1
|
Huang M, Wu Z, Jia L, Wang Y, Gao S, Liu Y, Zhang Y, Li J. Bioinformatics and network pharmacology identify promotional effects and potential mechanisms of ethanol on esophageal squamous cell carcinoma and experimental validation. Toxicol Appl Pharmacol 2023; 474:116615. [PMID: 37406968 DOI: 10.1016/j.taap.2023.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Ethanol is an important risk factor for esophageal squamous cell carcinoma (ESCC); however, the molecular mechanisms behind how ethanol promotes ESCC development remain poorly understood. In this study, ethanol-ESCC-associated target genes were constructed and screened using network pharmacology and subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) and bioinformatics analysis. A mouse ethanol-exposed esophageal cancer model was constructed with 4-nitroquinoline-1-oxide (4-NQO) to assess its survival and tumor lesion status, and the mechanism of ethanol-promoted ESCC lesions was verified by qRT-PCR and Western blotting. The results showed that 126 ethanol-ESCC crossover genes were obtained, which were significantly enriched in the PI3K/AKT signaling pathway. Bioinformatics results showed that the target genes TNF, IL6, IL1β and JUN were highly expressed in esophageal tumor samples and positively correlated with tumor proliferation and apoptosis genes, and the genetic information of these genes was mutated to different degrees. Animal model experiments showed that ethanol decreased the survival rate and aggravated the occurrence of esophageal cancer in mice. qRT-PCR showed that ethanol promoted the expression of TNF, IL6, IL1β and JUN mRNA in mouse esophageal tumor tissues, and Western blotting showed that ethanol promoted p-PI3K and p-AKT protein expression in mouse esophageal tumor tissues. In conclusion, ethanol promotes esophageal carcinogenesis by increasing the expression of TNF, IL6, IL1β and JUN and activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Ming Huang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhongbing Wu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Lei Jia
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yu Wang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Shuang Gao
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Ying Liu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yushuang Zhang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China; The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| |
Collapse
|
2
|
Scherbakov AM, Basharina AA, Sorokin DV, Mikhaevich EI, Mizaeva IE, Mikhaylova AL, Bogush TA, Krasil’nikov MA. Targeting hormone-resistant breast cancer cells with docetaxel: a look inside the resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:103-115. [PMID: 37065867 PMCID: PMC10099602 DOI: 10.20517/cdr.2022.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/01/2022] [Accepted: 01/04/2023] [Indexed: 04/18/2023]
Abstract
Aim: The study aims to analyze the effect of long-term incubation of ERα-positive MCF7 breast cancer cells with 4-hydroxytamoxifen (HT) on their sensitivity to tubulin polymerization inhibitor docetaxel. Methods: The analysis of cell viability was performed by the MTT method. The expression of signaling proteins was analyzed by immunoblotting and flow cytometry. ERα activity was evaluated by gene reporter assay. To establish hormone-resistant subline MCF7, breast cancer cells were treated with 4-hydroxytamoxifen for 12 months. Results: The developed MCF7/HT subline has lost sensitivity to 4-hydroxytamoxifen, and the resistance index was 2. Increased Akt activity (2.2-fold) and decreased ERα expression (1.5-fold) were revealed in MCF7/HT cells. The activity of the estrogen receptor α was reduced (1.5-fold) in MCF7/HT. Evaluation of class III β-tubulin expression (TUBB3), a marker associated with metastasis, revealed the following trends: higher expression of TUBB3 was detected in triple-negative breast cancer MDA-MB-231 cells compared to hormone-responsive MCF7 cells (P < 0.05). The lowest expression of TUBB3 was found in hormone-resistant MCF7/HT cells (MCF7/HT < MCF7 < MDA-MB-231, approximately 1:2:4). High TUBB3 expression strongly correlated with docetaxel resistance: IC50 value of docetaxel for MDA-MB-231 cells was greater than that for MCF7 cells, whereas resistant MCF7/HT cells were the most sensitive to the drug. The accumulation of cleaved PARP (a 1.6-fold increase) and Bcl-2 downregulation (1.8-fold) were more pronounced in docetaxel-treated resistant cells (P < 0.05). The expression of cyclin D1 decreased (2.8-fold) only in resistant cells after 4 nM docetaxel treatment, while this marker was unchanged in parental MCF7 breast cancer cells. Conclusion: Further development of taxane-based chemotherapy for hormone-resistant cancer looks highly promising, especially for cancers with low TUBB3 expression.
Collapse
Affiliation(s)
- Alexander M. Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow 115522, Russian Federation
- Correspondence to: Dr. Alexander M. Scherbakov, Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, Moscow 115522, Russia. E-mail:
| | - Anna A. Basharina
- Group of Molecular Tumor Markers, Blokhin N.N. National Medical Research Center of Oncology, Moscow 115522, Russian Federation
| | - Danila V. Sorokin
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow 115522, Russian Federation
| | - Ekaterina I. Mikhaevich
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow 115522, Russian Federation
| | - Iman E. Mizaeva
- Group of Molecular Tumor Markers, Blokhin N.N. National Medical Research Center of Oncology, Moscow 115522, Russian Federation
| | - Alexandra L. Mikhaylova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow 115522, Russian Federation
| | - Tatiana A. Bogush
- Group of Molecular Tumor Markers, Blokhin N.N. National Medical Research Center of Oncology, Moscow 115522, Russian Federation
| | - Mikhail A. Krasil’nikov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow 115522, Russian Federation
| |
Collapse
|
3
|
Kim JY, Park CS, Jang SK, Seol H, Seong MK, Noh WC, Park IC, Kim HA. The Significance of p-AKT1 as a Prognostic Marker and Therapeutic Target in Patients With Hormone Receptor-Positive and Human Epidermal Growth Factor Receptor-2-Positive Early Breast Cancer. J Breast Cancer 2022; 25:387-403. [DOI: 10.4048/jbc.2022.25.e43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Ji Yea Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Chan Sub Park
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Se-Kyeong Jang
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hyesil Seol
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Min-Ki Seong
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Woo Chul Noh
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hyun-Ah Kim
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|
4
|
Yang SJ, Wang DD, Zhong SL, Chen WQ, Wang FL, Zhang J, Xu WX, Xu D, Zhang Q, Li J, Zhang HD, Hou JC, Mao L, Tang JH. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/β-catenin (cyclin D1) axis. Cell Death Dis 2021; 12:420. [PMID: 33911067 PMCID: PMC8080849 DOI: 10.1038/s41419-021-03680-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
Circular RNAs (circRNAs) are increasingly gaining importance and attention due to their diverse potential functions and their value as diagnostic biomarkers (disease specific). This study aims to explore the novel mechanisms by which exosome-contained circRNAs promote tumor development and metastasis in TNBC. We identified increased circRNA circPSMA1 in TNBC cells, their exosomes, and serum exosomes samples from TNBC patients. The overexpression of circPSMA1 promoted TNBC cell proliferation, migration, and metastasis both in vitro and in vivo. Moreover, we investigated the tumor-infiltrating immune cells (TICs) or stromal components in immune microenvironment (IME), and identified the significant differences in the immune cells between TNBC and non-TNBC samples. Mechanistically, circPSMA1 acted as a "miRNAs sponge" to absorb miR-637; miR-637 inhibited TNBC cell migration and metastasis by directly targeted Akt1, which recognized as a key immune-related gene and affected downstream genes β-catenin and cyclin D1. Subsequent co-culture experiments also demonstrated that exosomes from TNBC carrying large amounts of circPSMA1 could transmit migration and proliferation capacity to recipient cells. Kaplan-Meier plots showed that high expression of Akt1 and low expression of mir-637 are highly correlated with poor prognosis in patients with lymph node metastasis of TNBC. Collectively, all these results reveal that circPSMA1 functions as a tumor promoter through the circPSMA1/miR-637/Akt1-β-catenin (cyclin D1) regulatory axis, which can facilitate the tumorigenesis, metastasis, and immunosuppression of TNBC. Our research proposes a fresh perspective on novel potential biomarkers and immune treatment strategies for TNBC.
Collapse
Affiliation(s)
- Su-jin Yang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Dan-dan Wang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Shan-liang Zhong
- grid.89957.3a0000 0000 9255 8984The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009 P.R. China ,grid.452509.f0000 0004 1764 4566Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, 210009 P.R. China
| | - Wen-quan Chen
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Feng-liang Wang
- grid.89957.3a0000 0000 9255 8984Department of Obstetrics and Gynecology, Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210009 P.R. China
| | - Jian Zhang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Wen-xiu Xu
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Di Xu
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Qian Zhang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Jian Li
- grid.89957.3a0000 0000 9255 8984The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009 P.R. China
| | - He-da Zhang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Jun-chen Hou
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Ling Mao
- grid.470132.3Department of Thyroid and Breast Surgery, the Affiliated Huai’an Hospital of Xuzhou Medical University, the Second People’s Hospital of Huai’an, Huai’an, 223002 P.R. China
| | - Jin-hai Tang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| |
Collapse
|
5
|
Saji M, Kim CS, Wang C, Zhang X, Khanal T, Coombes K, La Perle K, Cheng SY, Tsichlis PN, Ringel MD. Akt isoform-specific effects on thyroid cancer development and progression in a murine thyroid cancer model. Sci Rep 2020; 10:18316. [PMID: 33110146 PMCID: PMC7591514 DOI: 10.1038/s41598-020-75529-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
The Akt family is comprised of three unique homologous proteins with isoform-specific effects, but isoform-specific in vivo data are limited in follicular thyroid cancer (FTC), a PI3 kinase-driven tumor. Prior studies demonstrated that PI3K/Akt signaling is important in thyroid hormone receptor βPV/PV knock-in (PV) mice that develop metastatic thyroid cancer that most closely resembles FTC. To determine the roles of Akt isoforms in this model we crossed Akt1-/-, Akt2-/-, and Akt3-/- mice with PV mice. Over 12 months, thyroid size was reduced for the Akt null crosses (p < 0.001). Thyroid cancer development and local invasion were delayed in only the PVPV-Akt1 knock out (KO) mice in association with increased apoptosis with no change in proliferation. Primary-cultured PVPV-Akt1KO thyrocytes uniquely displayed a reduced cell motility. In contrast, loss of any Akt isoform reduced lung metastasis while vascular invasion was reduced with Akt1 or 3 loss. Microarray of thyroid RNA displayed incomplete overlap between the Akt KO models. The most upregulated gene was the dendritic cell (DC) marker CD209a only in PVPV-Akt1KO thyroids. Immunohistochemistry demonstrated an increase in CD209a-expressing cells in the PVPV-Akt1KO thyroids. In summary, Akt isoforms exhibit common and differential functions that regulate local and metastatic progression in this model of thyroid cancer.
Collapse
Affiliation(s)
- Motoyasu Saji
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, 506 Biomedical Research Tower, 560 West 12th Avenue, Columbus, OH, 43210, USA
| | - Caroline S Kim
- Division of Endocrinology, University of Pennsylvania, Philadelphia, PA, USA
| | - Chaojie Wang
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, 506 Biomedical Research Tower, 560 West 12th Avenue, Columbus, OH, 43210, USA
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
| | - Tilak Khanal
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, 506 Biomedical Research Tower, 560 West 12th Avenue, Columbus, OH, 43210, USA
| | - Kevin Coombes
- Center for Biostatistics, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
- Department of Biostatistics and Bionformatics, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
| | - Krista La Perle
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Sheue-Yann Cheng
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip N Tsichlis
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
| | - Matthew D Ringel
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, 506 Biomedical Research Tower, 560 West 12th Avenue, Columbus, OH, 43210, USA.
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
6
|
Hinz N, Jücker M. Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun Signal 2019; 17:154. [PMID: 31752925 PMCID: PMC6873690 DOI: 10.1186/s12964-019-0450-3] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AKT, also known as protein kinase B, is a key element of the PI3K/AKT signaling pathway. Moreover, AKT regulates the hallmarks of cancer, e.g. tumor growth, survival and invasiveness of tumor cells. After AKT was discovered in the early 1990s, further studies revealed that there are three different AKT isoforms, namely AKT1, AKT2 and AKT3. Despite their high similarity of 80%, the distinct AKT isoforms exert non-redundant, partly even opposing effects under physiological and pathological conditions. Breast cancer as the most common cancer entity in women, frequently shows alterations of the PI3K/AKT signaling. MAIN CONTENT A plethora of studies addressed the impact of AKT isoforms on tumor growth, metastasis and angiogenesis of breast cancer as well as on therapy response and overall survival in patients. Therefore, this review aimed to give a comprehensive overview about the isoform-specific effects of AKT in breast cancer and to summarize known downstream and upstream mechanisms. Taking account of conflicting findings among the studies, the majority of the studies reported a tumor initiating role of AKT1, whereas AKT2 is mainly responsible for tumor progression and metastasis. In detail, AKT1 increases cell proliferation through cell cycle proteins like p21, p27 and cyclin D1 and impairs apoptosis e.g. via p53. On the downside AKT1 decreases migration of breast cancer cells, for instance by regulating TSC2, palladin and EMT-proteins. However, AKT2 promotes migration and invasion most notably through regulation of β-integrins, EMT-proteins and F-actin. Whilst AKT3 is associated with a negative ER-status, findings about the role of AKT3 in regulation of the key properties of breast cancer are sparse. Accordingly, AKT1 is mutated and AKT2 is amplified in some cases of breast cancer and AKT isoforms are associated with overall survival and therapy response in an isoform-specific manner. CONCLUSIONS Although there are several discussed hypotheses how isoform specificity is achieved, the mechanisms behind the isoform-specific effects remain mostly unrevealed. As a consequence, further effort is necessary to achieve deeper insights into an isoform-specific AKT signaling in breast cancer and the mechanism behind it.
Collapse
Affiliation(s)
- Nico Hinz
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
7
|
Ishida N, Baba M, Hatanaka Y, Hagio K, Okada H, Hatanaka KC, Togashi K, Matsuno Y, Yamashita H. PIK3CA mutation, reduced AKT serine 473 phosphorylation, and increased ERα serine 167 phosphorylation are positive prognostic indicators in postmenopausal estrogen receptor-positive early breast cancer. Oncotarget 2018; 9:17711-17724. [PMID: 29707142 PMCID: PMC5915150 DOI: 10.18632/oncotarget.24845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/28/2018] [Indexed: 12/12/2022] Open
Abstract
Although endocrine therapy is the most important treatment option in estrogen receptor (ER)-positive breast cancer, new strategies, such as molecular targeted agents together with endocrine therapy are required to improve survival. PIK3CA is the most frequent mutated gene in ER-positive early breast cancers, and PIK3CA mutation status is reported to affect activation of AKT and ERα. Moreover, recent studies demonstrate that patients had a better prognosis when tumors expressed ER, androgen receptor (AR), and vitamin D receptor (VDR). In this study, we examined expression of AR and VDR, phosphorylation of AKT serine (Ser) 473 (AKT phospho-Ser473) and ERα Ser167 (ERα phospho-Ser167) by immunohistochemistry in ER-positive, HER2-negative early breast cancer. PIK3CA gene mutations were also detected in genomic DNA extracted from tumor blocks. Correlations between these biological markers, clinicopathological factors and prognosis were analyzed. Levels of AKT phospho-Ser473 were significantly higher in premenopausal women than in postmenopausal women. In contrast, AR expression was significantly higher in postmenopausal women than in premenopausal women. PIK3CA mutations were detected in 47% in premenopausal women and 47% in postmenopausal women. Postmenopausal women with PIK3CA wild-type tumors had significantly worse disease-free survival than patients with PIK3CA mutant tumors. Low levels of AKT phospho-Ser473 and high levels of ERα phospho-Ser167 were strongly associated with increased disease-free survival in postmenopausal women. Evaluation of ERα activation, in addition to PIK3CA mutation status, might be helpful in identifying patients who are likely to benefit from endocrine therapy alone versus those who are not in postmenopausal ER-positive early breast cancer.
Collapse
Affiliation(s)
- Naoko Ishida
- Department of Breast Surgery, Hokkaido University Hospital, Kita-ku, Sapporo 060-8648, Japan
| | - Motoi Baba
- Department of Breast Surgery, Hokkaido University Hospital, Kita-ku, Sapporo 060-8648, Japan
| | - Yutaka Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Kita-ku, Sapporo 060-8648, Japan
- Research Division of Companion Diagnostics, Hokkaido University Hospital, Kita-ku, Sapporo 060-8648, Japan
| | - Kanako Hagio
- Department of Breast Surgery, Hokkaido University Hospital, Kita-ku, Sapporo 060-8648, Japan
| | - Hiromi Okada
- Department of Surgical Pathology, Hokkaido University Hospital, Kita-ku, Sapporo 060-8648, Japan
| | - Kanako C. Hatanaka
- Research Division of Companion Diagnostics, Hokkaido University Hospital, Kita-ku, Sapporo 060-8648, Japan
| | - Kenichi Togashi
- Roche Diagnostics K.K., Konan, Minato-ku, Tokyo 108-0075, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Kita-ku, Sapporo 060-8648, Japan
- Research Division of Companion Diagnostics, Hokkaido University Hospital, Kita-ku, Sapporo 060-8648, Japan
| | - Hiroko Yamashita
- Department of Breast Surgery, Hokkaido University Hospital, Kita-ku, Sapporo 060-8648, Japan
| |
Collapse
|
8
|
Yu W, Chu L, Zhao K, Chen H, Xiang J, Zhang Y, Li H, Zhao W, Sun M, Wei Q, Fu X, Xie C, Zhu Z. A nomogram based on phosphorylated AKT1 for predicting locoregional recurrence in patients with oesophageal squamous cell carcinoma. J Cancer 2017; 8:3755-3763. [PMID: 29151963 PMCID: PMC5688929 DOI: 10.7150/jca.20828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/30/2017] [Indexed: 12/18/2022] Open
Abstract
Background: The AKT signalling pathway controls survival and growth in many malignant tumours. However, the prognostic value of phosphorylated AKT1 (p-AKT1) for locoregional-progression free survival (LPFS) in oesophageal squamous cell carcinoma (ESCC) has not been established. Our aim was to develop a nomogram to predict local recurrence using p-AKT1 and main clinical characteristics in patients with thoracic ESCC undergoing radical three-field lymph node dissection. Methods: Immunohistochemistry was performed to examine p-AKT1 expression in 181 thoracic ESCC patients. The Kaplan-Meier method was used to calculate LPFS. Cox regression analysis was also performed to evaluate prognostic factors. A nomogram comprising biological and clinical factors was established to predict LPFS. Results: The 5-year LPFS rate was 63.9%. Multivariate analysis revealed that expression of p-AKT1 (p<0.001), pathologic N category (p=0.004) and number of lymph nodes retrieved (p=0.001) were independent prognostic factors for LPFS. Increased expression of p-AKT1 was associated with decreased LPFS in patients with ESCC. In addition, a nomogram was established based on all significant independent factors for locoregional recurrence risk. Harrell's c-index for predicting LPFS was 0.78. Conclusion: Activation of AKT1 was associated with poor locoregional control in ESCC patients. The nomogram, based on p-AKT1 expression and clinically significant parameters, could be used as an accurate stratification model for predicting locoregional recurrence in patients with ESCC after radical resection.
Collapse
Affiliation(s)
- Weiwei Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kuaile Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiaqing Xiang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yawei Zhang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hecheng Li
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weixin Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Menghong Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiao Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Congying Xie
- Radiotherapy and Chemotherapy Department, the 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Sharma R, Waller AP, Agrawal S, Wolfgang KJ, Luu H, Shahzad K, Isermann B, Smoyer WE, Nieman MT, Kerlin BA. Thrombin-Induced Podocyte Injury Is Protease-Activated Receptor Dependent. J Am Soc Nephrol 2017; 28:2618-2630. [PMID: 28424276 PMCID: PMC5576925 DOI: 10.1681/asn.2016070789] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/16/2017] [Indexed: 12/29/2022] Open
Abstract
Nephrotic syndrome is characterized by massive proteinuria and injury of specialized glomerular epithelial cells called podocytes. Studies have shown that, whereas low-concentration thrombin may be cytoprotective, higher thrombin concentrations may contribute to podocyte injury. We and others have demonstrated that ex vivo plasma thrombin generation is enhanced during nephrosis, suggesting that thrombin may contribute to nephrotic progression. Moreover, nonspecific thrombin inhibition has been shown to decrease proteinuria in nephrotic animal models. We thus hypothesized that thrombin contributes to podocyte injury in a protease-activated receptor-specific manner during nephrosis. Here, we show that specific inhibition of thrombin with hirudin reduced proteinuria in two rat nephrosis models, and thrombin colocalized with a podocyte-specific marker in rat glomeruli. Furthermore, flow cytometry immunophenotyping revealed that rat podocytes express the protease-activated receptor family of coagulation receptors in vivo High-concentration thrombin directly injured conditionally immortalized human and rat podocytes. Using receptor-blocking antibodies and activation peptides, we determined that thrombin-mediated injury depended upon interactions between protease-activated receptor 3 and protease-activated receptor 4 in human podocytes, and between protease-activated receptor 1 and protease-activated receptor 4 in rat podocytes. Proximity ligation and coimmunoprecipitation assays confirmed thrombin-dependent interactions between human protease-activated receptor 3 and protease-activated receptor 4, and between rat protease-activated receptor 1 and protease-activated receptor 4 in cultured podocytes. Collectively, these data implicate thrombinuria as a contributor to podocyte injury during nephrosis, and suggest that thrombin and/or podocyte-expressed thrombin receptors may be novel therapeutic targets for nephrotic syndrome.
Collapse
Affiliation(s)
- Ruchika Sharma
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
- Division of Hematology, Oncology, and BMT, and
| | - Amanda P Waller
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
| | - Shipra Agrawal
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
| | - Katelyn J Wolfgang
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
| | - Hiep Luu
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
- Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Khurrum Shahzad
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, Magdeburg, Germany
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan; and
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, Magdeburg, Germany
| | - William E Smoyer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
- Division of Nephrology, Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Bryce A Kerlin
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital,
- Division of Hematology, Oncology, and BMT, and
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
10
|
Riggio M, Perrone MC, Polo ML, Rodriguez MJ, May M, Abba M, Lanari C, Novaro V. AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins. Sci Rep 2017; 7:44244. [PMID: 28287129 PMCID: PMC5347151 DOI: 10.1038/srep44244] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to elucidate the mechanisms associated with the specific effects of AKT1 and AKT2 isoforms in breast cancer progression. We modulated the abundance of specific AKT isoforms in IBH-6 and T47D human breast cancer cell lines and showed that AKT1 promoted cell proliferation, through S6 and cyclin D1 upregulation, but it inhibited cell migration and invasion through β1-integrin and focal adhesion kinase (FAK) downregulation. In contrast, AKT2 promoted cell migration and invasion through F-actin and vimentin induction. Thus, while overexpression of AKT1 promoted local tumor growth, downregulation of AKT1 or overexpression of AKT2 promoted peritumoral invasion and lung metastasis. Furthermore, we evaluated The Cancer Genome Atlas (TCGA) dataset for invasive breast carcinomas and found that increased AKT2 but not AKT1 mRNA levels correlated with a worse clinical outcome. We conclude that AKT isoforms play specific roles in different steps of breast cancer progression, with AKT1 involved in the local tumor growth and AKT2 involved in the distant tumor dissemination, having AKT2 a poorer prognostic value and consequently being a worthwhile target for therapy.
Collapse
Affiliation(s)
- Marina Riggio
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - María C Perrone
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - María L Polo
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - María J Rodriguez
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - María May
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - Martín Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas. Fac. Ciencias Médicas - Universidad Nacional La Plata (1900), Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - Virginia Novaro
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| |
Collapse
|
11
|
Yang ZY, Yu YY, Yuan JQ, Shen WX, Zheng DY, Chen JZ, Mao C, Tang JL. The prognostic value of phosphatase and tensin homolog negativity in breast cancer: A systematic review and meta-analysis of 32 studies with 4393 patients. Crit Rev Oncol Hematol 2016; 101:40-9. [PMID: 26951995 DOI: 10.1016/j.critrevonc.2016.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/28/2015] [Accepted: 01/14/2016] [Indexed: 01/30/2023] Open
Abstract
The prognostic value of phosphatase and tensin homolog (PTEN) negativity in breast cancer has been evaluated by many studies but remains controversial. We conducted a meta-analysis to assess the association of PTEN negativity with overall survival and disease-free survival. Thirty-two studies with 4393 patients were identified. PTEN negativity was significantly associated with unfavorable overall survival in breast cancer (hazard ratio=1.89, 95% confidence interval 1.58-2.26), with low heterogeneity among the studies (I(2)=25%, P=0.160) and no evidence for publication bias. Meta-analysis of multivariate hazard ratios and sensitivity analyses did not materially change the results. The data on disease-free survival was heterogeneous (I(2)=61.9%, P<0.001), with a summary hazard ratio of 1.57 (95% confidence interval 1.31-1.89). The exact source of heterogeneity remains unclear. We thus concluded that PTEN negativity was significantly associated with unfavorable prognosis in terms of overall survival in breast cancer.
Collapse
Affiliation(s)
- Zu-Yao Yang
- Division of Epidemiology, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Yuan-Yuan Yu
- Division of Epidemiology, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Jin-Qiu Yuan
- Division of Epidemiology, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Wei-Xi Shen
- Cancer Institute, Shenzhen People's Hospital (2nd Clinical Medical College of Jinan University), Shenzhen, Guangdong Province, China
| | - Da-Yong Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jin-Zhang Chen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chen Mao
- Division of Epidemiology, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Shenzhen Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China.
| | - Jin-Ling Tang
- Division of Epidemiology, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Shenzhen Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China; The Hong Kong Branch of The Chinese Cochrane Centre, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
12
|
Greenwood C, Ruff D, Kirvell S, Johnson G, Dhillon HS, Bustin SA. Proximity assays for sensitive quantification of proteins. BIOMOLECULAR DETECTION AND QUANTIFICATION 2015; 4:10-6. [PMID: 27077033 PMCID: PMC4822221 DOI: 10.1016/j.bdq.2015.04.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022]
Abstract
Proximity assays are immunohistochemical tools that utilise two or more DNA-tagged aptamers or antibodies binding in close proximity to the same protein or protein complex. Amplification by PCR or isothermal methods and hybridisation of a labelled probe to its DNA target generates a signal that enables sensitive and robust detection of proteins, protein modifications or protein-protein interactions. Assays can be carried out in homogeneous or solid phase formats and in situ assays can visualise single protein molecules or complexes with high spatial accuracy. These properties highlight the potential of proximity assays in research, diagnostic, pharmacological and many other applications that require sensitive, specific and accurate assessments of protein expression.
Collapse
Affiliation(s)
- Christina Greenwood
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - David Ruff
- Fluidigm Corporation, South San Francisco, CA 94080, USA
| | - Sara Kirvell
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Gemma Johnson
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Harvinder S Dhillon
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Stephen A Bustin
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| |
Collapse
|
13
|
Li J, Su W, Zhang S, Hu Y, Liu J, Zhang X, Bai J, Yuan W, Hu L, Cheng T, Zetterberg A, Lei Z, Zhang J. Epidermal growth factor receptor and AKT1 gene copy numbers by multi-gene fluorescence in situ hybridization impact on prognosis in breast cancer. Cancer Sci 2015; 106:642-9. [PMID: 25702787 PMCID: PMC4452167 DOI: 10.1111/cas.12637] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 01/04/2023] Open
Abstract
The epidermal growth factor receptor (EGFR)/PI3K/AKT signaling pathway aberrations play significant roles in breast cancer occurrence and development. However, the status of EGFR and AKT1 gene copy numbers remains unclear. In this study, we showed that the rates of EGFR and AKT1 gene copy number alterations were associated with the prognosis of breast cancer. Among 205 patients, high EGFR and AKT1 gene copy numbers were observed in 34.6% and 27.8% of cases by multi-gene fluorescence in situ hybridization, respectively. Co-heightened EGFR/AKT1 gene copy numbers were identified in 11.7% cases. No changes were found in 49.3% of patients. Although changes in EGFR and AKT1 gene copy numbers had no correlation with patients' age, tumor stage, histological grade and the expression status of other molecular makers, high EGFR (P = 0.0002) but not AKT1 (P = 0.1177) gene copy numbers correlated with poor 5-year overall survival. The patients with co-heightened EGFR/AKT1 gene copy numbers displayed a poorer prognosis than those with tumors with only high EGFR gene copy numbers (P = 0.0383). Both Univariate (U) and COX multivariate (C) analyses revealed that high EGFR and AKT1 gene copy numbers (P = 0.000 [U], P = 0.0001 [C]), similar to histological grade (P = 0.001 [U], P = 0.012 [C]) and lymph node metastasis (P = 0.046 [U], P = 0.158 [C]), were independent prognostic indicators of 5-year overall survival. These results indicate that high EGFR and AKT1 gene copy numbers were relatively frequent in breast cancer. Co-heightened EGFR/AKT1 gene copy numbers had a worse outcome than those with only high EGFR gene copy numbers, suggesting that evaluation of these two genes together may be useful for selecting patients for anti-EGFR-targeted therapy or anti-EGFR/AKT1-targeted therapy and for predicting outcomes.
Collapse
Affiliation(s)
- Jiao Li
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wei Su
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Sheng Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yunhui Hu
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jingjing Liu
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiaobei Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jingchao Bai
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Weiping Yuan
- Beijing Union Medical College Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Linping Hu
- Beijing Union Medical College Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tao Cheng
- Beijing Union Medical College Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Anders Zetterberg
- Clinical Pathology Department of Karolinska Hospital, Karolinska Institute, Solna, Sweden
| | - Zhenmin Lei
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Jin Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
14
|
Sabine VS, Crozier C, Brookes CL, Drake C, Piper T, van de Velde CJH, Hasenburg A, Kieback DG, Markopoulos C, Dirix L, Seynaeve C, Rea DW, Bartlett JMS. Mutational analysis of PI3K/AKT signaling pathway in tamoxifen exemestane adjuvant multinational pathology study. J Clin Oncol 2015; 32:2951-8. [PMID: 25071141 DOI: 10.1200/jco.2013.53.8272] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Deregulation of key PI3K/AKT pathway genes may contribute to endocrine resistance in breast cancer (BC). PIK3CA is the most frequently mutated gene in luminal BC (35%); however, the effect of mutations in helical versus kinase domains remains controversial. We hypothesize that improved outcomes occur in patients with estrogen receptor–positive (ER positive) BC receiving endocrine therapy and possessing PIK3CA mutations. MATERIALS AND METHODS DNA was extracted from 4,540 formalin-fixed paraffin-embedded BC samples from the Exemestane Versus Tamoxifen-Exemestane pathology study. Mutational analyses were performed for 25 mutations (PIK3CAx10, AKT1x1, KRASx5, HRASx3, NRASx2 and BRAFx4). RESULTS PIK3CA mutations were frequent (39.8%), whereas RAS/RAF mutations were rare (1%). In univariable analyses PIK3CA mutations were associated with significantly improved 5-year distant relapse-free survival (DRFS; HR, 0.76; 95% CI, 0.63 to 0.91; P = .003). However, a multivariable analysis correcting for known clinical and biologic prognostic factors failed to demonstrate that PIK3CA mutation status is an independent prognostic marker for DRFS (HR, 0.92; 95% CI, 0.75 to 1.12; P = .4012). PIK3CA mutations were more frequent in low-risk luminal BCs (e.g., grade 1 nodev 3, node-negative v -positive), confounding the relationship between mutations and outcome. CONCLUSION PIK3CA mutations are present in approximately 40% of luminal BCs but are not an independent predictor of outcome in the context of endocrine therapy, whereas RAS/RAF mutations are rare inluminal BC. A complex relationship between low-risk cancers and PIK3CA mutations was identified. Although the PI3K/AKT pathway remains a viable therapeutic target as the result of ahigh mutation frequency, PIK3CA mutations do not seem to affect residual risk following treatment with endocrine therapy.
Collapse
|
15
|
The prognostic value of phosphorylated Akt in breast cancer: a systematic review. Sci Rep 2015; 5:7758. [PMID: 25582346 PMCID: PMC4291578 DOI: 10.1038/srep07758] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/11/2014] [Indexed: 01/07/2023] Open
Abstract
The prognostic value of phosphorylated Akt (pAkt) overexpression in breast cancer has been investigated by many studies with inconsistent results. This systematic review was conducted to evaluate the association of pAkt overexpression with breast cancer prognosis in terms of overall survival and disease-free survival. Three electronic databases (PubMed, EMBASE and Chinese Biomedical Literature Database) were comprehensively searched. Hazard ratios (HRs) with 95% confidence intervals (CIs) from different studies were combined using the random-effects model. In total, 33 studies with 9,836 patients were included for final analysis. The summary HR for overall survival and disease-free survival was 1.52 (95% CI: 1.29-1.78) and 1.28 (95% CI: 1.13-1.45), respectively, indicating higher risk of death and disease recurrence associated with pAkt overexpression. The results were robust in sensitivity analyses by omitting one study each time and by using the fixed-effects model instead. Subgroup and meta-regression analyses did not show that the prognostic effect of pAkt overexpression would change materially with such factors as population, status of hormone receptors, hormonal or trastuzumab treatment given, analyzing method (univariate versus multivariate) and methodological quality of the original studies. In conclusion, the available evidence suggests that pAkt overexpression is an adverse prognostic factor for breast cancer.
Collapse
|
16
|
Kenicer J, Spears M, Lyttle N, Taylor KJ, Liao L, Cunningham CA, Lambros M, MacKay A, Yao C, Reis-Filho J, Bartlett JMS. Molecular characterisation of isogenic taxane resistant cell lines identify novel drivers of drug resistance. BMC Cancer 2014; 14:762. [PMID: 25312014 PMCID: PMC4203938 DOI: 10.1186/1471-2407-14-762] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/02/2014] [Indexed: 01/29/2023] Open
Abstract
Background Taxanes such as paclitaxel and docetaxel are used successfully to treat breast cancer, usually in combination with other agents. They interfere with microtubules causing cell cycle arrest; however, the mechanisms underlying the clinical effects of taxanes are yet to be fully elucidated. Methods Isogenic paclitaxel resistant (PACR) MDA‒MB‒231, paclitaxel resistant ZR75‒1 and docetaxel resistant (DOCR) ZR75‒1 cell lines were generated by incrementally increasing taxane dose in native cell lines in vitro. We used aCGH analysis to identify mechanisms driving taxane resistance. Results Taxane resistant cell lines exhibited an 18-170 fold increased resistance to taxanes, with the ZR75-1 resistant cell lines also demonstrating cross resistance to anthracyclines. Paclitaxel treatment of native cells resulted in a G2/M block and a decrease in the G1 phase of the cell cycle. However, in the resistant cell lines, minimal changes were present. Functional network analysis revealed that the mitotic prometaphase was lost in the resistant cell lines. Conclusion This study established a model system for examining taxane resistance and demonstrated that both MDR and mitosis represent common mechanism of taxane resistance. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-762) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - John M S Bartlett
- Biomarkers and Companion Diagnostics, Edinburgh Cancer Research Centre, Crewe Road South, Edinburgh EH4 2XR, UK.
| |
Collapse
|
17
|
Bruce MC, McAllister D, Murphy LC. The kinome associated with estrogen receptor-positive status in human breast cancer. Endocr Relat Cancer 2014; 21:R357-70. [PMID: 25056177 DOI: 10.1530/erc-14-0232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Estrogen receptor alpha (ERα) regulates and is regulated by kinases involved in several functions associated with the hallmarks of cancer. The following literature review strongly suggests that distinct kinomes exist for ERα-positive and -negative human breast cancers. Importantly, consistent with the known heterogeneity of ERα-positive cancers, different subgroups exist, which can be defined by different kinome signatures, which in turn are correlated with clinical outcome. Strong evidence supports the interplay of kinase networks, suggesting that targeting a single node may not be sufficient to inhibit the network. Therefore, identifying the important hubs/nodes associated with each clinically relevant kinome in ER+ tumors could offer the ability to implement the best therapy options at diagnosis, either endocrine therapy alone or together with other targeted therapies, for improved overall outcome.
Collapse
Affiliation(s)
- M Christine Bruce
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| | - Danielle McAllister
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| | - Leigh C Murphy
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| |
Collapse
|
18
|
Pérez-Tenorio G, Karlsson E, Stål O. Clinical value of isoform-specific detection and targeting of AKT1, AKT2 and AKT3 in breast cancer. BREAST CANCER MANAGEMENT 2014. [DOI: 10.2217/bmt.14.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
SUMMARY Overactivation of the PI3K/AKT signaling pathway is frequently reported in breast cancer, consequently inhibitors targeting this pathway are clinically useful. AKT constitutes a hub in the regulation of several cancer hallmarks, such as proliferation, survival and migration. Three AKT isoforms, named AKT1, AKT2 and AKT3, are identified in humans. AKT alterations, mainly upregulation of phosphorylated AKT in tumors may have prognostic and predictive value. Moreover, the AKT isoforms may possess partly divergent cellular functions and be upregulated in certain breast cancer subtypes, suggesting the importance of isoform-specific analyses. In conclusion, AKT isoform-specific detection and targeting in different tumor subtypes will hopefully result into a further developed personalized medicine.
Collapse
Affiliation(s)
- Gizeh Pérez-Tenorio
- Department of Clinical & Experimental Medicine & Department of Oncology, Linköping University, Linköping, SE-58185, Sweden
| | - Elin Karlsson
- Department of Clinical & Experimental Medicine & Department of Oncology, Linköping University, Linköping, SE-58185, Sweden
| | - Olle Stål
- Department of Clinical & Experimental Medicine & Department of Oncology, Linköping University, Linköping, SE-58185, Sweden
| |
Collapse
|
19
|
Wang Y, Lin L, Xu H, Li T, Zhou Y, Dan H, Jiang L, Liao G, Zhou M, Li L, Zeng X, Li J, Chen Q. Genetic variants in AKT1 gene were associated with risk and survival of OSCC in Chinese Han Population. J Oral Pathol Med 2014; 44:45-50. [PMID: 25060489 DOI: 10.1111/jop.12211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND AKT1 is an important downstream effector of PTEN/PI3K/AKT signal transduction pathway. Aberrant expression and genetic variant of AKT1 gene are suggested to be involved in several types of human cancers, including OSCC. The aim of this study was to investigate the possible association between AKT1 gene polymorphisms and OSCC in Chinese Han Population. METHODS A total of 182 OSCC patients and 207 cancer-free controls were enrolled for this hospital-based study. Five single-nucleotide polymorphisms (SNPs) on AKT1 (rs1130214, rs1130233, rs2494732, rs3730358, rs3803300) were investigated and genotyped by Sequenom Mass ARRAY & iPLEX-MALDI-TOF technology. Chi-square test, SHEsis software, and Kaplan-Meier method were used to evaluate the relationship between selected SNPs and OSCC susceptibility and progression. RESULTS Significant difference of genotype distribution was observed between cases and control group at SNP sites rs1130214 (P = 0.006) and rs3803300 (P = 0.033, P = 0.003 for heterozygote and homozygous mutant, respectively). In the haplotype analysis, haplotype H4 which contained mutant-type allele of rs1130214 and rs3803300 was also related to OSCC risk (OR = 1.974, 95% CI = 1.048-3.718). Moreover, CT genotype of rs3730358 was associated with higher risk of OSCC progression (HR = 2.466, 95% CI = 1.017-5.981). CONCLUSION Our results indicated that rs1130214 and rs3803300 were related to OSCC susceptibility in Chinese Han Population. In addition, rs3730358 might be associated with progression-free survival time of OSCC patients, suggesting that this SNP could be a potential prognosis marker for OSCC.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang X, Lin Y, Lan F, Yu Y, Ouyang X, Wang X, Huang Q, Wang L, Tan J, Zheng F. A GG allele of 3'-side AKT1 SNP is associated with decreased AKT1 activation and better prognosis of gastric cancer. J Cancer Res Clin Oncol 2014; 140:1399-411. [PMID: 24737346 DOI: 10.1007/s00432-014-1663-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/25/2014] [Indexed: 01/30/2023]
Abstract
PURPOSE v-akt Murine thymoma viral oncogene homolog (AKT) pathway is critically involved in cancer cell growth, invasion, and survival. We examined the correlation between the genetic variations in molecules of AKT pathway and clinical outcomes of gastric cancer. PATIENTS AND METHODS Six single nucleotide polymorphisms (SNPs) located in the four core genes of AKT pathway, namely the PIK3CA, PTEN, AKT1, and mTOR, were determined in 221 patients with stage T2 and T3 gastric cancer. Additionally, the activation of AKT1 in gastric cancer tissues was examined by immunostaining. The correlation between SNPs, AKT activation, and the progress of gastric cancer was analyzed after an average of 51-month follow-up. RESULTS The overall recurrence and survival rate in this study group were 54.8 and 46.6 %, respectively. The recurrence rate was reduced 30.4 %, and the survival rate was increased 33.7 % in patients with GG allele of a 3'-side AKT1 SNP (rs2498804). Significantly, GG allele was associated with lower AKT1 activation in gastric cancer tissues. On the contrary, CC allele of PTEN (rs701848) was associated with the increased risk of recurrence (hazard ratio [HR] 2.06, 95 % CI 1.19-3.58) and patient death (HR 2.01, 95 % CI 1.15-3.53). CONCLUSIONS The genetic variants in the PI3K/PTEN/AKT especially the GG allele in 3' side of AKT1 are closely related to clinical outcomes of gastric cancer.
Collapse
Affiliation(s)
- Xiaoting Wang
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), Clinical College of Fujian Medical University, 156 North Xi-er Huan Road, Fuzhou, 350025, Fujian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Moreira JMA, Thorsen SB, Brünner N, Stenvang J. Proximity probing assays for simultaneous visualization of protein complexes in situ. Expert Rev Proteomics 2014; 10:219-21. [PMID: 23777212 DOI: 10.1586/epr.13.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
EVALUATION OF: Leuchowius KJ, Clausson CM, Grannas K et al. Parallel visualization of multiple protein complexes in individual cells in tumor tissue. Mol. Cell Proteomics doi:10.1074/mcp.O112.023374 (2013) (Epub ahead of print). Techniques for in situ detection and quantification of proteins in fixed tissue remain an important element of both basic biological analyses and clinical biomarker research. The practical importance of such techniques can be exemplified by the everyday clinical use of immunohistochemical detection of the estrogen receptor and HER2 in tissues from breast cancer patients. Several techniques are currently available for detection of single proteins and post-translational modifications, but very few are suitable for detection of protein complexes. Methods that enable simultaneous detection and quantification of protein complexes provide novel possibilities for understanding the biological role(s) of protein complexes and may open new opportunities to improve clinical biomarker research. Leuchowius et al. describe an improved proximity ligation assay for in situ detection of protein complexes, which is able to detect and quantify several protein complexes simultaneously in the same tissue specimen.
Collapse
Affiliation(s)
- José Manuel Afonso Moreira
- Sino-Danish Breast Cancer Research Centre and Danish Centre for Translational Breast Cancer Research, Section of Molecular Disease Biology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 88, 1870 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
22
|
Shah KN, Mehta KR, Peterson D, Evangelista M, Livesey JC, Faridi JS. AKT-induced tamoxifen resistance is overturned by RRM2 inhibition. Mol Cancer Res 2013; 12:394-407. [PMID: 24362250 DOI: 10.1158/1541-7786.mcr-13-0219] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Acquired tamoxifen resistance develops in the majority of hormone-responsive breast cancers and frequently involves overexpression of the PI3K/AKT axis. Here, breast cancer cells with elevated endogenous AKT or overexpression of activated AKT exhibited tamoxifen-stimulated cell proliferation and enhanced cell motility. To gain mechanistic insight on AKT-induced endocrine resistance, gene expression profiling was performed to determine the transcripts that are differentially expressed post-tamoxifen therapy under conditions of AKT overexpression. Consistent with the biologic outcome, many of these transcripts function in cell proliferation and cell motility networks and were quantitatively validated in a larger panel of breast cancer cells. Moreover, ribonucleotide reductase M2 (RRM2) was revealed as a key contributor to AKT-induced tamoxifen resistance. Inhibition of RRM2 by RNA interference (RNAi)-mediated approaches significantly reversed the tamoxifen-resistant cell growth, inhibited cell motility, and activated DNA damage and proapoptotic pathways. In addition, treatment of tamoxifen-resistant breast cancer cells with the small molecule RRM inhibitor didox significantly reduced in vitro and in vivo growth. Thus, AKT-expressing breast cancer cells upregulate RRM2 expression, leading to increased DNA repair and protection from tamoxifen-induced apoptosis. IMPLICATIONS These findings identify RRM2 as an AKT-regulated gene, which plays a role in tamoxifen resistance and may prove to be a novel target for effective diagnostic and preventative strategies.
Collapse
Affiliation(s)
- Khyati N Shah
- Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211.
| | | | | | | | | | | |
Collapse
|
23
|
Chen Y, Hao J, Jiang W, He T, Zhang X, Jiang T, Jiang R. Identifying potential cancer driver genes by genomic data integration. Sci Rep 2013; 3:3538. [PMID: 24346768 PMCID: PMC3866686 DOI: 10.1038/srep03538] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/02/2013] [Indexed: 12/17/2022] Open
Abstract
Cancer is a genomic disease associated with a plethora of gene mutations resulting in a loss of control over vital cellular functions. Among these mutated genes, driver genes are defined as being causally linked to oncogenesis, while passenger genes are thought to be irrelevant for cancer development. With increasing numbers of large-scale genomic datasets available, integrating these genomic data to identify driver genes from aberration regions of cancer genomes becomes an important goal of cancer genome analysis and investigations into mechanisms responsible for cancer development. A computational method, MAXDRIVER, is proposed here to identify potential driver genes on the basis of copy number aberration (CNA) regions of cancer genomes, by integrating publicly available human genomic data. MAXDRIVER employs several optimization strategies to construct a heterogeneous network, by means of combining a fused gene functional similarity network, gene-disease associations and a disease phenotypic similarity network. MAXDRIVER was validated to effectively recall known associations among genes and cancers. Previously identified as well as novel driver genes were detected by scanning CNAs of breast cancer, melanoma and liver carcinoma. Three predicted driver genes (CDKN2A, AKT1, RNF139) were found common in these three cancers by comparative analysis.
Collapse
Affiliation(s)
- Yong Chen
- 1] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jingjing Hao
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wei Jiang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - Tong He
- School of Applied Mathematics, Central University of Finance and Economics, Beijing 102206, China
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - Tao Jiang
- 1] MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China [2] Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA
| | - Rui Jiang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Spears M, Cunningham CA, Taylor KJ, Mallon EA, Thomas JSJ, Kerr GR, Jack WJL, Kunkler IH, Cameron DA, Chetty U, Bartlett JMS. Authors' Reply. J Pathol 2013; 229:e2-3. [DOI: 10.1002/path.4144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 09/24/2012] [Accepted: 10/17/2012] [Indexed: 11/09/2022]
|
25
|
Badve S, Nakshatri H. Role of AKT isotypes in breast cancer. J Pathol 2013; 229:e1. [DOI: 10.1002/path.4137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 09/24/2012] [Accepted: 10/17/2012] [Indexed: 02/05/2023]
Affiliation(s)
- Sunil Badve
- Department of Pathology; Indiana University School of Medicine; IU Health Pathology Laboratory; 350 W 11th St Indianapolis IN USA
| | - Harikrishna Nakshatri
- Department of Surgery; Indiana University School of Medicine; IU Health Pathology Laboratory; 350 W 11th St Indianapolis IN USA
| |
Collapse
|
26
|
Akt2 expression is associated with good long-term prognosis in oestrogen receptor positive breast cancer. Eur J Cancer 2013; 49:1196-204. [PMID: 23305873 DOI: 10.1016/j.ejca.2012.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 12/06/2012] [Accepted: 12/08/2012] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Akt is a signalling modulator for many cellular processes, including metabolism, cell proliferation, cell survival and cell growth. Three isoforms of Akt have been identified, but only a few studies have concerned the isoform-specific roles in the prognosis of breast cancer patients. The aim of this study was to investigate the prognostic value of v-akt murine thymoma viral oncogene homologue 1 (Akt1) and v-akt murine thymoma viral oncogene homologue 2 (Akt2) in oestrogen receptor positive (ER+) and oestrogen receptor negative (ER-) breast cancer with long-term follow-up. MATERIAL AND METHODS The expression of Akt in tumour tissue was analysed with immunohistochemistry in a cohort of 272 postmenopausal patients with stage II breast cancer. The median follow-up time was 19 years. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using the Cox's proportional hazards model. RESULTS The risk of distant recurrence was reduced for patients with ER+ tumours expressing Akt2 compared to patients with no Akt2 expression (HR=0.49, 95% CI 0.29-0.82, p=0.007). When adjusting for important clinical tumour characteristics and treatment, Akt2 was still an independent prognostic factor (HR=0.38, 95% CI 0.21-0.68, p=0.001) and the association remained long-term. The prognostic value of Akt2 increased with higher oestrogen receptor levels from no effect among patients with ER- tumours to 68% risk reduction for the group with high ER-levels (P for trend=0.042). Akt1 showed no significant prognostic information. CONCLUSION Our results indicate that Akt2 expression is associated with a lower distant recurrence rate for patients with ER+ tumours and that this association remains long-term. The prognostic value of Akt2 increases with higher oestrogen receptor expression, motivating further mechanistic studies on the role of Akt2 in ER+ breast cancer.
Collapse
|
27
|
Activation of Akt, mTOR, and the estrogen receptor as a signature to predict tamoxifen treatment benefit. Breast Cancer Res Treat 2012; 137:397-406. [PMID: 23242584 PMCID: PMC3539073 DOI: 10.1007/s10549-012-2376-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 01/13/2023]
Abstract
The frequent alterations of the PI3K/Akt/mTOR-growth signaling pathway are proposed mechanisms for resistance to endocrine therapy in breast cancer, partly through regulation of estrogen receptor α (ER) activity. Reliable biomarkers for treatment prediction are required for improved individualized treatment. We performed a retrospective immunohistochemical analysis of primary tumors from 912 postmenopausal patients with node-negative breast cancer, randomized to either tamoxifen or no adjuvant treatment. Phosphorylated (p) Akt-serine (s) 473, p-mTOR-s2448, and ER phosphorylations-s167 and -s305 were evaluated as potential biomarkers of prognosis and tamoxifen treatment efficacy. High expression of p-mTOR indicated a reduced response to tamoxifen, most pronounced in the ER+/progesterone receptor (PgR) + subgroup (tamoxifen vs. no tamoxifen: hazard ratio (HR), 0.86; 95 % confidence interval (CI), 0.31–2.38; P = 0.78), whereas low p-mTOR expression predicted tamoxifen benefit (HR, 0.29; 95 % CI, 0.18–0.49; P = 0.000002). In addition, nuclear p-Akt-s473 as well as p-ER at -s167 and/or -s305 showed interaction with tamoxifen efficacy with borderline statistical significance. A combination score of positive pathway markers including p-Akt, p-mTOR, and p-ER showed significant association with tamoxifen benefit (test for interaction; P = 0.029). Cross-talk between growth signaling pathways and ER-signaling has been proposed to affect tamoxifen response in hormone receptor-positive breast cancer. The results support this hypothesis, as an overactive pathway was significantly associated with reduced response to tamoxifen. A clinical pre-treatment test for cross-talk markers would be a step toward individualized adjuvant endocrine treatment with or without the addition of PI3K/Akt/mTOR pathway inhibitors.
Collapse
|