclusions We demonstrated MLH1 promoter hypermethylation in uterine CS, leading to loss of MLH1 immunostaining. Concomitant aberrations of p53 and hMLH1 are infrequent. It is likely that uterine CS may develop in two independent molecular pathways in association with either chromosomal or microsatellite instability.
Collapse
|
29
|
Barker HE, Scott CL. Genomics of gynaecological carcinosarcomas and future treatment options. Semin Cancer Biol 2019; 61:110-120. [PMID: 31622660 DOI: 10.1016/j.semcancer.2019.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
Gynaecological carcinosarcomas are the most lethal gynaecological malignancies that are often highly resistant to standard chemotherapy. They are composed of both carcinomatous and sarcomatous components and are associated with high rates of metastatic disease. Due to their rarity, molecular studies have been carried out on relatively few tumours, revealing a broad spectrum of heterogeneity. In this review, we have collated the gene mutations, gene expression, epigenetic regulation and protein expression reported by a number of studies on gynaecological carcinosarcomas. Based on these results, we describe potential therapeutics that may demonstrate efficacy and present any pre-clinical studies that have been carried out. We also describe the pre-clinical models currently available for future research to assess the potential of molecularly matched therapies. Interestingly, over-expression of many biomarkers in carcinosarcoma tumours often doesn't correlate with a worse prognosis. Therefore, we propose that profiling the mutational landscape, gene expression, and gene amplification/deletion may better indicate potential treatment strategies and predict response, thus improving outcomes for women with this rare, aggressive disease.
Collapse
Affiliation(s)
- Holly E Barker
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia; Royal Women's Hospital, Parkville, Victoria, 3052, Australia; Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia; Peter MacCallum Cancer Centre, Grattan Street, Parkville, Victoria, 3010, Australia
| |
Collapse
|
30
|
Leskela S, Pérez-Mies B, Rosa-Rosa JM, Cristobal E, Biscuola M, Palacios-Berraquero ML, Ong S, Matias-Guiu Guia X, Palacios J. Molecular Basis of Tumor Heterogeneity in Endometrial Carcinosarcoma. Cancers (Basel) 2019; 11:cancers11070964. [PMID: 31324031 PMCID: PMC6678708 DOI: 10.3390/cancers11070964] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023] Open
Abstract
Endometrial carcinosarcoma (ECS) represents one of the most extreme examples of tumor heterogeneity among human cancers. ECS is a clinically aggressive, high-grade, metaplastic carcinoma. At the morphological level, intratumor heterogeneity in ECS is due to an admixture of epithelial (carcinoma) and mesenchymal (sarcoma) components that can include heterologous tissues, such as skeletal muscle, cartilage, or bone. Most ECSs belong to the copy-number high serous-like molecular subtype of endometrial carcinoma, characterized by the TP53 mutation and the frequently accompanied by a large number of gene copy-number alterations, including the amplification of important oncogenes, such as CCNE1 and c-MYC. However, a proportion of cases (20%) probably represent the progression of tumors initially belonging to the copy-number low endometrioid-like molecular subtype (characterized by mutations in genes such as PTEN, PI3KCA, or ARID1A), after the acquisition of the TP53 mutations. Only a few ECS belong to the microsatellite-unstable hypermutated molecular type and the POLE-mutated, ultramutated molecular type. A common characteristic of all ECSs is the modulation of genes involved in the epithelial to mesenchymal process. Thus, the acquisition of a mesenchymal phenotype is associated with a switch from E- to N-cadherin, the up-regulation of transcriptional repressors of E-cadherin, such as Snail Family Transcriptional Repressor 1 and 2 (SNAI1 and SNAI2), Zinc Finger E-Box Binding Homeobox 1 and 2 (ZEB1 and ZEB2), and the down-regulation, among others, of members of the miR-200 family involved in the maintenance of an epithelial phenotype. Subsequent differentiation to different types of mesenchymal tissues increases tumor heterogeneity and probably modulates clinical behavior and therapy response.
Collapse
Affiliation(s)
- Susanna Leskela
- Department of Pathology, Institute Ramón y Cajal for Health Research, 28034 Madrid, Spain.
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Belen Pérez-Mies
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Juan Manuel Rosa-Rosa
- Department of Pathology, Institute Ramón y Cajal for Health Research, 28034 Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eva Cristobal
- Department of Pathology, Institute Ramón y Cajal for Health Research, 28034 Madrid, Spain
| | - Michele Biscuola
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pathology, Instituto de Biomedicina de Sevilla (IBiS), 41013 Seville, Spain
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | | | - SuFey Ong
- NanoString Technologies, Inc, Seattle, WA 98109, USA
| | - Xavier Matias-Guiu Guia
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pathology, Hospital U Arnau de Vilanova, 25198 Lleida, Spain
- Department of Pathology, Hospital U de Bellvitge, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- IRBLLEIDA, IDIBELL, University of Lleida, 25003 Lleida, Spain
| | - José Palacios
- Department of Pathology, Institute Ramón y Cajal for Health Research, 28034 Madrid, Spain.
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain.
| |
Collapse
|
31
|
Van Sinderen M, Griffiths M, Menkhorst E, Niven K, Dimitriadis E. Restoration of microRNA-29c in type I endometrioid cancer reduced endometrial cancer cell growth. Oncol Lett 2019; 18:2684-2693. [PMID: 31404303 DOI: 10.3892/ol.2019.10588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/04/2019] [Indexed: 12/26/2022] Open
Abstract
Endometrial cancer is the most common gynaecological cancer worldwide, and the prognosis of patients with advanced disease remains poor. MicroRNAs (miRs) are dysregulated in endometrial cancer. miRs-29-a, -b and -c expression levels are downregulated in endometrial cancer; however, a specific role for miR-29c and its target genes remain to be elucidated. The aim of the present study was to determine the functional effect of restoring miR-29c expression in endometrial cancer cell lines and to identify miR-29c targets involved in cancer progression. miR-29c expression in human endometrial tumour grades 1-3 and benign tissue as well as in the endometrial cancer cell lines Ishikawa, HEC1A and AN3CA were analysed using reverse transcriptase-quantitative PCR (RT-qPCR). The cell lines were transfected with miR-29c mimic, miR-29c inhibitor or scrambled control. xCELLigence real-time cell monitoring analysed proliferation and migration, and flow cytometry was used to analyse apoptosis and cell cycle. The expression of miR-29c target genes in transfected cell lines was analysed using RT-qPCR. miR-29c was downregulated in grade 1-3 endometrial cancer samples compared with benign endometrium. miR-29c was reduced in Ishikawa and AN3CA cells, but not in HEC1A cell lines compared with non-cancerous primary human endometrial epithelial cells. Overexpression of miR-29c variably reduced proliferation, increased apoptosis and reduced the expression levels of miR-29c target genes, including cell division cycle 42, HMG-box transcription factor 1, integrin subunit β 1, MCL1 apoptosis regulator BCL2 family member, MDM2 proto-oncogene, serum/glucocorticoid regulated kinase 1, sirtuin 1 and vascular endothelial growth factor A, across the three cell lines investigated. Inhibition of miR-29c in HEC1A cells increased proliferation and collagen type IV α 1 chain expression. The re-introduction of miR-29c to endometrial cancer cell lines reduced proliferation, increased apoptosis and reduced miR-29c target gene expression in vitro. The present results suggested that miR-29c may be a potential therapeutic target for endometrial cancer.
Collapse
Affiliation(s)
- Michelle Van Sinderen
- Embryo Implantation Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria 3186, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria 3800, Australia
| | - Meaghan Griffiths
- Embryo Implantation Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria 3186, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Ellen Menkhorst
- Embryo Implantation Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria 3186, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria 3800, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, The Royal Women's Hospital, Parkville, Victoria 3010, Australia
| | - Keith Niven
- FlowCore, Technology Research Platforms, Monash University, Clayton, Victoria 3800, Australia
| | - Evdokia Dimitriadis
- Embryo Implantation Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria 3186, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, The Royal Women's Hospital, Parkville, Victoria 3010, Australia
| |
Collapse
|
32
|
Phytochemical Modulation of MiRNAs in Colorectal Cancer. MEDICINES 2019; 6:medicines6020048. [PMID: 30959836 PMCID: PMC6631275 DOI: 10.3390/medicines6020048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/29/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of death in the United States. Chemotherapy and radiotherapy are some of the most commonly used treatments, but are often associated with severe side effects, and are not entirely curative. It is therefore important to consider other preventative treatment options. Phytochemicals are naturally occurring bioactive compounds which have been shown to play a role in cancer prevention and treatment, especially in regards to a person’s lifestyle and diet. Recent evidence has shown that phytochemicals may exert their chemopreventative effects by targeting micro RNAs (miRNAs), which regulate the downstream expression of tumor suppressors and oncogenes. MiRNAs are small, endogenous, noncoding RNAs that regulate several biological processes through post-translational regulation. The dysregulation of miRNA expression has been shown to be associated with colorectal cancer. In this review, we will summarize and discuss several phytochemicals, which have been shown to exert chemopreventative effects in colorectal cancer by the modulation of miRNA expression.
Collapse
|
33
|
Hsing EW, Shiah SG, Peng HY, Chen YW, Chuu CP, Hsiao JR, Lyu PC, Chang JY. TNF-α-induced miR-450a mediates TMEM182 expression to promote oral squamous cell carcinoma motility. PLoS One 2019; 14:e0213463. [PMID: 30893332 PMCID: PMC6426234 DOI: 10.1371/journal.pone.0213463] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
Distant metastasis leads oral cancer patients into a poor survival rate and a high recurrence stage. During tumor progression, dysregulated microRNAs (miRNAs) have been reported to involve tumor initiation and modulate oral cancer malignancy. MiR-450a was significantly upregulated in oral squamous cell carcinoma (OSCC) patients without functional reports. This study was attempted to uncover the molecular mechanism of novel miR-450a in OSCC. Mir-450a expression was examined by quantitative RT-PCR, both in OSCC cell lines and patients. Specific target of miR-450a was determined by software prediction, luciferase reporter assay, and correlation with target protein expression. The functions of miR-450a and TMEM182 were accessed by adhesion and transwell invasion analyses. Determination of the expression and cellular localization of TMEM182 was examined by RT-PCR and by immunofluorescence staining. The signaling pathways involved in regulation of miR-450a were investigated using the kinase inhibitors. Overexpression of miR-450a in OSCC cells impaired cell adhesion ability and induced invasiveness, which demonstrated the functional role of miR-450a as an onco-miRNA. Interestingly, tumor necrosis factor alpha (TNF-α)-mediated expression of TMEM182 was regulated by miR-450a induction. MiR-450a-reduced cellular adhesion was abolished by TMEM182 restoration. Furthermore, the oncogenic activity of TNF-α/miR-450a/TMEM182 axis was primarily through activating extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. ERK1/2 inhibitor prevented the TNF-α-induced miR-450a expression and enhanced adhesion ability. Our data suggested that TNF-α-induced ERK1/2-dependent miR-450a against TMEM182 expression exerted a great influence on increasing OSCC motility. Overall, our results provide novel molecular insights into how TNF-α contributes to oral carcinogenesis through miR-450a that targets TMEM182.
Collapse
Affiliation(s)
- En-Wei Hsing
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
- Structural Biology Program, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shine-Gwo Shiah
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Hsuan-Yu Peng
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, Head and Neck Collaborative Oncology Group, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Chiang Lyu
- Structural Biology Program, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
34
|
Chen X, Lin ZF, Xi WJ, Wang W, Zhang D, Yang F, Li YF, Huo Y, Zhang TZ, Jiang YH, Qin WW, Yang AG, Wang T. DNA methylation-regulated and tumor-suppressive roles of miR-487b in colorectal cancer via targeting MYC, SUZ12, and KRAS. Cancer Med 2019; 8:1694-1709. [PMID: 30791232 PMCID: PMC6488202 DOI: 10.1002/cam4.2032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Human colorectal cancer (CRC), characterized by its high morbidity and lethality, seriously threatens human health and lives. MicroRNA‐487b (miR‐487b) is currently reported to be aberrantly expressed in several tumors, but the detailed functions and underlying mechanisms of miR‐487b in CRC remain unclear. Here, we found that miR‐487b is downregulated in CRC cell lines and is markedly decreased in tumor specimens derived from CRC patients. MiR‐487b inhibits cell proliferation, migration and invasion and promotes the apoptosis of CRC cells in vitro. Statistical analysis of clinical samples indicates that miR‐487b may serve as a biomarker for early CRC diagnosis. Inverse correlations between the expression levels of MYC, SUZ12, and KRAS and that of miR‐487b exist in vitro and in CRC patient tissue specimens. Further experiments demonstrated the regulatory effects of miR‐487b on MYC, SUZ12, and KRAS, and the disruption of these genes partially restores the miR‐487b inhibitor‐induced phenotype. Additionally, miR‐487b promoter region is in a DNA hypermethylated condition and the DNA methyltransferase inhibitor 5‐aza‐2’‐deoxycytidine (5‐Aza) increases the levels of miR‐487b but suppresses the expression of MYC, SUZ12, and KRAS in a time‐ and concentration‐dependent manner in CRC cells. Collectively, miR‐487b is regulated by DNA methylation and it functions as a tumor suppressor in CRC mainly through targeting MYC, SUZ12, and KRAS. Our study provides insight into the regulatory network in CRC cells, offering a new target for treating CRC patients.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Zhi-Feng Lin
- Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Wen-Jin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Wei Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Dan Zhang
- Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Fan Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yu-Fang Li
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yi Huo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Tian-Ze Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yi-Hong Jiang
- Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Wei-Wei Qin
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Tao Wang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
35
|
Franceschi T, Durieux E, Morel AP, de Saint Hilaire P, Ray-Coquard I, Puisieux A, Devouassoux-Shisheboran M. Role of epithelial–mesenchymal transition factors in the histogenesis of uterine carcinomas. Virchows Arch 2019; 475:85-94. [DOI: 10.1007/s00428-019-02532-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023]
|
36
|
Osakabe M, Fukagawa D, Sato C, Sugimoto R, Uesugi N, Ishida K, Itamochi H, Sugiyama T, Sugai T. Immunohistochemical analysis of the epithelial to mesenchymal transition in uterine carcinosarcoma. Int J Gynecol Cancer 2019; 29:277-281. [PMID: 30636710 DOI: 10.1136/ijgc-2018-000038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 08/25/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Uterine carcinosarcoma (UCS) is a highly aggressive neoplasm that is composed of an intricate admixture of carcinomatous and sarcomatous elements. The relationship between UCS and the epithelial to mesenchymal transition (EMT) has been reported. In this study, we examined how expression of E-cadherin was associated with the expression of EMT-related proteins in UCS. METHODS UCS samples were histologically divided into three components: carcinomatous, transitional, and sarcomatous regions. Next, we examined the expression of E-cadherin and EMT-related proteins, including SNAI2, ZEB1, and TWIST1, in each component of the UCS using immunohistochemistry. The expression score was determined by combining the staining intensity and staining area of the target cells. RESULTS The expression score of E-cadherin was significantly lower in transitional and sarcomatous components than in the carcinomatous component. In addition, a significant difference in the low expression score of E-cadherin between transitional and sarcomatous components (transitional > sarcomatous components) was found. There were significant differences between the expression scores of ZEB1 in the three components (sarcomatous > transitional > carcinomatous components). However, no difference in the expression of TWIST1 between the components was found. Conversely, the expression level of SNAI2 was higher in sarcomatous or transitional components than in the carcinomatous component. However, a significant difference between the transitional and sarcomatous components was not detected. CONCLUSION These results suggest that the EMT plays an essential role in the pathogenesis of UCS.
Collapse
Affiliation(s)
- Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Daisuke Fukagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Chie Sato
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kazuyuki Ishida
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Hiroaki Itamochi
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
37
|
McCart Reed AE, Kalaw E, Nones K, Bettington M, Lim M, Bennett J, Johnstone K, Kutasovic JR, Saunus JM, Kazakoff S, Xu Q, Wood S, Holmes O, Leonard C, Reid LE, Black D, Niland C, Ferguson K, Gresshoff I, Raghavendra A, Harvey K, Cooper C, Liu C, Kalinowski L, Reid AS, Davidson M, Pearson JV, Pathmanathan N, Tse G, Papadimos D, Pathmanathan R, Harris G, Yamaguchi R, Tan PH, Fox SB, O'Toole SA, Simpson PT, Waddell N, Lakhani SR. Phenotypic and molecular dissection of metaplastic breast cancer and the prognostic implications. J Pathol 2018; 247:214-227. [PMID: 30350370 DOI: 10.1002/path.5184] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/24/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Metaplastic breast carcinoma (MBC) is relatively rare but accounts for a significant proportion of global breast cancer mortality. This group is extremely heterogeneous and by definition exhibits metaplastic change to squamous and/or mesenchymal elements, including spindle, squamous, chondroid, osseous, and rhabdomyoid features. Clinically, patients are more likely to present with large primary tumours (higher stage), distant metastases, and overall, have shorter 5-year survival compared to invasive carcinomas of no special type. The current World Health Organisation (WHO) diagnostic classification for this cancer type is based purely on morphology - the biological basis and clinical relevance of its seven sub-categories are currently unclear. By establishing the Asia-Pacific MBC (AP-MBC) Consortium, we amassed a large series of MBCs (n = 347) and analysed the mutation profile of a subset, expression of 14 breast cancer biomarkers, and clinicopathological correlates, contextualising our findings within the WHO guidelines. The most significant indicators of poor prognosis were large tumour size (T3; p = 0.004), loss of cytokeratin expression (lack of staining with pan-cytokeratin AE1/3 antibody; p = 0.007), EGFR overexpression (p = 0.01), and for 'mixed' MBC, the presence of more than three distinct morphological entities (p = 0.007). Conversely, fewer morphological components and EGFR negativity were favourable indicators. Exome sequencing of 30 cases confirmed enrichment of TP53 and PTEN mutations, and intriguingly, concurrent mutations of TP53, PTEN, and PIK3CA. Mutations in neurofibromatosis-1 (NF1) were also overrepresented [16.7% MBCs compared to ∼5% of breast cancers overall; enrichment p = 0.028; mutation significance p = 0.006 (OncodriveFM)], consistent with published case reports implicating germline NF1 mutations in MBC risk. Taken together, we propose a practically minor but clinically significant modification to the guidelines: all WHO_1 mixed-type tumours should have the number of morphologies present recorded, as a mechanism for refining prognosis, and that EGFR and pan-cytokeratin expression are important prognostic markers. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Amy Ellen McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Emarene Kalaw
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Katia Nones
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Mark Bettington
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Malcolm Lim
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - James Bennett
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Pathology Queensland, The Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - Kate Johnstone
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Pathology Queensland, The Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - Jamie Rose Kutasovic
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jodi Marie Saunus
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Stephen Kazakoff
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Qinying Xu
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Scott Wood
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Oliver Holmes
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Conrad Leonard
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lynne Estelle Reid
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Debra Black
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Colleen Niland
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kaltin Ferguson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Irma Gresshoff
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Ashwini Raghavendra
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kate Harvey
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Darlinghurst, Australia
| | - Caroline Cooper
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Darlinghurst, Australia
| | - Cheng Liu
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Pathology Queensland, The Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - Lauren Kalinowski
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Pathology Queensland, The Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - Andrew Scott Reid
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Pathology Queensland, The Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - Morgan Davidson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Pathology Queensland, The Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - John V Pearson
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Gary Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Hong Kong
| | - David Papadimos
- Department of Histopathology, Sullivan Nicolaides Pathology, Bowen Hills, Australia
| | | | - Gavin Harris
- Canterbury Health Laboratories, Christchurch, New Zealand/Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Rin Yamaguchi
- Department of Pathology and Laboratory Medicine, Kurume University Medical Center, Kurume-shi, Japan
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore
| | - Stephen B Fox
- Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Australia
| | - Sandra A O'Toole
- Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Darlinghurst, Australia
| | - Peter Thomas Simpson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Nicola Waddell
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sunil R Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Pathology Queensland, The Royal Brisbane & Women's Hospital, Brisbane, Australia
| |
Collapse
|
38
|
Ushakov DS, Dorozhkova AS, Babayants EV, Ovchinnikov VY, Kushlinskii DN, Adamyan LV, Gulyaeva LF, Kushlinskii NE. Expression of microRNA Potentially Regulated by AhR and CAR in Malignant Tumors of the Endometrium. Bull Exp Biol Med 2018; 165:688-691. [PMID: 30225717 DOI: 10.1007/s10517-018-4242-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Indexed: 12/13/2022]
Abstract
We studied microRNA whose expression can be regulated by carcinogenic compounds. Bioinformatic analysis has detected microRNA potentially regulated by xenosensor receptors AhR (miR-28, miR-30c, miR-30e, miR-139, and miR-153) and CAR (miR-29c, miR-31, miR-185, miR-625, and miR-652). Published data indicate that these microRNAs are oncosuppressors, except miR-31 that can act as an oncogene. The expression of these microRNAs in malignant tumors of the endometrium was studied. The expression of the majority of the studied microRNAs, except miR-652, was 2-3-fold below the normal, which confirms their oncosuppressor function and indicates their involvement in the endometrial carcinogenesis and hence, allows considering them as potential markers of the disease.
Collapse
Affiliation(s)
- D S Ushakov
- Research Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.
| | - A S Dorozhkova
- Research Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - E V Babayants
- Research Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - V Yu Ovchinnikov
- Federal Research Centre Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D N Kushlinskii
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L V Adamyan
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L F Gulyaeva
- Federal Research Centre Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N E Kushlinskii
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
39
|
Versluis M, Plat A, de Bruyn M, Matias-Guiu X, Trovic J, Krakstad C, Nijman HW, Bosse T, de Bock GH, Hollema H. L1CAM expression in uterine carcinosarcoma is limited to the epithelial component and may be involved in epithelial-mesenchymal transition. Virchows Arch 2018; 473:591-598. [PMID: 30140948 DOI: 10.1007/s00428-018-2444-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 11/24/2022]
Abstract
Uterine carcinosarcoma (UCS) has been proposed as a model for epithelial-mesenchymal transition (EMT), a process characterized by a functional change facilitating migration and metastasis in many types of cancer. L1CAM is an adhesion molecule that has been involved in EMT as a marker for mesenchymal phenotype. We examined expression of L1CAM in UCS in a cohort of 90 cases from four different centers. Slides were immunohistochemically stained for L1CAM and scored in four categories (0%, < 10%, 10-50%, and > 50%). A score of more than 10% was considered positive for L1CAM. The median age at presentation was 68.6 years, and half of the patients (53.3%) presented with FIGO stage 1 disease. Membranous L1CAM expression was positive in the epithelial component in 65.4% of cases. Remarkably, expression was negative in the mesenchymal component. In cases where both components were intermingled, expression limited to the epithelial component was confirmed by a double stain for L1CAM and keratin. Expression of L1CAM did not relate to overall or disease-free survival. Our findings suggest L1CAM is either not a marker for the mesenchymal phenotype in EMT, or UCS is not a good model for EMT.
Collapse
Affiliation(s)
- Mac Versluis
- Department of Gynecology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| | - A Plat
- Department of Gynecology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - M de Bruyn
- Department of Gynecology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - X Matias-Guiu
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Arnau de Vilanova University Hospital, IRBLleida, University of Lleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain.,Department of Pathology, University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Catalonia, Spain
| | - J Trovic
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - C Krakstad
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - H W Nijman
- Department of Gynecology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - T Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - G H de Bock
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - H Hollema
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
40
|
A miRNA-200c/cathepsin L feedback loop determines paclitaxel resistance in human lung cancer A549 cells in vitro through regulating epithelial-mesenchymal transition. Acta Pharmacol Sin 2018; 39:1034-1047. [PMID: 29219949 DOI: 10.1038/aps.2017.164] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Cathepsin L (CTSL), a cysteine protease, is closely related to tumor occurrence, development, and metastasis, and possibly regulates cancer cell resistance to chemotherapy. miRNAs, especially the miR-200 family, have been implicated in drug-resistant tumors. In this study we explored the relationship of CTSL, miRNA-200c and drug resistance, and the potential regulatory mechanisms in human lung cancer A549 cells and A549/TAX cells in vitro. A549/TAX cells were paclitaxel-resistant A549 cells overexpressing CTSL and characterized by epithelial-mesenchymal transition (EMT). We showed that miRNA-200c and CTSL were reciprocally linked in a feedback loop in these cancer cells. Overexpression of miRNA-200c in A549/TAX cells decreased the expression of CTSL, and enhanced their sensitivity to paclitaxel and suppressed EMT, whereas knockdown of miRNA-200c in A549 cells significantly increased the expression of CTSL, and decreased their sensitivity to paclitaxel and induced EMT. Overexpression of CTSL in A549 cells significantly decreased the expression of miRNA-200c, and reduced their sensitivity to paclitaxel and induced EMT, but these effects were reversed by miRNA-200c, whereas knockdown of CTSL in A549/TAX cells attenuated paclitaxel resistance and remarkably inhibited EMT, but the inhibition of miRNA-200c could reverse these effects. Therefore, miRNA-200c may be involved in regulating paclitaxel resistance through CTSL-mediated EMT in A549 cells, and CTSL and miRNA-200c are reciprocally linked in a feedback loop.
Collapse
|
41
|
hsa-miRNA-154-5p expression in plasma of endometriosis patients is a potential diagnostic marker for the disease. Reprod Biomed Online 2018; 37:449-466. [PMID: 29857988 DOI: 10.1016/j.rbmo.2018.05.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023]
Abstract
RESEARCH QUESTION As microRNA (miRNA) are stable in circulation, this study tested whether they could serve as putative non-invasive biomarkers for endometriosis, and their expression differences between endometriosis patients and controls. It also addressed whether the combination of differently expressed miRNA together with clinical parameters in a statistical model could distinguish between endometriosis patients and controls. DESIGN This prospective cohort study explored the possibility of using changes in extracellular miRNA spectra in plasma of 51 patients with endometriosis compared with 41 controls combined with clinical data as non-invasive biomarkers for the disease. The project was divided into three different phases for biomarker screening, discovery and validation. The differences in expression levels of plasma miRNA obtained from women with and without endometriosis were analysed with quantitative PCR-based microarrays. The diagnostic performance of the selected individual and/or combined differentially expressed miRNA candidates and clinical parameters was assessed using in silico bioinformatics modelling and receiver operating characteristic curve analysis. RESULTS Data showed that a specific plasma miRNA signature is associated with endometriosis and that hsa-miR-154-5p, which alone or in combination with hsa-miR-196b-5p, hsa-miR-378a-3p, and hsa-miR-33a-5p and the clinical parameters of body mass index and age, are potentially applicable for non-invasive diagnosis of the disease. Changes in the levels of expression of certain circulating plasma miRNA also occurred within the phases of the menstrual cycle. CONCLUSIONS miRNA seem to be promising candidates for the non-invasive diagnosis of endometriosis. Further, other clinical parameters may help in distinguishing women suffering from endometriosis from healthy individuals.
Collapse
|
42
|
Metformin Increases E-cadherin in Tumors of Diabetic Patients With Endometrial Cancer and Suppresses Epithelial-Mesenchymal Transition in Endometrial Cancer Cell Lines. Int J Gynecol Cancer 2018; 26:1213-21. [PMID: 27643646 DOI: 10.1097/igc.0000000000000761] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Epithelial-mesenchymal transition (EMT) is a critical process for cancer metastasis and recurrence. Metformin, an effective oral antidiabetic drug, has been associated with decreased cancer risk and mortality. In this pilot study, we started to evaluate the effect of metformin on EMT in vivo and in vitro in endometrial cancer (EC). METHODS Endometrial cancer cell lines and freshly isolated EC tumor specimens were used to assess EMT after metformin treatment. Cell lines were subjected to wound healing and AlamarBlue assays to determine cell migration and cell proliferation; messenger RNA levels were measured by real-time reverse transcriptase (RT) quantitative polymerase chain reaction (PCR), and protein levels were measured by Western blots to detect EMT marker expression. RESULTS Protein expression and messenger RNA of E-cadherin was found to be increased (P = 0.02 and 0.04, respectively) in 30 EC tumor specimens of diabetic patients treated with metformin compared with 20 EC tumor specimens of diabetic patients treated with other antidiabetic agents. In vitro, metformin reduced cell migration at 5 mM for 48 hours, as determined by the wound healing assay in EC cell lines (Ishikawa, 45% reduction; HEC50, 40% reduction), whereas more than 90% of the cells remained viable on the AlamarBlue assay. Metformin reduced EMT in the cell lines and regulated the expression of the EMT-related epithelial markers, E-cadherin and Pan-keratin; the mesenchymal markers, N-cadherin, fibronectin, and vimentin; and the EMT drivers, Twist-1, snail-1, and ZEB-1. CONCLUSIONS Tumors of patients on metformin have increased E-cadherin expression, and metformin decreases EMT in EC cell lines in vitro, suggesting clinical biological relevance of metformin in women with EC.
Collapse
|
43
|
Zhu QN, Renaud H, Guo Y. Bioinformatics-based identification of miR-542-5p as a predictive biomarker in breast cancer therapy. Hereditas 2018; 155:17. [PMID: 29371858 PMCID: PMC5769523 DOI: 10.1186/s41065-018-0055-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/04/2018] [Indexed: 01/04/2023] Open
Abstract
Background Tamoxifen is the first-line hormone therapy for estrogen receptor alpha positive (ERα+) breast cancer. However, about 40% of patients with ERα + breast cancer who receive tamoxifen therapy eventually develop resistance resulting in a poor prognosis. The aim of this study was to mine available data sets in the Gene Expression Omnibus (GEO) database, including in vitro (cell lines) and in vivo (tissue samples), and to identify all miRNAs associated with tamoxifen resistance (TamR) in breast cancer. Secondly, this study aimed to predict the key gene regulatory networks of newly found TamR-related miRNAs and evaluate the potential role of the miRNAs and targets as potential prognosis biomarkers for breast cancer patients. Result Microarray data sets from two different studies were used from the GEO database: 1. GSE66607: miRNA of MCF-7 TamR cells; 2. GSE37405: TamR tissues. Differentially expressed microRNAs (miRNAs) were identified in both data sets and 5 differentially expressed miRNAs were found to overlap between the two data sets. Profiles of GSE37405 and data from the Kaplan-Meier Plotter Database (KMPD) along with Gene Expression Profiling Interactive Analysis (GEPIA) were used to reveal the relationship between these 5 miRNAs and overall survival. The results showed that has-miR-542-5p was the only miRNA associated with overall survival of ERα + breast cancer patients who received adjuvant tamoxifen. Targets of has-miR-542-5p were predicted by miRanda and TargetScan, and the mRNA expression of the three 3 target gene, Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Beta (YWHAB), Lymphocyte Antigen 9 (LY9), and Secreted Frizzled Related Protein 1 (SFRP1) were associated with overall survival in 2 different databases. Copy-number alterations (CNAs) of SFRP1 confer survival disadvantage to breast cancer patients and alter the mRNA expression of SFRP1 in cBioPortal database. Conclusion This study indicates that miRNA has-miR-542-5p is associated with TamR and can predict prognosis of breast cancer patients. Furthermore, has-miR-542-5p may be acting through a mechanism involving the target genes YWHAB, LY9, and SFRP1. Overall, has-miR-542-5p is a predictive biomarker and potential target for therapy of breast cancer patients. Electronic supplementary material The online version of this article (10.1186/s41065-018-0055-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiong-Ni Zhu
- 1Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008 People's Republic of China.,2Institute of Clinical Pharmacology, Central South University, Changsha, 410078 People's Republic of China.,3Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078 People's Republic of China
| | - Helen Renaud
- 4University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Ying Guo
- 1Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008 People's Republic of China.,2Institute of Clinical Pharmacology, Central South University, Changsha, 410078 People's Republic of China.,3Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078 People's Republic of China
| |
Collapse
|
44
|
Lee KE. Comparison of the miR-23b and miR-203 Expressions in Endometrial Cancer. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2017. [DOI: 10.15324/kjcls.2017.49.4.455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Kyung Eun Lee
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, Korea
- Brain Busan 21 Project for Catholic University of Pusan, Busan, Korea
| |
Collapse
|
45
|
Identification of Reference Genes for Analysis of microRNA Expression Patterns in Equine Chorioallantoic Membrane and Serum. Mol Biotechnol 2017; 60:62-73. [DOI: 10.1007/s12033-017-0047-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Kurata A, Yamada M, Ohno SI, Inoue S, Hashimoto H, Fujita K, Takanashi M, Kuroda M. Expression level of microRNA-200c is associated with cell morphology in vitro and histological differentiation through regulation of ZEB1/2 and E-cadherin in gastric carcinoma. Oncol Rep 2017; 39:91-100. [PMID: 29138864 PMCID: PMC5783608 DOI: 10.3892/or.2017.6093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/30/2017] [Indexed: 01/21/2023] Open
Abstract
Scirrhous type gastric cancer is characterized by diffuse infiltration of poorly differentiated adenocarcinoma cells and poor prognosis. Although association of poorly differentiated histology with reduction in E-cadherin expression, as well as association of microRNA (miR)-200c with E-cadherin through regulation of ZEB1/2, has been reported, participation of miR-200c in gastric carcinogenesis is not fully understood. We used 6 cell lines originating from gastric cancers, and investigated levels of miR-200c along with its target mRNAs ZEB1/2 and E-cadherin by qRT-PCR. ZEB1 and E-cadherin protein expression was also assessed via western blotting. Furthermore, we investigated the expression levels of miR-200c by in situ hybridization, along with the expression of ZEB1 and E-cadherin by immunohistochemistry, in 97 gastric adenocarcinoma tissues. Inverse correlation between miR-200c and ZEB1 levels were obtained by qRT-PCR in cell lines (P<0.05). Cell lines with low miR-200c and high ZEB1 exhibited low E-cadherin expression in both qRT-PCR and western blotting, and exhibited spindle-shaped morphology, in contrast to round cell morphology in those cell lines with high miR-200c levels. Inverse correlations were also obtained between miR-200c and ZEB1 as well as between ZEB1 and E-cadherin levels in tissue samples (P<0.001). Cancer tissues with low miR-200c, high ZEB1, and low E-cadherin expression were associated with poorly differentiated histology, in contrast to tubular form in cancers with high miR-200c expression levels (P<0.001). Our data revealed that downregulation of miR-200c primarily regulated cell morphology by downregulation of E-cadherin through upregulation of ZEB1, leading to poorly differentiated histology in gastric cancer.
Collapse
Affiliation(s)
- Atsushi Kurata
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Masatoshi Yamada
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Shin-Ichiro Ohno
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Shigeru Inoue
- Department of Preventive Medicine and Public Health, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Hirotsugu Hashimoto
- Department of Diagnostic Pathology, NTT Medical Center Tokyo, Tokyo 141-8625, Japan
| | - Koji Fujita
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Masakatsu Takanashi
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
47
|
Richmond AM, Blake EA, Torkko K, Smith EE, Spillman MA, Post MD. Fascin Is Associated With Aggressive Behavior and Poor Outcome in Uterine Carcinosarcoma. Int J Gynecol Cancer 2017; 27:1895-1903. [PMID: 28704324 DOI: 10.1097/igc.0000000000001077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE The mechanisms underlying the histogenesis and aggressiveness of uterine carcinosarcoma (UCS) are poorly understood; however, previous studies implicate epithelial-mesenchymal transition (EMT). Fascin is a proinvasive, actin-bundling protein and an important component of EMT. It is associated with poor outcomes in human carcinoma, especially in estrogen receptor (ER)-negative tumors arising in organs normally expressing ER. We sought to evaluate fascin expression in UCS and its relationship to ER status, clinicopathologic indicators of tumor aggressiveness, and survival outcomes. METHOD Forty-four surgically staged cases of UCS were immunohistochemically evaluated for fascin and estrogen receptor-α expression and correlated with clinicopathologic parameters derived from electronic medical records and pathology reports. RESULTS Fascin was only expressed in malignant epithelium and mesenchyma and was uniformly absent in background benign counterparts. Increased expression was associated with extrapelvic disease (P = 0.028), higher stage (P = 0.021), larger tumor size (P = 0.032), shorter progression-free interval (P = 0.035), and reduced estrogen receptor-α expression (P = 0.04). CONCLUSION Fascin is aberrantly expressed in both elements of UCS and is associated with aggressive behavior and worse outcome. As a component of EMT and mediator of invasion, fascin may serve as a target in future therapies.
Collapse
Affiliation(s)
- Abby M Richmond
- *Department of Pathology, and †Department of Obstetrics and Gynecology, University of Colorado Aurora, CO; and ‡Texas Oncology, Baylor Sammons Cancer Center, Dallas, TX
| | | | | | | | | | | |
Collapse
|
48
|
Li F, Liang A, Lv Y, Liu G, Jiang A, Liu P. MicroRNA-200c Inhibits Epithelial-Mesenchymal Transition by Targeting the BMI-1 Gene Through the Phospho-AKT Pathway in Endometrial Carcinoma Cells In Vitro. Med Sci Monit 2017; 23:5139-5149. [PMID: 29080395 PMCID: PMC5673031 DOI: 10.12659/msm.907207] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background MicroRNA-200c (miR-200c) is a short non-coding RNA that has a role in tumorigenesis and cancer progression. The aims of this study were to investigate the role of miR-200c in cell migration and epithelial-mesenchymal transition (EMT) in endometrial carcinoma cells in vitro. Material/Methods Potential direct targets of miR-200c were identified through the TargetScan database. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used study the expression of miR-200c in the endometrial carcinoma cell lines, Ishikawa and JEC, in vitro. Cell migration was studied using transwell assays. Expression of the mesenchymal marker, N-cadherin, the epithelial marker, E-cadherin, the transcription factor, Slug, the BMI-1 protein, AKT, and p-AKT were measured using Western blot. Small interfering RNA (siRNA) was used to silence the BMI-1 gene to study the targeting effect. Results Over-expression of miR-200c in Ishikawa and JEC cells resulted in reduced cell migration and proliferation. Western blot showed that overexpression of miR-200c downregulated the expression of the BMI-1 protein, p-AKT, N-cadherin and Slug, and the expression E-cadherin was upregulated; silencing miR-200c reversed these results. Silencing the BMI-1 gene inhibited EMT and suppressed p-AKT in miR-200c-inhibited endometrial carcinoma cells by increasing E-cadherin expression, reducing the expression of N-cadherin and the EMT-associated transcription factor, Slug. Conclusions In endometrial carcinoma cells in vitro, miR-200c inhibited EMT by targeting the BMI-1 gene through the p-AKT pathway.
Collapse
Affiliation(s)
- Fengling Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Aihua Liang
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Yan Lv
- Department of Obstetrics and Gynecology, First Peoples' Hospital of Guiyang City, Guiyang, Guizhou, China (mainland)
| | - Guohong Liu
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Aili Jiang
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
49
|
Espinosa I, D'Angelo E, Corominas M, Gonzalez A, Prat J. Mixed endometrial carcinomas with a "low-grade serous"-like component: a clinicopathologic, immunohistochemical, and molecular genetic study. Hum Pathol 2017; 71:65-73. [PMID: 29079180 DOI: 10.1016/j.humpath.2017.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 01/03/2023]
Abstract
Recently, we reported 2 mixed endometrioid endometrial carcinomas with a "low-grade serous"-like component, which does not fit into any of the 4 molecular groups described by The Cancer Genome Atlas. To understand the nature of these tumors, we have done an immunohistochemical and molecular genetic study of these 2 cases and added a third case. Immunoreactivity for p53, ER, Ki67, WT1, MLH1, PMS2, MSH2, and MSH6 was assessed. Targeted next-generation sequencing for somatic mutations, including genes commonly implicated in carcinogenesis including TP53, KRAS, and PIK3CA, and Sanger sequencing for PTEN and POLE were also performed. All patients were nulliparous and had morbid obesity. Their tumors showed a micropapillary component that resembled that of ovarian low-grade serous carcinoma and merged with villoglandular endometrioid carcinoma. The invasive tumor glands exhibited a microcystic, elongated, or fragmented pattern and contained psammoma bodies. Two tumors showed aberrant p53 expression, and all 3 were positive for ER. All showed KRAS mutations, and TP53 mutations were found in 2 cases. One patient developed peritoneal carcinomatosis, one patient is alive with disease, and another died of a brain tumor. The third patient, whose tumor was confined to the uterus (stage IA), is alive without evidence of disease, but she has been followed for only 6 months. Mixed endometrial carcinomas with a "low-grade" serous-like component exhibit a morphologic spectrum of endometrioid and serous differentiation with microcystic, elongated, or fragmented features; ER expression; KRAS and TP53 mutations; and aggressive behavior.
Collapse
Affiliation(s)
- Iñigo Espinosa
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Institute of Biomedical Research (IIB Sant Pau), Autonomous University of Barcelona, 08041 Barcelona, Spain
| | - Emanuela D'Angelo
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Institute of Biomedical Research (IIB Sant Pau), Autonomous University of Barcelona, 08041 Barcelona, Spain
| | - Marina Corominas
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Institute of Biomedical Research (IIB Sant Pau), Autonomous University of Barcelona, 08041 Barcelona, Spain
| | - Alan Gonzalez
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Institute of Biomedical Research (IIB Sant Pau), Autonomous University of Barcelona, 08041 Barcelona, Spain
| | - Jaime Prat
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Institute of Biomedical Research (IIB Sant Pau), Autonomous University of Barcelona, 08041 Barcelona, Spain.
| |
Collapse
|
50
|
Association between Morphological Patterns of Myometrial Invasion and Cancer Stem Cell Markers in Endometrial Endometrioid Carcinoma. Pathol Oncol Res 2017; 25:123-130. [PMID: 28990139 DOI: 10.1007/s12253-017-0320-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/21/2017] [Indexed: 01/22/2023]
Abstract
In endometrial endometrioid adenocarcinoma (EEC), the depth of myometrial invasion (MI) is an important parameter for determining whether additional treatment is warranted. The present study investigated the association between MI patterns, cancer stem cell (CSC) phenotypes, and their clinicopathological significance in EEC. A total of 73 cases of EEC with MI were examined in this study. Haematoxylin and eosin-stained tissue specimens were analysed for MI pattern, which was categorised as infiltrating; expansile; adenomyosis (AM)-like; or microcystic, elongated, and fragmented (MELF)-type. The expression of CSC markers such as cluster of differentiation (CD)44, CD133, and Nanog1, as well as oestrogen receptor (ER) and progesterone receptor (PR) was examined by immunohistochemistry. Clinicopathological features including age, DOI, MI pattern, LVI, lymph node (LN) metastasis, disease progression, and survival outcome were recorded. Most examined cases (45/73) were International Federation of Gynecology and Obstetrics (FIGO) stage I. MI showed infiltrating (49.3%), AM-like (26.3%), MELF (15.1%), and expansile (9.6%) patterns. Tumours with the infiltrating pattern were associated with high FIGO grade (P = 0.002), reduced ER and PR, and CD44 expression (P = 0.014, 0.026, and 0.030, respectively); those with a MELF pattern showed LN metastasis (P < 0.001), lymphovascular invasion (P = 0.011), and reduced ER, CD44, and CD133 expression (P = 0.036, 0.006, and 0.016, respectively). EEC with infiltrating/MELF patterns of MI is associated with worse prognosis. These results suggest that CSC expression profiles are an unfavourable indicator of EEC.
Collapse
|