1
|
Kang X, Han Y, Wu M, Li Y, Qian P, Xu C, Zou Z, Dong J, Wei J. In situ blockade of TNF-TNFR2 axis via oncolytic adenovirus improves antitumor efficacy in solid tumors. Mol Ther 2024:S1525-0016(24)00810-4. [PMID: 39690741 DOI: 10.1016/j.ymthe.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/13/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024] Open
Abstract
Tumor necrosis factor (TNF) has been recognized as an immune activation factor in tumor immunotherapy. Our study demonstrated that TNF blockade markedly enhanced the antitumor efficacy of oncolytic adenovirus (AdV) therapy. To minimize systemic side effects, we engineered a recombinant oncolytic AdV encoding a TNF inhibitor (AdV-TNFi) to confine TNF blockade within the tumor microenvironment (TME). AdV-TNFi significantly improved therapeutic outcomes across various solid tumor models, including four murine and two golden hamster cancers. Immune cell profiling identified CD8+ T cells as the primary mediators of AdV-TNFi-induced antitumor effects, rather than CD4+ T or NK cells. Additionally, AdV-TNFi significantly decreased the infiltration of suppressive myeloid-derived immune cells within the TME and promoted long-term antitumor immune surveillance. Further investigation indicated that TNFR2, more than TNFR1, is pertinent to the immunosuppressive TME, with a recombinant AdV-encoding anti-TNFR2 demonstrating comparable antitumor efficacy to AdV-TNFi. Moreover, AdV-TNFi enhanced the antitumor efficacy of gemcitabine and immune checkpoint blockades (ICBs), such as anti-PD-L1 and anti-TIGIT antibodies, in pancreatic carcinoma and the anti-EGFR antibody in colon carcinoma. In conclusion, intratumoral blockade of the TNF/TNFR2 axis using AdV augments cancer immunotherapy efficacy while mitigating the risks associated with systemic TNF or TNFR2 suppression, warranting further clinical investigation.
Collapse
Affiliation(s)
- Xiaozhen Kang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yifeng Han
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Mengdi Wu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yuxin Li
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Peng Qian
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chuning Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zhengyun Zou
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie Dong
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China.
| | - Jiwu Wei
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Wang W, Li J, Qie X. Comprehensive utilization of in silico approach and in vitro experiment to unveil the molecular mechanisms of mono (2-ethylhexyl) phthalate-induced lung adenocarcinoma. Bioorg Chem 2024; 153:107947. [PMID: 39520789 DOI: 10.1016/j.bioorg.2024.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Mono (2-ethylhexyl) phthalate (MEHP), the main bioactive metabolite of commonly used plasticizer Di (2-ethylhexyl) phthalate, has received increasing attention due to its carcinogenic toxicity. This study aims to systematically explore the molecular mechanisms underlying MEHP-induced lung adenocarcinoma (LUAD). Firstly, network toxicology was employed to construct the interaction network of MEHP-targeted LUAD-related proteins and identify core proteins. Subsequently, functional analyses were used to determine the key pathways of these proteins enriched. Next, expression and survival analyses of multiple public datasets were conducted to emphasize the importance of core genes, and an optimized prognostic model was constructed based on independent prognostic genes to explore the relationship of gene risk with immune infiltration and immunotherapy. Ultimately, molecular docking and dynamics simulation were used to predict the binding modes and affinities of MEHP with core proteins, and surface plasmon resonance experiments were utilized to further validate their direct interactions. The findings demonstrated that MEHP targets 167 LUAD-related proteins, including 28 core target proteins. These proteins form the critical networks that regulate cancer and immune-associated pathways to induce the occurrence and development of LUAD, and further coordinate patient prognosis and treatment by altering the immune microenvironment. Most importantly, their direct interactions (especially PTGS2) lay the structural foundation of MEHP regulating core proteins, greatly supporting its LUAD toxicity. In conclusion, this study introduces a novel approach for evaluating the safety of plasticizers and elucidates the molecular mechanisms behind MEHP-induced LUAD, thus offering new and effective targets and strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Wenwen Wang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang, China.
| | - Junying Li
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, Guangdong, China
| | - Xingwang Qie
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, HymonBio Co., Ltd, Suzhou 215434, Jiangsu, China
| |
Collapse
|
3
|
Khan A, Zhang Y, Ma N, Shi J, Hou Y. NF-κB role on tumor proliferation, migration, invasion and immune escape. Cancer Gene Ther 2024; 31:1599-1610. [PMID: 39033218 DOI: 10.1038/s41417-024-00811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Nuclear factor kappa-B (NF-κB) is a nuclear transcription factor that plays a key factor in promoting inflammation, which can lead to the development of cancer in a long-lasting inflammatory environment. The activation of NF-κB is essential in the initial phases of tumor development and progression, occurring in both pre-malignant cells and cells in the microenvironment such as phagocytes, T cells, and B cells. In addition to stimulating angiogenesis, inhibiting apoptosis, and promoting the growth of tumor cells, NF-κB activation also causes the epithelial-mesenchymal transition, and tumor immune evasion. Therapeutic strategies that focus on immune checkpoint molecules have revolutionized cancer treatment by enabling the immune system to activate immunological responses against tumor cells. This review focused on understanding the NF-κB signaling pathway in the context of cancer.
Collapse
Affiliation(s)
- Afrasyab Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Yao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Ningna Ma
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China.
| |
Collapse
|
4
|
Sobhy Y, Mahgoub S, Abo-Zeid Y, Mina SA, Mady MS. In-Vitro Cytotoxic and Anti-Inflammatory Potential of Asparagus Densiflorus Meyeri and its Phytochemical Investigation. Chem Biodivers 2024; 21:e202400959. [PMID: 39077790 DOI: 10.1002/cbdv.202400959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Genus Asparagus is well known for its pharmacological activities and ethnopharmacological applications. In folk medicine, it is used in the management of several diseases such as diabetes, inflammations, and rheumatism. This work aimed to investigate the potential of Asparagus densiflorus meyeri root & aerial parts extracts as cytotoxic and anti-inflammatory and the investigation of their chemical profile. GC analysis & Folin-Ciocalteu and gravimetric methods were used respectively to estimate the lipoidal, phenolic, and saponin contents. MTT assay was conducted using two cell lines (MCF-7 & HepG2) to investigate the cytotoxic and anti-inflammatory activity using TNF-α stimulated MCF-7 cells through monitoring the level of nitric oxide release and NF-κB gene expression. Preliminary phytochemical investigation indicated that both extracted parts are equally rich in saponins, flavonoids, carbohydrates and/or glycosides, and sterols and/or triterpenes. Palmitic acid and β sitosterol represented the major saturated fatty acids and sterol, respectively. A significant cytotoxic activity against MCF-7 cells was recorded for DCM extract (IC50 26.13 μg/ml). All tested extracts showed a significant decrease in NO release and NF-κB gene expression thus it possesses a potential anti-inflammatory activity. A. densiflorus meyeri is considered a good candidate as a food supplement for protection from malignancy.
Collapse
Affiliation(s)
- Yasmin Sobhy
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Shahenda Mahgoub
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Yasmin Abo-Zeid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Suzan A Mina
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Mohamed S Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| |
Collapse
|
5
|
Ramírez-Pacheco A, Moreno-Guerrero SS, Rocha-Ramírez LM, Hernández-Pliego G, Escobar-Sánchez MA, Reyes-López A, Sienra-Monge JJL, Juárez-Villegas LE. Role of Genetic Polymorphisms -238 G>A and -308 G>A, and Serum TNF-α Levels in a Cohort of Mexican Pediatric Neuroblastoma Patients: Preliminary Study. Int J Mol Sci 2024; 25:10590. [PMID: 39408920 PMCID: PMC11477149 DOI: 10.3390/ijms251910590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The results of in vitro and in vivo studies have shown the pro-tumor effects of TNF-α, and this cytokine's increased expression is associated with poor prognosis in patients with some types of cancer. Our study objective was to evaluate the possible association of TNF-α genetic polymorphisms and serum levels with susceptibility and prognosis in a cohort of Mexican patients with NB. We performed PCR-RFLP and ELISA methods to analyze the genetics of these SNPs and determine serum concentrations, respectively. The distribution of the -308 G>A and -238 G>A polymorphisms TNFα genotypes was considerably different between patients with NB and the control group. The SNP rs1800629 GG/GA genotypes were associated with a decreased risk of NB (OR = 0.1, 95% CI = 0.03-0.393, p = 0.001) compared with the AA genotype, which was associated with susceptibility to NB (OR = 2.89, 95% CI = 1.45-5.76, p = 0.003) and related to unfavorable histology and high-risk NB. The rs361525 polymorphism GG genotype was associated with a lower risk of developing NB compared with the GA and AA genotypes (OR = 0.2, 95% CI = 0.068-0.63, p = 0.006). Circulating TNF-α serum concentrations were significantly different (p < 0.001) between patients with NB and healthy controls; however, we found no relationship between the analyzed TNF-α serum levels and SNP genotypes. We found associations between the rs1800629AA genotype and lower event-free survival (p = 0.026); SNP rs361525 and TNF-α levels were not associated with survival in patients with NB. Our results suggest the TNF-α SNP rs1800629 as a probable factor of NB susceptibility. The -308 G/A polymorphism AA genotype has a probable role in promoting NB development and poor prognosis associated with unfavorable histology, high-risk tumors, and lower EFS in Mexican patients with NB. It should be noted that it is important to conduct research on a larger scale, through inter-institutional studies, to further evaluate the contribution of TNF-α genetic polymorphisms to the risk and prognosis of NB.
Collapse
Affiliation(s)
- Arturo Ramírez-Pacheco
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Ciudad de México 06720, Mexico; (A.R.-P.); (S.S.M.-G.); (G.H.-P.)
| | - Silvia Selene Moreno-Guerrero
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Ciudad de México 06720, Mexico; (A.R.-P.); (S.S.M.-G.); (G.H.-P.)
| | - Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Ciudad de México 06720, Mexico
| | - Gabriela Hernández-Pliego
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Ciudad de México 06720, Mexico; (A.R.-P.); (S.S.M.-G.); (G.H.-P.)
| | - María Argelia Escobar-Sánchez
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Ciudad de México 06720, Mexico;
| | - Alfonso Reyes-López
- Centro de Estudios Económicos y Sociales en Salud, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Ciudad de México 06720, Mexico;
| | - Juan José Luis Sienra-Monge
- Subdirección de Pediatría Ambulatoria, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Ciudad de México 06720, Mexico;
| | - Luis Enrique Juárez-Villegas
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Ciudad de México 06720, Mexico; (A.R.-P.); (S.S.M.-G.); (G.H.-P.)
| |
Collapse
|
6
|
Gutierrez-Sainz L, Heredia-Soto V, Rodríguez-García AM, Crespo Sánchez MG, Serrano-Olmedo MG, Molero-Luis M, Losantos-García I, Ghanem I, Pérez-Wert P, Custodio A, Mendiola M, Feliu J. Cytokines and Pancreatic Ductal Adenocarcinoma: Exploring Their Relationship with Molecular Subtypes and Prognosis. Int J Mol Sci 2024; 25:9368. [PMID: 39273323 PMCID: PMC11395259 DOI: 10.3390/ijms25179368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its poor prognosis. The current challenge remains the absence of predictive biomarkers. Cytokines are crucial factors in the pathogenesis and prognosis of PDAC. Furthermore, there is growing interest in differentiating between molecular subtypes of PDAC. The aim of our study is to evaluate the association between the analyzed cytokines and the molecular subtypes of PDAC and to determine their prognostic value. Cytokine levels were measured in 73 patients, and molecular subtypes were analyzed in 34 of these patients. Transforming Growth Factor Beta 2 (TGF-β2) levels were independently associated with the basal-like and null subtypes. In patients with locally advanced and metastatic PDAC, elevated levels of interleukin (IL)-1α, IL-1β, IL-6, IL-8, IL-9, and IL-15 were associated with a higher risk of progression during first-line treatment, and increased levels of IL-1β, IL-6, IL-8, IL-9, and IL-15 were related to increased mortality. Furthermore, a significant association was observed between higher percentiles of IL-6 and IL-8 and shorter progression-free survival (PFS) during first-line treatment, and between higher percentiles of IL-8 and shorter overall survival (OS). In the multivariate analysis, only elevated levels of IL-8 were independently associated with a higher risk of progression during first-line treatment and mortality. In conclusion, the results of our study suggest that cytokine expression varies according to the molecular subtype of PDAC and that cytokines also play a relevant role in patient prognosis.
Collapse
Affiliation(s)
- Laura Gutierrez-Sainz
- Medical Oncology Department, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Victoria Heredia-Soto
- Translational Oncology Research Laboratory, Biomedical Research Institute, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), 28029 Madrid, Spain
| | | | - María Gema Crespo Sánchez
- Clinical Analysis Department, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - María Gemma Serrano-Olmedo
- Clinical Analysis Department, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Marta Molero-Luis
- Clinical Analysis Department, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Itsaso Losantos-García
- Biostatistics Department, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Ismael Ghanem
- Medical Oncology Department, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Pablo Pérez-Wert
- Medical Oncology Department, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Ana Custodio
- Medical Oncology Department, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Marta Mendiola
- Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Pathology and Therapeutic Targets Lab, Pathology Department, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Jaime Feliu
- Medical Oncology Department, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), 28029 Madrid, Spain
- Cátedra UAM-AMGEN, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
7
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
8
|
Mejia-Garcia A, Bonilla DA, Ramirez CM, Escobar-Díaz FA, Combita AL, Forero DA, Orozco C. Genes and Pathways Involved in the Progression of Malignant Pleural Mesothelioma: A Meta-analysis of Genome-Wide Expression Studies. Biochem Genet 2024; 62:352-370. [PMID: 37347449 DOI: 10.1007/s10528-023-10426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive neoplasm of the pleural tissue that lines the lungs and is mainly associated with long latency from asbestos exposure. This tumor has no effective therapeutic opportunities nowadays and has a very low five-year survival rate. In this sense, identifying molecular events that trigger the development and progression of this tumor is highly important to establish new and potentially effective treatments. We conducted a meta-analysis of genome-wide expression studies publicly available at the Gene Expression Omnibus (GEO) and ArrayExpress databases. The differentially expressed genes (DEGs) were identified, and we performed functional enrichment analysis and protein-protein interaction networks (PPINs) to gain insight into the biological mechanisms underlying these genes. Additionally, we constructed survival prediction models for selected DEGs and predicted the minimum drug inhibition concentration of anticancer drugs for MPM. In total, 115 MPM tumor transcriptomes and 26 pleural tissue controls were analyzed. We identified 1046 upregulated DEGs in the MPM samples. Cellular signaling categories in tumor samples were associated with the TNF, PI3K-Akt, and AMPK pathways. The inflammatory response, regulation of cell migration, and regulation of angiogenesis were overrepresented biological processes. Expression of SOX17 and TACC1 were associated with reduced survival rates. This meta-analysis identified a list of DEGs in MPM tumors, cancer-related signaling pathways, and biological processes that were overrepresented in MPM samples. Some therapeutic targets to treat MPM are suggested, and the prognostic potential of key genes is shown.
Collapse
Affiliation(s)
- Alejandro Mejia-Garcia
- Molecular Genetics Research Group (GENMOL), Universidad de Antioquia, Medellín, Colombia
| | - Diego A Bonilla
- Research Division, Dynamical Business & Science Society - DBSS International SAS, Bogotá, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería, Colombia
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Claudia M Ramirez
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Fabio A Escobar-Díaz
- Public Health and Epidemiology Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Alba Lucia Combita
- Cancer Biology Research Group, Instituto Nacional de Cancerología, Bogotá, Colombia
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego A Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
- Professional Program in Respiratory Therapy, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Carlos Orozco
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia.
- Professional Program in Surgical Instrumentation, Professional Program in Optometry and Technical Program in Radiology and Diagnostic Imaging, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia.
| |
Collapse
|
9
|
Yang Y, Zhang Y, Ren Y, He Z, Cao W, Liu Y, Ren J, Wang Y, Wang G, Fu Y, Hou J. Characterization and function of Japanese flounder (Paralichthys olivaceus) slc2a6 in response to lymphocystis disease virus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109150. [PMID: 37838208 DOI: 10.1016/j.fsi.2023.109150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Slc2a6 is a member of the slc2 family (solute carrier 2 family) and previous reports have indicated its involvement in the inflammatory response. Slc2a6 is regulated by the NF-ĸB signaling pathway. This study investigated the differential expression of slc2a6 in the early embryonic development of Japanese flounder, revealing that the early gastrula stage had the highest level of slc2a6 expression. Moreover, slc2a6 expression was increased in vitro after stimulation by lymphocystis disease virus (LCDV), and in vivo experiments also showed significantly elevated levels in the spleen and muscle tissues following LCDV stimulation. Subcellular localization revealed that Slc2a6 was expressed in both the nucleus and cytoplasm of cells. The pcDNA3.1-slc2a6 overexpression plasmid was successfully constructed; the si-slc2a6 interfering strand was screened and samples were collected. The expression of NF-ĸB signaling pathway-related genes il-1β, il-6, nf-ĸb, and tnf-α was evaluated in overexpressed, silenced, and LCDV-stimulated samples. The results showed that slc2a6 is involved in viral regulation in Japanese flounder by regulating innate immune responses.
Collapse
Affiliation(s)
- Yucong Yang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yitong Zhang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yuqin Ren
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Zhongwei He
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Wei Cao
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yufeng Liu
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Jiangong Ren
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yufen Wang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Guixing Wang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jilun Hou
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China.
| |
Collapse
|
10
|
Xulu KR, Nweke EE, Augustine TN. Delineating intra-tumoral heterogeneity and tumor evolution in breast cancer using precision-based approaches. Front Genet 2023; 14:1087432. [PMID: 37662839 PMCID: PMC10469897 DOI: 10.3389/fgene.2023.1087432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
The burden of breast cancer continues to increase worldwide as it remains the most diagnosed tumor in females and the second leading cause of cancer-related deaths. Breast cancer is a heterogeneous disease characterized by different subtypes which are driven by aberrations in key genes such as BRCA1 and BRCA2, and hormone receptors. However, even within each subtype, heterogeneity that is driven by underlying evolutionary mechanisms is suggested to underlie poor response to therapy, variance in disease progression, recurrence, and relapse. Intratumoral heterogeneity highlights that the evolvability of tumor cells depends on interactions with cells of the tumor microenvironment. The complexity of the tumor microenvironment is being unraveled by recent advances in screening technologies such as high throughput sequencing; however, there remain challenges that impede the practical use of these approaches, considering the underlying biology of the tumor microenvironment and the impact of selective pressures on the evolvability of tumor cells. In this review, we will highlight the advances made thus far in defining the molecular heterogeneity in breast cancer and the implications thereof in diagnosis, the design and application of targeted therapies for improved clinical outcomes. We describe the different precision-based approaches to diagnosis and treatment and their prospects. We further propose that effective cancer diagnosis and treatment are dependent on unpacking the tumor microenvironment and its role in driving intratumoral heterogeneity. Underwriting such heterogeneity are Darwinian concepts of natural selection that we suggest need to be taken into account to ensure evolutionarily informed therapeutic decisions.
Collapse
Affiliation(s)
- Kutlwano Rekgopetswe Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanya Nadine Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Attiq A, Afzal S. Trinity of inflammation, innate immune cells and cross-talk of signalling pathways in tumour microenvironment. Front Pharmacol 2023; 14:1255727. [PMID: 37680708 PMCID: PMC10482416 DOI: 10.3389/fphar.2023.1255727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Unresolved inflammation is a pathological consequence of persistent inflammatory stimulus and perturbation in regulatory mechanisms. It increases the risk of tumour development and orchestrates all stages of tumorigenesis in selected organs. In certain cancers, inflammatory processes create the appropriate conditions for neoplastic transformation. While in other types, oncogenic changes pave the way for an inflammatory microenvironment that leads to tumour development. Of interest, hallmarks of tumour-promoting and cancer-associated inflammation are striking similar, sharing a complex network of stromal (fibroblasts and vascular cells) and inflammatory immune cells that collectively form the tumour microenvironment (TME). The cross-talks of signalling pathways initially developed to support homeostasis, change their role, and promote atypical proliferation, survival, angiogenesis, and subversion of adaptive immunity in TME. These transcriptional and regulatory pathways invariably contribute to cancer-promoting inflammation in chronic inflammatory disorders and foster "smouldering" inflammation in the microenvironment of various tumour types. Besides identifying common target sites of numerous cancer types, signalling programs and their cross-talks governing immune cells' plasticity and functional diversity can be used to develop new fate-mapping and lineage-tracing mechanisms. Here, we review the vital molecular mechanisms and pathways that establish the connection between inflammation and tumour development, progression, and metastasis. We also discussed the cross-talks between signalling pathways and devised strategies focusing on these interaction mechanisms to harness synthetic lethal drug combinations for targeted cancer therapy.
Collapse
Affiliation(s)
- Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Sheryar Afzal
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
12
|
Rodriguez-Perdigon M, Haeni L, Rothen-Rutishauser B, Rüegg C. Dual CSF1R inhibition and CD40 activation demonstrates anti-tumor activity in a 3D macrophage- HER2 + breast cancer spheroid model. Front Bioeng Biotechnol 2023; 11:1159819. [PMID: 37346794 PMCID: PMC10281737 DOI: 10.3389/fbioe.2023.1159819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
The complex interaction between tumor-associated macrophages (TAMs) and tumor cells through soluble factors provides essential cues for breast cancer progression. TAMs-targeted therapies have shown promising clinical therapeutical potential against cancer progression. The molecular mechanisms underlying the response to TAMs-targeted therapies depends on complex dynamics of immune cross-talk and its understanding is still incomplete. In vitro models are helpful to decipher complex responses to combined immunotherapies. In this study, we established and characterized a 3D human macrophage-ER+ PR+ HER2+ breast cancer model, referred to as macrophage-tumor spheroid (MTS). Macrophages integrated within the MTS had a mixed M2/M1 phenotype, abrogated the anti-proliferative effect of trastuzumab on tumor cells, and responded to IFNγ with increased M1-like polarization. The targeted treatment of MTS with a combined CSF1R kinase inhibitor and an activating anti-CD40 antibody increased M2 over M1 phenotype (CD163+/CD86+ and CD206+/CD86+ ratio) in time, abrogated G2/M cell cycle phase transition of cancer cells, promoted the secretion of TNF-α and reduced cancer cell viability. In comparison, combined treatment in a 2D macrophage-cancer cell co-culture model reduced M2 over M1 phenotype and decreased cancer cell viability. Our work shows that this MTS model is responsive to TAMs-targeted therapies, and may be used to study the response of ER+ PR+ HER2+ breast cancer lines to novel TAM-targeting therapies.
Collapse
Affiliation(s)
- Manuel Rodriguez-Perdigon
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laetitia Haeni
- Adolphe Merkle Institute, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
13
|
Wang DY, Ohnuma S, Suzuki H, Ishida M, Ishii K, Hirosawa T, Hirashima T, Murakami M, Kobayashi M, Kudoh K, Haneda S, Musha H, Naitoh T, Unno M. Infliximab Inhibits Colitis Associated Cancer in Model Mice by Downregulating Genes Associated with Mast Cells and Decreasing Their Accumulation. Curr Issues Mol Biol 2023; 45:2895-2907. [PMID: 37185713 PMCID: PMC10136890 DOI: 10.3390/cimb45040189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Inflammatory bowel diseases (IBDs), such as Crohn’s disease or ulcerative colitis, can be treated with anti TNF-alpha (TNF-α) antibodies (Abs), but they also put patients with IBDs at risk of cancer. We aimed to determine whether the anti TNF-α Ab induces colon cancer development in vitro and in vivo, and to identify the genes involved in colitis-associated cancer. We found that TNF-α (50 ng/mL) inhibited the proliferation, migration, and invasion of HCT8 and COLO205 colon cancer cell lines and that anti TNF-α Ab neutralized TNF-α inhibition in vitro. The effects of anti TNF-α Ab, infliximab (10 mg/kg) were investigated in mouse models of colitis-associated cancer induced by intraperitoneally injected azoxymethane (AOM: 10 mg/kg)/orally administered dextran sodium sulfate (DSS: 2.5%) (AOM/DSS) in vivo. Infliximab significantly attenuated the development of colon cancer in these mice. Microarray analyses and RT-qPCR revealed that mast cell protease 1, mast cell protease 2, and chymase 1 were up-regulated in cancer tissue of AOM/DSS mice; however, those mast cell related genes were downregulated in cancer tissue of AOM/DSS mice with infliximab. These results suggested that mast cells play a pivotal role in the development of cancer associated with colitis in AOM/DSS mice.
Collapse
Affiliation(s)
- Dan-Yang Wang
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Shinobu Ohnuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Hideyuki Suzuki
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Masaharu Ishida
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Kentaro Ishii
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takashi Hirosawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Tomoaki Hirashima
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Megumi Murakami
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Minoru Kobayashi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Katsuyoshi Kudoh
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Sho Haneda
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Hiroaki Musha
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takeshi Naitoh
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
14
|
Chen X, Liu X, Cai D, Wang W, Cui C, Yang J, Xu X, Li Z. Sequencing-based network analysis provides a core set of genes for understanding hemolymph immune response mechanisms against Poly I:C stimulation in Amphioctopus fangsiao. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108544. [PMID: 36646339 DOI: 10.1016/j.fsi.2023.108544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Aquatic viruses can spread rapidly and widely in seawater for their high infective ability. Polyinosinic-polycytidylic acid (Poly I:C), a viral dsRNA analog, is an immunostimulant that has been proved to activate various immune responses of immune cells in invertebrate. Hemolymph is a critical site that host immune response in invertebrates, and its transcriptome information obtained from Amphioctopus fangsiao stimulated by Poly I:C is crucial for understanding the antiviral molecular mechanisms of this species. In this study, we analyzed gene expression data in A. fangsiao hemolymph tissue within 24 h under Poly I:C stimulation and found 1082 and 299 differentially expressed genes (DEGs) at 6 and 24 h, respectively. Union set (1,369) DEGs were selected for subsequent analyses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were carried out for identifying DEGs related to immunity. Several significant immune-related terms and pathways, such as toll-like receptor signaling pathways term, inflammatory response term, TNF signaling pathway, and chemokine signaling pathway were identified. A protein-protein interaction (PPI) network was constructed for examining the relationships among immune-related genes. Finally, 12 hub genes, including EGFR, ACTG1, MAP2K1, and other nine hub genes, were identified based on the KEGG enrichment analysis and PPI network. The quantitative RT-PCR (qRT-PCR) was used to verify the expression profile of 12 hub genes. This research provides a reference for solving the problem of high mortality of A. fangsiao and other mollusks and provides a reference for the future production of some disease-resistant A. fangsiao.
Collapse
Affiliation(s)
- Xipan Chen
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Dequan Cai
- Weihai Marine Development Research Institute, Weihai, 264200, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Cuiju Cui
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
15
|
Rybchenko VS, Aliev TK, Panina AA, Kirpichnikov MP, Dolgikh DA. Targeted Cytokine Delivery for Cancer Treatment: Engineering and Biological Effects. Pharmaceutics 2023; 15:pharmaceutics15020336. [PMID: 36839658 PMCID: PMC9960319 DOI: 10.3390/pharmaceutics15020336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Anti-tumor properties of several cytokines have already been investigated in multiple experiments and clinical trials. However, those studies evidenced substantial toxicities, even at low cytokine doses, and the lack of tumor specificity. These factors significantly limit clinical applications. Due to their high specificity and affinity, tumor-specific monoclonal antibodies or their antigen-binding fragments are capable of delivering fused cytokines to tumors and, therefore, of decreasing the number and severity of side effects, as well as of enhancing the therapeutic index. The present review surveys the actual antibody-cytokine fusion protein (immunocytokine) formats, their targets, mechanisms of action, and anti-tumor and other biological effects. Special attention is paid to the formats designed to prevent the off-target cytokine-receptor interactions, potentially inducing side effects. Here, we describe preclinical and clinical data and the efficacy of the antibody-mediated cytokine delivery approach, either as a single therapy or in combination with other agents.
Collapse
Affiliation(s)
- Vladislav S Rybchenko
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Teimur K Aliev
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anna A Panina
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitry A Dolgikh
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
16
|
Ortega-Rivera OA, Gallegos-Alcalá P, Jiménez M, Quintanar JL, Torres-Juarez F, Rivas-Santiago B, del Toro-Arreola S, Salinas E. Inhibition of Tumor Growth and Metastasis by Newcastle Disease Virus Strain P05 in a Breast Cancer Mouse Model. J Breast Cancer 2023; 26:186-200. [PMID: 37051644 PMCID: PMC10139849 DOI: 10.4048/jbc.2023.26.e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/16/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
PURPOSE Conventional therapies and surgery remain the standard treatment for breast cancer. However, combating the eventual development of metastasis is still a challenge. Newcastle disease virus (NDV) is one of the various species of viruses under clinical evaluation as a vector for oncolytic, gene-, and immune-stimulating therapies. The purpose of this study was to evaluate the antitumor activity of a recombinant NDV (rNDV-P05) in a breast cancer murine model. METHODS Tumors were induced by injecting the cellular suspension (4T1 cell line) subcutaneously. The virus strain P05 was applied three times at intervals of seven days, starting seven days after tumor induction, and was completed 21 days later. Determination of tumor weight, spleen index, and lung metastasis were done after sacrificing the mice. Serum levels of interferon (IFN)-α, IFN-γ, tumor necrosis factor (TNF)-α, and TNF-related apoptosis-inducing ligand (TRAIL) were quantified by enzyme-linked immunosorbent assay. CD8+ infiltrated cells were analyzed by immunofluorescence. RESULTS rNDV-P05 showed a route-of-administration-dependent effect, demonstrating that the systemic administration of the virus significantly reduces the tumor mass and volume, spleen index, and abundance of metastatic clonogenic colonies in lung tissue, and increases the inhibition rate of the tumor. The intratumoral administration of rNDV-P05 was ineffective for all the parameters evaluated. Antitumor and antimetastatic capability of rNDV-P05 is mediated, at least partially, through its immune-stimulatory effect on the upregulation of TNF-α, TRAIL, IFN-α, and IFN-γ, and its ability to recruit CD8+ T cells into tumor tissue. CONCLUSION Systemic treatment with rNDV-P05 decreases the tumoral parameters in the breast cancer murine model.
Collapse
Affiliation(s)
- Oscar Antonio Ortega-Rivera
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
- Department of NanoEngineering, University of California San Diego, La Jolla, USA
| | - Pamela Gallegos-Alcalá
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Mariela Jiménez
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - J. Luis Quintanar
- Department of Physiology and Pharmacology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Flor Torres-Juarez
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security (IMSS), Zacatecas, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security (IMSS), Zacatecas, Mexico
| | - Susana del Toro-Arreola
- Department of Physiology, CUCS, University of Guadalajara, Guadalajara, Mexico
- Institute of Research in Chronic Degenerative Diseases, Department of Molecular Biology and Genomic, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Eva Salinas
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
17
|
Bhat IA, Mir IR, Malik GH, Mir JI, Dar TA, Nisar S, Naik NA, Sabah ZU, Shah ZA. Comparative study of TNF-α and vitamin D reveals a significant role of TNF-α in NSCLC in an ethnically conserved vitamin D deficient population. Cytokine 2022; 160:156039. [DOI: 10.1016/j.cyto.2022.156039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022]
|
18
|
Hassan NF, Hassan AH, El-Ansary MR. Cytokine modulation by etanercept ameliorates metabolic syndrome and its related complications induced in rats administered a high-fat high-fructose diet. Sci Rep 2022; 12:20227. [PMID: 36418417 PMCID: PMC9684438 DOI: 10.1038/s41598-022-24593-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to investigate the effect of etanercept (ETA)-an anti-tumor necrosis factor α (TNF-α) monoclonal antibody-on metabolic disorders such as obesity, hypertension, dyslipidemia, and insulin resistance associated with the metabolic syndrome (MS). MS was induced in rats via high-fat high-fructose (HFHF) administration for 8 weeks. Rats were divided into three groups: negative control, HFHF model, and ETA-treated groups [HFHF + ETA (0.8 mg/kg/twice weekly, subcutaneously) administered in the last 4 weeks]. ETA effectively diminished the prominent features of MS via a significant reduction in the percent body weight gain along with the modulation of adipokine levels, resulting in a significant elevation of serum adiponectin consistent with TNF-α and serum leptin level normalization. Moreover, ETA enhanced dyslipidemia and the elevated blood pressure. ETA managed the prominent features of MS and its associated complications via the downregulation of the hepatic inflammatory pathway that induces nonalcoholic steatohepatitis (NASH)-from the expression of Toll-like receptor 4, nuclear factor kappa B, and TNF-α until that of transforming growth factor-in addition to significant improvements in glucose utilization, insulin sensitivity, and liver function parameter activity and histopathological examination. ETA was effective for the treatment of all prominent features of MS and its associated complications, such as type II diabetes mellitus and NASH.
Collapse
Affiliation(s)
- Noha F. Hassan
- grid.440876.90000 0004 0377 3957Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Azza H. Hassan
- grid.7776.10000 0004 0639 9286Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mona R. El-Ansary
- grid.440876.90000 0004 0377 3957Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
19
|
Gupta K, Desai R, Jawade K, Jagtap DD, Modi D, Jain R, Dandekar P. Determination of functional similarity of biosimilar H9P2S from an investigational CHO clone with Adalimumab. 3 Biotech 2022; 12:315. [PMID: 36276478 PMCID: PMC9547763 DOI: 10.1007/s13205-022-03384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Biosimilars, which are replicas of innovator pharmaceuticals, constitute the most significant share of biopharmaceutical products. These products are associated with structural and manufacturing complexities and are hence considered as similar to innovator drugs. Adalimumab is a monoclonal antibody that has been approved by the US FDA for blocking TNF-α. Adalimumab, also known as Humira, is preferred over other anti-TNF-α mAbs because of its lower immunogenicity and enhanced clinical efficacy. As cost-effective mAb development is still a challenging area, we developed an in-house stable CHO-K1 cell line for the production of recombinant monoclonal mAb against TNF-α. This clone yielded H9P2S, as a biosimilar against TNF-α, for which several functional assays were conducted to prove its biosimilarity to Adalimumab. Two batches of H9P2S and their subsequent dilutions were compared with Adalimumab. H9P2S and Adalimumab showed highly similar TNF-α binding and neutralizing activities, confirming the suitability of our clone for yielding biosimilar drugs. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03384-z.
Collapse
Affiliation(s)
- Kritika Gupta
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019 India
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400019 India
| | - Ranjeet Desai
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019 India
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400019 India
| | - Ketki Jawade
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012 India
| | - Dhanashree D. Jagtap
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012 India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012 India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400019 India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019 India
| |
Collapse
|
20
|
Gong L, Yang Z, Zhang F, Gao W. Cytokine conjugates to elastin-like polypeptides. Adv Drug Deliv Rev 2022; 190:114541. [PMID: 36126792 DOI: 10.1016/j.addr.2022.114541] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/25/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
Cytokines are a group of pleiotropic proteins which are crucial for various biological processes and useful as therapeutics. However, they usually suffer from the poor stability, extreme short circulation half-life, difficulty in high-yield and large-scale production and side effects, which greatly restricts their applications. Over the past decades, conjugation of cytokines with elastin-like polypeptides (ELPs), a type of promising biomaterials, have showed great potential in solving these challenges due to ELP's thermal responsiveness, excellent biocompatibility and biodegradability, non-immunogenicity, and ease of design and control at the genetic level. This review presents recent progress in the design and production of a variety of ELP conjugated cytokines for extended circulation, enhanced stability, increased soluble protein expression, simplified purification, improved drug delivery, and controlled release. Notably, the unique thermoresponsive properties of cytokine-ELP conjugates make it possible to self-assemble into micelles with drastically extended circulatory half-life for targeted delivery or to in situ form drug depots for topical administration and controlled release. The challenges and issues in the emerging field are further discussed and the future directions are pointed out at the end of this review.
Collapse
Affiliation(s)
- Like Gong
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China; Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China; Biomedical Engineering Department, Peking University, Beijing 100191, China; Peking University International Cancer Institute, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Zhaoying Yang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China; Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China; Biomedical Engineering Department, Peking University, Beijing 100191, China; Peking University International Cancer Institute, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Fan Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China; Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China; Biomedical Engineering Department, Peking University, Beijing 100191, China; Peking University International Cancer Institute, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Weiping Gao
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China; Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China; Biomedical Engineering Department, Peking University, Beijing 100191, China; Peking University International Cancer Institute, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing 100191, China.
| |
Collapse
|
21
|
Abdellatif AAH, Abdelfattah A, Bouazzaoui A, Osman SK, Al-Moraya IS, Showail AMS, Alsharidah M, Aboelela A, Al Rugaie O, Faris TM, Tawfeek HM. Silver Nanoparticles Stabilized by Poly (Vinyl Pyrrolidone) with Potential Anticancer Activity towards Prostate Cancer. Bioinorg Chem Appl 2022; 2022:6181448. [PMID: 36248627 PMCID: PMC9553549 DOI: 10.1155/2022/6181448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Tumor necrosis factor (TNF-α) and inflammatory cytokine (IL-6) play a vital role in various cellular incidents such as the proliferation and death of cells during carcinogenesis. Hence, regulation of these biomarkers could be a promising tool for controlling tumor progression using nanoformulations. Silver nanoparticles-poly (vinyl pyrrolidone) (AgNPs-PVP) were prepared using the reduction of silver nitrate and stabilized with PVP. They are characterized through yield percentage, UV-VIS, FT-IR, size, charge, and morphology. The obtained AgNPs were tested for anticancer activity against prostate cancer (PC 3) and human skin fibroblast (HFS) cell lines. Moreover, biomarker-based confirmations like TNF-α and IL-6 were estimated. The synthesized AgNPs-PVP were stable, spherical in shape, with particle sizes of 122.33 ± 17.61 nm, a polydispersity index of 0.49 ± 0.07, and a negative surface charge of -19.23 ± 0.61 mV. In vitro cytotoxicity testing showed the AgNPs-PVP exhibited antiproliferation properties in PC3 in a dose-dependent manner. In addition, when compared to control cells, AgNPs-PVP has lower TNF-α with a significant value ( ∗ p < 0.05); the value reached 16.84 ± 0.71 pg/ml versus 20.81 ± 0.44 pg/ml, respectively. In addition, HSF cells showed a high level of reduction ( ∗∗∗ p < 0.001) in IL-6 production. This study suggested that AgNPs-PVP could be a possible therapeutic agent for human prostate cancer and anti-IL-6 in cancerous and noncancerous cells. Further studies will be performed to investigate the effect of AgNPs-PVP in different types of cancer.
Collapse
Affiliation(s)
- Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Qassim 51452, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed Abdelfattah
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Medical Clinic, Hematology, Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Shaaban K. Osman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Issa Saad Al-Moraya
- Clinical Toxicology, College of Medicine Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Forensic Medicine & Toxicology Center, Ministry of Health, Abha, Saudi Arabia
| | - Abdulaziz M. Saleh Showail
- Department of Urology, Khamis Mushait General Hospital, Ministry of Health, Khamis Mushait, Saudi Arabia
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ashraf Aboelela
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, P.O. Box 991, Al Qassim 51911, Saudi Arabia
| | - Tarek M. Faris
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Hesham M. Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
22
|
Metastatic triple negative breast cancer adapts its metabolism to destination tissues while retaining key metabolic signatures. Proc Natl Acad Sci U S A 2022; 119:e2205456119. [PMID: 35994654 PMCID: PMC9436376 DOI: 10.1073/pnas.2205456119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite recent therapeutic progress in cancer treatment, the metastatic establishment of cancers at distant organs remains the major cause of mortality in patients with solid tumors. The past decade has brought several advances in the understanding of metabolic phenotypes of tumors that are different from their adjacent nonmalignant tissues. Just recently, attention has been drawn to the fact that metastasizing tumor cells can display dynamic metabolic changes to survive in their changing microenvironment during the metastatic cascade. Here, we perform a comprehensive investigation of the extent of adaptation of metastatic triple negative breast cancer (TNBC) cells to their new microenvironment in the distant tissues. This study could reveal new therapeutic windows for developing more effective treatments of metastatic tumors. Triple negative breast cancer (TNBC) metastases are assumed to exhibit similar functions in different organs as in the original primary tumor. However, studies of metastasis are often limited to a comparison of metastatic tumors with primary tumors of their origin, and little is known about the adaptation to the local environment of the metastatic sites. We therefore used transcriptomic data and metabolic network analyses to investigate whether metastatic tumors adapt their metabolism to the metastatic site and found that metastatic tumors adopt a metabolic signature with some similarity to primary tumors of their destinations. The extent of adaptation, however, varies across different organs, and metastatic tumors retain metabolic signatures associated with TNBC. Our findings suggest that a combination of anti-metastatic approaches and metabolic inhibitors selected specifically for different metastatic sites, rather than solely targeting TNBC primary tumors, may constitute a more effective treatment approach.
Collapse
|
23
|
Qian Y, Mao M, Nian F. The Effect of TNF- α on CHD and the Relationship between TNF- α Antagonist and CHD in Rheumatoid Arthritis: A Systematic Review. Cardiol Res Pract 2022; 2022:6192053. [PMID: 36060429 PMCID: PMC9433296 DOI: 10.1155/2022/6192053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) plays an important role in coronary heart disease (CHD), a chronic inflammatory process. Meanwhile, this pro-inflammatory factor is also involved in the pathogenesis of autoimmune diseases such as rheumatoid arthritis (RA). Patients with RA correspond to a higher risk of CHD. TNF-α antagonist, one of the main treatments for RA, may reduce the risk of CHD in patients with RA. This review summarizes the pathogenesis of TNF-α in CHD and discusses the relationship between TNF-α antagonist and CHD in patients with RA.
Collapse
Affiliation(s)
- Yezhou Qian
- Department of Cardiology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Menghui Mao
- Department of Cardiology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Feige Nian
- Department of Rheumatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
24
|
Li Y, Li X, Tan Z. Basic Traditional Chinese Medicinal Compound for Adjuvant Treatment of Helicobacter pylori-Related Gastritis: Implication for Anti- H. pylori-Related Gastritis Drug Discovery. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study was aimed at evaluating the efficacy of traditional Chinese medicine (TCM) in the adjuvant treatment of Helicobacter pylori-associated gastritis (HPAG) and exploring the molecular mechanism underlying the action of the basic TCM compounds against HPAG. Eight representative Chinese and British databases were combed for pertinent literature. In light of the basic principle of evidence-based medicine, this work rigorously stuck to the inclusion and exclusion of criteria so as to plump for qualified articles. Also, the data mining method was adopted to help determine the basic TCM compound for HPAG treatment. Furthermore, a network pharmacology-based strategy was used to uncover the underlying mechanisms of the basic TCM compound against HPAG. Ultimately, molecular docking was used for preliminary verification. TCM combined with triple or quadruple therapy against HPAG possessed more advantages in improving the total effective rate and H. pylori eradication rate than triple or quadruple therapy alone. The basic TCM plant materials against HPAG consisted of Citrus reticulata Blanco, Glycyrrhiza uralensis Fisch, Pinellia ternata (Thunb.) Breit, Coptis chinensis Franch, and Poria cocos (Schw.) Wolf. Quercetin, kaempferol, naringenin, baicalein, nobiletin, and hederagenin were determined as the key active ingredients of the basic TCM preparation against HPAG. Moreover, these ingredients played a therapeutic role by acting on AKT1, TP53, interleukin (IL)-6, VEGFA, CASP3, MAPK3, JUN, TNF, and MAPK8 via Pathways in cancer, PI3K-Akt signaling pathway, TNF signaling pathway, and MAPK signaling pathway. The results of molecular docking indicated that the key ingredients could bind stably with the core targets. The efficacy of the TCM in the adjuvant treatment of HPAG is worthy of affirmation. Compatible use of the key ingredients of the basic TCM compound is a novel idea of drug research with profound clinical significance and research value in the development of anti- H. pylori drugs.
Collapse
Affiliation(s)
- Yuli Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
25
|
Serpeloni JM, Oliveira LCBD, Fujiike A, Tuttis K, Ribeiro DL, Camara MBP, Rocha CQD, Cólus IMDS. Flavone cirsimarin impairs cell proliferation, migration, and invasion in MCF-7 cells grown in 2D and 3D models. Toxicol In Vitro 2022; 83:105416. [PMID: 35710092 DOI: 10.1016/j.tiv.2022.105416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 01/04/2023]
Abstract
The present study investigates the mechanisms underlying the in vitro antitumoral activity of cirsimarin (CIR 10 to 320 μM), a flavone extracted from the aerial parts of Scoparia dulcis L., on MCF-7 cells cultured in 2D and multicellular tumor spheroids (3D). CIR (from 40 μM) decreased cell viability in the resazurin assay and colony formation in the 2D model. In the same way, in the 3D model, CIR (from 40 μM) induced cell death (triple staining assay) and decreased spheroid integrity after 16 days with no induction of intracellular reactive species (CM-H2DCFDA). In 2D, CIR decreased the invasion (transwell) and horizontal migration (wound healing), while in 3D, CIR diminished cell migration (ECM® gel) and induced DNA damage (comet assay) possibly related to cell death. CIR mediated antitumoral effects in 3D spheroids by negative modulation of genes associated with cell proliferation (CCND1, CCNA2, CDK2, CDK4, and TNF) and death (BCL-XL, BAX, CASP9, and BIRC5). BIRC5 and CDKs inhibitors have been proposed as versatile anticancer drugs, which makes our results quite interesting. TNF negative modulation may also be related to the downregulation of MMP9 and MMP11 and anti-migration/invasion of MCF-7 cells cultured in 2D and 3D models. These are relevant properties for long-term strategies to avoid metastasis and improve the prognosis of breast cancer.
Collapse
Affiliation(s)
- Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | | | - Andressa Fujiike
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| | - Katiuska Tuttis
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Marcos Bispo Pinheiro Camara
- Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil
| | - Claudia Quintino da Rocha
- Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| |
Collapse
|
26
|
Verma S, Singh A, Yadav G, Kushwaha R, Ali W, Verma SP, Singh U. Serum Tumor Necrosis Factor-Alpha Levels in Acute Leukemia and Its Prognostic Significance. Cureus 2022; 14:e24835. [PMID: 35547942 PMCID: PMC9090230 DOI: 10.7759/cureus.24835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction Tumor necrosis factor-alpha (TNF-α) is a pleiotropic cytokine that facilitates malignant cells in immune evasion, survival, and treatment resistance by generating a favorable milieu for them. It is shown to be ectopically produced by malignant/leukemic and immune cells in the tumor microenvironment, providing a tumor-supportive environment and playing an important part in the establishment and progression of malignant cells. It is linked to hyperleukocytosis, high blast count, and poor clinical outcomes in acute leukemia (AL). Considering the varied role and different expression patterns of tumor necrosis factor-alpha in acute leukemia and its clinical relevance, the present study was planned to monitor the level of tumor necrosis factor-alpha in patients with acute leukemia and its correlation with disease outcome. The aim of this study was to monitor the level of tumor necrosis factor-alpha in patients with acute leukemia at the time of diagnosis and after induction chemotherapy. Material and methods The study included cases classified as acute leukemia based on morphological examination, bone marrow analysis, and flow cytometry. In all patients with acute leukemia (n = 90) and controls (n = 10), the serum tumor necrosis factor-alpha level was measured using a Diaclone Human ELISA kit (Diaclone, Besancon, France) (solid phase sandwich ELISA) at diagnosis and after induction chemotherapy. Results Tumor necrosis factor-alpha levels were substantially higher in T-acute lymphoblastic leukemia (T-ALL) cases, followed by acute myeloid leukemia (AML) and B-acute lymphoblastic leukemia (B-ALL), at the time of diagnosis, compared to the control. A significant reduction in serum tumor necrosis factor-alpha level was seen in patients with acute leukemia after induction phase chemotherapy (P < 0.05). Tumor necrosis factor-alpha levels were considerably reduced (P < 0.001) in the majority of acute leukemia cases after the induction phase, while high tumor necrosis factor-alpha levels were positively correlated with incomplete remission status in the remaining cases. Conclusion Tumor necrosis factor-alpha is involved in the progression of acute leukemia and its relapse. High levels of tumor necrosis factor-alpha are linked to leukocytosis, high blast counts, and worse survival in patients with acute leukemia. Monitoring of tumor necrosis factor-alpha may be helpful in patients with acute leukemia in view of available antitumor necrosis factor-alpha therapy.
Collapse
|
27
|
Kaur H, Ghorai SM. Role of Cytokines as Immunomodulators. IMMUNOMODULATORS AND HUMAN HEALTH 2022:371-414. [DOI: 10.1007/978-981-16-6379-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Das D, Karthik N, Taneja R. Crosstalk Between Inflammatory Signaling and Methylation in Cancer. Front Cell Dev Biol 2021; 9:756458. [PMID: 34901003 PMCID: PMC8652226 DOI: 10.3389/fcell.2021.756458] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
Inflammation is an intricate immune response against infection and tissue damage. While the initial immune response is important for preventing tumorigenesis, chronic inflammation is implicated in cancer pathogenesis. It has been linked to various stages of tumor development including transformation, proliferation, angiogenesis, and metastasis. Immune cells, through the production of inflammatory mediators such as cytokines, chemokines, transforming growth factors, and adhesion molecules contribute to the survival, growth, and progression of the tumor in its microenvironment. The aberrant expression and secretion of pro-inflammatory and growth factors by the tumor cells result in the recruitment of immune cells, thus creating a mutual crosstalk. The reciprocal signaling between the tumor cells and the immune cells creates and maintains a successful tumor niche. Many inflammatory factors are regulated by epigenetic mechanisms including DNA methylation and histone modifications. In particular, DNA and histone methylation are crucial forms of transcriptional regulation and aberrant methylation has been associated with deregulated gene expression in oncogenesis. Such deregulations have been reported in both solid tumors and hematological malignancies. With technological advancements to study genome-wide epigenetic landscapes, it is now possible to identify molecular mechanisms underlying altered inflammatory profiles in cancer. In this review, we discuss the role of DNA and histone methylation in regulation of inflammatory pathways in human cancers and review the merits and challenges of targeting inflammatory mediators as well as epigenetic regulators in cancer.
Collapse
Affiliation(s)
- Dipanwita Das
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nandini Karthik
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
The Role of Tumor Necrosis Factor-α (TNF-α) Polymorphisms in Gastric Cancer: a Meta-Analysis. J Gastrointest Cancer 2021; 53:756-769. [PMID: 34478034 DOI: 10.1007/s12029-021-00688-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Tumor necrosis factor alpha (TNF-α) is an inflammatory cytokine which may play a role in the development of gastric cancer (GC). This study aimed to investigate the association of five TNF-α polymorphisms including TNF-α-857, TNF-α-1031, TNF-α-863, TNF-α-308, and TNF-α-238 polymorphisms with GC risk. METHODS All eligible case-control studies were collected by searching PubMed, Scopus, and Web of Science. The association of the risk of GC with TNF-α polymorphisms was estimated using odds ratio (OR) and 95% confidence interval (CI). Heterogeneity was assessed via Cochrane's Q and I2 analyses. RESULTS A total of 46 publications involving 16, 715 cases with GC and 27, 998 controls were recruited. The study revealed a significant association for TNF-α 308 (recessive model: OR = 0.646, P = 0.035), TNF-α-1031 (homozygote model: OR = 1.584, P = 0.027), and TNF-α-857 (homozygote model: OR = 1.760, P = 0.001) polymorphisms with the GC risk. The results of subgroup analysis based ethnicity found a significant association between GC risk and TNF-α-857 polymorphism in Caucasian subgroup (P = 0.005) and TNF-α-1031 polymorphism and GC risk in Asians (P = 0.018). CONCLUSIONS This study suggested that TNF-α-857 and TNF-α-1031 polymorphisms may be associated with the increased gastric cancer risk.
Collapse
|
30
|
Benoot T, Piccioni E, De Ridder K, Goyvaerts C. TNFα and Immune Checkpoint Inhibition: Friend or Foe for Lung Cancer? Int J Mol Sci 2021; 22:ijms22168691. [PMID: 34445397 PMCID: PMC8395431 DOI: 10.3390/ijms22168691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-alpha (TNFα) can bind two distinct receptors (TNFR1/2). The transmembrane form (tmTNFα) preferentially binds to TNFR2. Upon tmTNFα cleavage by the TNF-alpha-converting enzyme (TACE), its soluble (sTNFα) form is released with higher affinity for TNFR1. This assortment empowers TNFα with a plethora of opposing roles in the processes of tumor cell survival (and apoptosis) and anti-tumor immune stimulation (and suppression), in addition to angiogenesis and metastases. Its functions and biomarker potential to predict cancer progression and response to immunotherapy are reviewed here, with a focus on lung cancer. By mining existing sequencing data, we further demonstrate that the expression levels of TNF and TACE are significantly decreased in lung adenocarcinoma patients, while the TNFR1/TNFR2 balance are increased. We conclude that the biomarker potential of TNFα alone will most likely not provide conclusive findings, but that TACE could have a key role along with the delicate balance of sTNFα/tmTNFα as well as TNFR1/TNFR2, hence stressing the importance of more research into the potential of rationalized treatments that combine TNFα pathway modulators with immunotherapy for lung cancer patients.
Collapse
|
31
|
Kaur B, Mishra S, Kaur R, Kalotra S, Singh P. Rationally designed TNF-α inhibitors: Identification of promising cytotoxic agents. Bioorg Med Chem Lett 2021; 41:127982. [PMID: 33766762 DOI: 10.1016/j.bmcl.2021.127982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
Design and synthesis of new indole derivatives as tumor growth inhibiting agents via inhibiting the TNF-α is described. The preliminary results showed the inhibition of LPS induced production of NO, TNF-α and IL-6 by these compounds out of which compounds 2d and 2g exhibited appreciable cytotoxicity against the 60 cell lines panel of human cancer. The rationale behind the design of the molecules and the results of their biological studies are presented. 2009 Elsevier Ltd. All rights reserved.
Collapse
Affiliation(s)
- Baljit Kaur
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143005, India
| | - Sahil Mishra
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143005, India
| | - Ramandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, India
| | - Shikha Kalotra
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, India
| | - Palwinder Singh
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
32
|
Abstract
Immune checkpoint inhibitors (ICIs) are effective in the treatment of patients with advanced cancer and have emerged as a pillar of standard cancer care. However, their use is complicated by adverse effects known as immune-related adverse events (irAEs), including ICI-induced inflammatory arthritis. ICI-induced inflammatory arthritis is distinguished from other irAEs by its persistence and requirement for long-term treatment. TNF inhibitors are commonly used to treat inflammatory diseases such as rheumatoid arthritis, spondyloarthropathies and inflammatory bowel disease, and have also been adopted as second-line agents to treat irAEs refractory to glucocorticoid treatment. Experiencing an irAE is associated with a better antitumour response after ICI treatment. However, whether TNF inhibition can be safely used to treat irAEs without promoting cancer progression, either by compromising ICI therapy efficacy or via another route, remains an open question. In this Review, we discuss clinical and preclinical studies that address the relationship between TNF, TNF inhibition and cancer. The bulk of the evidence suggests that at least short courses of TNF inhibitors are safe for the treatment of irAEs in patients with cancer undergoing ICI therapy. Data from preclinical studies hint that TNF inhibition might augment the antitumour effect of ICI therapy while simultaneously ameliorating irAEs.
Collapse
|
33
|
Hsu CC, Li Y, Hsu CT, Cheng JT, Lin MH, Cheng KC, Chen SW. Etanercept Ameliorates Cardiac Fibrosis in Rats with Diet-Induced Obesity. Pharmaceuticals (Basel) 2021; 14:ph14040320. [PMID: 33916242 PMCID: PMC8067047 DOI: 10.3390/ph14040320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Diet-induced obesity (DIO) is considered the main risk factor for cardiovascular diseases. Increases in the plasma levels of tumor necrosis factor alpha (TNF-α) is associated with DIO. Etanercept, a TNF-α inhibitor, has been shown to alleviate cardiac hypertrophy. To investigate the effect of etanercept on cardiac fibrosis in DIO model, rats on high fat diet (HFD) were subdivided into two groups: the etanercept group and vehicle group. Cardiac injury was identified by classic methods, while fibrosis was characterized by histological analysis of the hearts. Etanercept treatment at 0.8 mg/kg/week twice weekly by subcutaneous injection effectively alleviates the cardiac fibrosis in HFD-fed rats. STAT3 activation seems to be induced in parallel with fibrosis-related gene expression in the hearts of HFD-fed rats. Decreased STAT3 activation plays a role in the etanercept-treated animals. Moreover, fibrosis-related genes are activated by palmitate in parallel with STAT3 activation in H9c2 cells. Etanercept may inhibit the effects of palmitate, but it is less effective than a direct inhibitor of STAT3. Direct inhibition of STAT3 activation by etanercept seems unlikely. Etanercept has the ability to ameliorate cardiac fibrosis through reduction of STAT3 activation after the inhibition of TNF-α and/or its receptor.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Department of Exercise and Health Sciences, University of Taipei, Taipei City 110, Taiwan;
- Department of Otorhinolaryngology, Taipei City Hospital, Taipei City 110, Taiwan
- Graduate Institute of Gerontology and Health Care Management, Chang Gung University of Science and Technology, Guishan, Taoyuan City 613, Taiwan;
| | - Yingxiao Li
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City 970, Taiwan;
| | - Chao-Tien Hsu
- Department of Pathology, I-Shou University Medical Center, Yanchao District, Kaohsiung City 824, Taiwan;
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Tainan City 710, Taiwan;
| | - Mang-Hung Lin
- Graduate Institute of Gerontology and Health Care Management, Chang Gung University of Science and Technology, Guishan, Taoyuan City 613, Taiwan;
| | - Kai-Chun Cheng
- Department of Pharmacy, College of Pharmacy, Tajen University, Pingtung 907, Taiwan
- Correspondence: (K.-C.C.); (S.-W.C.); Tel.: +886-8-762-4002 (K.-C.C.); +886-6-6336999 (S.-W.C.)
| | - Shang-Wen Chen
- Division of Cardiology, Chi-Mei Medical Center Liouying, Tainan City 736, Taiwan
- Correspondence: (K.-C.C.); (S.-W.C.); Tel.: +886-8-762-4002 (K.-C.C.); +886-6-6336999 (S.-W.C.)
| |
Collapse
|
34
|
Vinod Prabhu V, Elangovan P, Niranjali Devaraj S, Sakthivel KM. Targeting NF-κB mediated cell signaling pathway and inflammatory mediators by 1,2-diazole in A549 cells in vitro. ACTA ACUST UNITED AC 2021; 29:e00594. [PMID: 33598414 PMCID: PMC7868824 DOI: 10.1016/j.btre.2021.e00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 11/30/2022]
Abstract
1,2-Diazole suppresses TNF-α induced MMP-2 expression. 1,2-Diazole abrogate NF-κB activation and regulate cytokines. It exhibits potent in vitro anticancer effect against A549 cells.
Lung cancer is the leading cause of cancer deaths globally. The objective of this study was to investigate the effect of 1,2-diazole (pyrazole) as an anti-cancer drug on human non-small cell lung carcinoma A549 cells. We attempt to examine the expression level of pro-inflammatory proteins such as TNF-α, NF-κB-p65, MMP-2 and E-Cadherin which are commonly associated with an inflammatory response in epithelial cells and apoptosis in A549 cells. The LPS-induced cytokines and inflammatory mediators include TNF-α, IL-6, iNOS and COX-2 levels in A549 cells and the effect of pyrazole was studied. The present study reveals that, pyrazole inhibits A549 cells by suppressing TNF-α induced MMP-2 expression, thereby inhibiting the nuclear translocation of NF-κB-p65. Pyrazole significantly up-regulate the E-cadherin level and down-regulated MMP-2 expression that could probably preventing A549 cancer cells to invade. The study further substantiated the anti-cancer property of pyrazole by regulating the above mentioned level of LPS-induced cytokines and inflammatory mediators. The observations of the present study open a possibility for the development of an effective therapeutic agent that targets inflammatory and signaling pathway mediators to challenge human non-small cell lung carcinoma.
Collapse
Affiliation(s)
- Venugopal Vinod Prabhu
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600025, Tamil Nadu, India
- Corresponding author.
| | - Perumal Elangovan
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600025, Tamil Nadu, India
| | | | | |
Collapse
|
35
|
The Effect of Neddylation Inhibition on Inflammation-Induced MMP9 Gene Expression in Esophageal Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:ijms22041716. [PMID: 33572115 PMCID: PMC7915196 DOI: 10.3390/ijms22041716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Inhibition of the protein neddylation process by the small-molecule inhibitor MLN4924 has been recently indicated as a promising direction for cancer treatment. However, the knowledge of all biological consequences of MLN4924 for cancer cells is still incomplete. Here, we report that MLN4924 inhibits tumor necrosis factor-alpha (TNF-α)-induced matrix metalloproteinase 9 (MMP9)-driven cell migration. Using real-time polymerase chain reaction (PCR) and gelatin zymography, we found that MLN4924 inhibited expression and activity of MMP9 at the messenger RNA (mRNA) and protein levels in both resting cells and cells stimulated with TNF-α, and this inhibition was closely related to impaired cell migration. We also revealed that MLN4924, similar to TNF-α, induced phosphorylation of inhibitor of nuclear factor kappa B-alpha (IκB-α). However, contrary to TNF-α, MLN4924 did not induce IκB-α degradation in treated cells. In coimmunoprecipitation experiments, nuclear IκB-α which formed complexes with nuclear factor kappa B p65 subunit (NFκB/p65) was found to be highly phosphorylated at Ser32 in the cells treated with MLN4924, but not in the cells treated with TNF-α alone. Moreover, in the presence of MLN4924, nuclear NFκB/p65 complexes were found to be enriched in c-Jun and cyclin dependent kinase inhibitor 1 A (CDKN1A/p21) proteins. In these cells, NFκB/p65 was unable to bind to the MMP9 gene promoter, which was confirmed by the chromatin immunoprecipitation (ChIP) assay. Taken together, our findings identified MLN4924 as a suppressor of TNF-α-induced MMP9-driven cell migration in esophageal squamous cell carcinoma (ESCC), likely acting by affecting the nuclear ubiquitin–proteasome system that governs NFκB/p65 complex formation and its DNA binding activity in regard to the MMP9 promoter, suggesting that inhibition of neddylation might be a new therapeutic strategy to prevent invasion/metastasis in ESCC patients.
Collapse
|
36
|
Mercogliano MF, Bruni S, Mauro F, Elizalde PV, Schillaci R. Harnessing Tumor Necrosis Factor Alpha to Achieve Effective Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13030564. [PMID: 33540543 PMCID: PMC7985780 DOI: 10.3390/cancers13030564] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine known to have contradictory roles in oncoimmunology. Indeed, TNFα has a central role in the onset of the immune response, inducing both activation and the effector function of macrophages, dendritic cells, natural killer (NK) cells, and B and T lymphocytes. Within the tumor microenvironment, however, TNFα is one of the main mediators of cancer-related inflammation. It is involved in the recruitment and differentiation of immune suppressor cells, leading to evasion of tumor immune surveillance. These characteristics turn TNFα into an attractive target to overcome therapy resistance and tackle cancer. This review focuses on the diverse molecular mechanisms that place TNFα as a source of resistance to immunotherapy such as monoclonal antibodies against cancer cells or immune checkpoints and adoptive cell therapy. We also expose the benefits of TNFα blocking strategies in combination with immunotherapy to improve the antitumor effect and prevent or treat adverse immune-related effects.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires 1428, Argentina;
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Florencia Mauro
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Patricia Virginia Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
- Correspondence: ; Tel.: +54-11-4783-2869; Fax: +54-11-4786-2564
| |
Collapse
|
37
|
Gong K, Guo G, Beckley N, Zhang Y, Yang X, Sharma M, Habib AA. Tumor necrosis factor in lung cancer: Complex roles in biology and resistance to treatment. Neoplasia 2021; 23:189-196. [PMID: 33373873 PMCID: PMC7773536 DOI: 10.1016/j.neo.2020.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor (TNF) and its receptors are widely expressed in non-small cell lung cancer (NSCLC). TNF has an established role in inflammation and also plays a key role in inflammation-induced cancer. TNF can induce cell death in cancer cells and has been used as a treatment in certain types of cancer. However, TNF is likely to play an oncogenic role in multiple types of cancer, including NSCLC. TNF is a key activator of the transcription factor NF-κB. NF-κB, in turn, is a key effector of TNF in inflammation-induced cancer. Data from The Cancer Genome Atlas database suggest that TNF could be a biomarker in NSCLC and indicate a complex role for TNF and its receptors in NSCLC. Recent studies have reported that TNF is rapidly upregulated in NSCLC in response to targeted treatment with epidermal growth factor receptor (EGFR) inhibition, and this upregulation leads to NF-κB activation. The TNF upregulation and consequent NF-κB activation play a key role in mediating both primary and secondary resistance to EGFR inhibition in NSCLC, and a combined inhibition of EGFR and TNF can overcome therapeutic resistance in experimental models. TNF may mediate the toxic side effects of immunotherapy and may also modulate resistance to immune checkpoint inhibitors. Drugs inhibiting TNF are widely used for the treatment of various inflammatory and rheumatologic diseases and could be quite useful in combination with targeted therapy of NSCLC and other cancers.
Collapse
Affiliation(s)
- Ke Gong
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Gao Guo
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole Beckley
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yue Zhang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoyao Yang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mishu Sharma
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amyn A Habib
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; VA North Texas Health Care System, Dallas, TX, USA.
| |
Collapse
|
38
|
Xia GQ, Lei TR, Yu TB, Zhou PH. Nanocarrier-based activation of necroptotic cell death potentiates cancer immunotherapy. NANOSCALE 2021; 13:1220-1230. [PMID: 33404038 DOI: 10.1039/d0nr05832g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Even though immunological checkpoint inhibitors have demonstrated a potent anti-tumor effect in clinical practice, the low immunogenicity of the majority of tumors still results in a lower response rate and a higher resistance to mono-immunotherapy. Recent studies revealed that immunogenic cell death (ICD) augments T cell responses against some cancers, thus indicating that this combination therapy may further improve the anti-tumor immunity produced by anti-PD-1/PD-L1. Herein a robust synergetic strategy is reported to integrate the activation of necroptotic cell death and the subsequent using of immune checkpoint inhibitors. Liposomes have good biocompatibility and are widely used as drug carriers. Using liposomes as TNF-α-loaded nanoplatforms achieves in vivo tumor targeting and long-term retention in the tumor microenvironment. Tumor cells treated with TNF-α-loaded liposomes exhibited the hallmarks of ICD including the release of high mobility group box 1 (HMGB1) and lactate dehydrogenase (LDH). Additionally, the tumor cell necrosis caused by TNF-α induces the in situ release of tumor-specific antigens, thus increasing the dendritic cell (DC) activation and T cell infiltration when combined with the checkpoint blockade therapy. Collectively, significant tumor reduction is accomplishable by this synergetic strategy, in which TNF-α-loaded liposomes convert the tumor cell into an endogenous vaccine and improve the anti-tumor immunity of anti-PD-1/PD-L1.
Collapse
Affiliation(s)
- Gan-Qing Xia
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P. R. China.
| | | | | | | |
Collapse
|
39
|
Orujova IN, Azizova GI, Gafarov IA, Orujov AH. Study of correlation between biochemical indicators and radiological diagnostic parameters of breast cancer. Klin Lab Diagn 2020; 65:738-743. [PMID: 33373504 DOI: 10.18821/0869-2084-2020-65-12-738-743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this work was to study the correlation between some biochemical parameters and parameters of radiological diagnostics for early diagnosis of breast cancer. 76 patients with breast cancer were examined. In 48 of them was diagnosed breast cancer, in 28 of them was diagnosed benign breast neoplasms. The age of patients ranged from 18 to 79 years. The control group consisted of 16 healthy women. Oncological markers (CEA, CA 15-3), some pro-inflammatory and inflammatory cytokines (IL-2, IL-6, IL-8, IL-10 and TNF-α) and lactoferrin were determined in serum by using enzyme-linked immunosorbent assay method. All patients underwent ultrasound with a combination of Doppler and X-ray mammography. Ultrasound examination assessed the estimation of tumor size, contours, echogenicity, echostructure, the presence and nature of vascularization of breast tumors, and also assessed the location of regional lymph nodes. During mammography, the contours and sizes of the detected tumor were determined, and the presence of microcalcifications was also taken into account. The results of the study showed that a statistically positive correlation between some biochemical parameters and parameters of radiological diagnostics was established.
Collapse
Affiliation(s)
- Ilaha Nadir Orujova
- Department of Biochemistry and Department of Physical and Mathematical Science of Azerbaijan Medical University
| | - G I Azizova
- Department of Biochemistry and Department of Physical and Mathematical Science of Azerbaijan Medical University
| | - I A Gafarov
- Department of Biochemistry and Department of Physical and Mathematical Science of Azerbaijan Medical University
| | - A H Orujov
- Department of Biochemistry and Department of Physical and Mathematical Science of Azerbaijan Medical University
| |
Collapse
|
40
|
Verediano TA, Viana ML, das Graças Vaz Tostes M, de Oliveira DS, de Carvalho Nunes L, Costa NM. Yacón (Smallanthus sonchifolius) prevented inflammation, oxidative stress, and intestinal alterations in an animal model of colorectal carcinogenesis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5442-5449. [PMID: 32567144 DOI: 10.1002/jsfa.10595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/13/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Yacón (Smallanthus sonchifolius) roots store carbohydrate in the form of prebiotic fructooligosaccharides (FOS), which improve intestinal health. Yacon has the potential to prevent the intestinal barrier alterations associated with colorectal cancer (CRC). This study aimed to investigate the preventive effects of yacón flour (YF) on alterations promoted by CRC induced by 1,2-dimethylhydrazine in rats. RESULTS CRC increased tumor necrosis factor alpha levels (group CY = 10.2 ± 0.72; group C = 9.6 ± 1.0; group Y = 5.8 ± 0.54; group S = 5.95 ± 0.6 pg mL-1 ) and short-chain fatty acid production, and decreased total antioxidant capacity (group CY = 4.7 ± 0.72; group C = 3.3 ± 0.3; group Y = 4.1 ± 0.47; group S = 6.7 ± 0.78 U mL-1 ). Furthermore, YF treatment reduced intraluminal pH (group CY = 6.45 ± 0.47; group C = 7.65 ± 0.44; group Y = 6.75 ± 0.46; group S = 8.13 ± 0.2), lactulose/mannitol ratio, tumor necrosis factor-alpha (TNF-α)/interleukin (IL)-10 ratio, and increased secretory immunoglobulin A (group CY = 9.48 ± 1.46; group C = 10.95 ± 3.87; group Y = 15.95 ± 7.36; group S = 9.19 ± 1.52), but did not affect IL-10, IL-12, and TNF-α levels nor the IL-12/IL-10 ratio. CONCLUSION YF as a source of fructooligosaccharides may help to maintain the integrity of intestinal health, which is altered in induced CRC in rats. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thaísa A Verediano
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo - UFES, Alegre, Brazil
| | - Mirelle L Viana
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo - UFES, Alegre, Brazil
| | - Maria das Graças Vaz Tostes
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo - UFES, Alegre, Brazil
| | - Daniela S de Oliveira
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo - UFES, Alegre, Brazil
| | - Louisiane de Carvalho Nunes
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo - UFES, Alegre, Brazil
| | - Neuza Mb Costa
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espirito Santo - UFES, Alegre, Brazil
| |
Collapse
|
41
|
Abstract
Heparanase is the only mammalian enzyme that cleaves heparan sulphate, an important component of the extracellular matrix. This leads to the remodelling of the extracellular matrix, whilst liberating growth factors and cytokines bound to heparan sulphate. This in turn promotes both physiological and pathological processes such as angiogenesis, immune cell migration, inflammation, wound healing and metastasis. Furthermore, heparanase exhibits non-enzymatic actions in cell signalling and in regulating gene expression. Cancer is underpinned by key characteristic features that promote malignant growth and disease progression, collectively termed the 'hallmarks of cancer'. Essentially, all cancers examined to date have been reported to overexpress heparanase, leading to enhanced tumour growth and metastasis with concomitant poor patient survival. With its multiple roles within the tumour microenvironment, heparanase has been demonstrated to regulate each of these hallmark features, in turn highlighting the need for heparanase-targeted therapies. However, recent discoveries which demonstrated that heparanase can also regulate vital anti-tumour mechanisms have cast doubt on this approach. This review will explore the myriad ways by which heparanase functions as a key regulator of the hallmarks of cancer and will highlight its role as a major component within the tumour microenvironment. The dual role of heparanase within the tumour microenvironment, however, emphasises the need for further investigation into defining its precise mechanism of action in different cancer settings.
Collapse
Affiliation(s)
- Krishnath M Jayatilleke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
42
|
Ciocan-Cartita CA, Jurj A, Zanoaga O, Cojocneanu R, Pop LA, Moldovan A, Moldovan C, Zimta AA, Raduly L, Pop-Bica C, Buse M, Budisan L, Virag P, Irimie A, Diaz SMG, Berindan-Neagoe I, Braicu C. New insights in gene expression alteration as effect of doxorubicin drug resistance in triple negative breast cancer cells. J Exp Clin Cancer Res 2020; 39:241. [PMID: 33187552 PMCID: PMC7664031 DOI: 10.1186/s13046-020-01736-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is a heterogeneous disease with aggressive behavior and an unfavorable prognosis rate. Due to the lack of surface receptors, TNBC must be intensely investigated in order to establish a suitable treatment for patients with this pathology. Chemoresistance is an important reason for therapeutic failure in TNBC. METHOD The aim of this study was to investigate the effect of doxorubicin in TNBC cell lines and to highlight cellular and molecular alterations after a long exposure to doxorubicin. RESULTS The results revealed that doxorubicin significantly increased the half maximal inhibitory concentration (IC50) values at P12 and P24 compared to parenteral cells P0. Modifications in gene expression were investigated through microarray technique, and for detection of mutational pattern was used Next Generation Sequencing (NGS). 196 upregulated and 115 downregulated genes were observed as effect of multiple dose exposure, and 15 overexpressed genes were found to be involved in drug resistance. Also, the presence of some additional mutations in both cell lines was observed. CONCLUSION The outcomes of this research may provide novel biomarkers for drug resistance in TNBC. Also, this activity can highlight the potential mechanisms associated with drug resistance, as well as the potential therapies to counteract these mechanisms.
Collapse
Affiliation(s)
- Cristina Alexandra Ciocan-Cartita
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alin Moldovan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Moldovan
- MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Andreea Zimta
- MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cecilia Pop-Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihail Buse
- MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Piroska Virag
- Laboratory of Radiotherapy, Radiobiology and Tumor Biology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Alexandru Irimie
- Department of Surgical Oncology and Gynecological Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Surgery, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Sandra Martha Gomez Diaz
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
43
|
Yuan S, Carter P, Bruzelius M, Vithayathil M, Kar S, Mason AM, Lin A, Burgess S, Larsson SC. Effects of tumour necrosis factor on cardiovascular disease and cancer: A two-sample Mendelian randomization study. EBioMedicine 2020; 59:102956. [PMID: 32805626 PMCID: PMC7452586 DOI: 10.1016/j.ebiom.2020.102956] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumour necrosis factor (TNF) inhibitors are used in the treatment of certain autoimmune diseases but given the role of TNF in tumour biology and atherosclerosis, such therapies may influence the risk of cancer and cardiovascular disease. We conducted a Mendelian randomization study to explore whether TNF levels are causally related to cardiovascular disease and cancer. METHODS Single-nucleotide polymorphisms associated with TNF levels at genome-wide significance were identified from a genome-wide association study of 30 912 European-ancestry individuals. Three TNF-associated single-nucleotide polymorphisms associated with higher risk of autoimmune diseases were used as instrumental variables. Summary-level data for 14 cardiovascular diseases, overall cancer and 14 site-specific cancers were obtained from UK Biobank and consortia. FINDINGS Genetically-predicted TNF levels were positively associated with coronary artery disease (odds ratio (OR) 2.25; 95% confidence interval (CI) 1.50, 3.37) and ischaemic stroke (OR 2.27; 95% CI 1.50, 3.43), and inversely associated with overall cancer (OR 0.54; 95% CI 0.42, 0.69), breast cancer (OR 0.51; 95% CI 0.39, 0.67), and colorectal cancer (OR 0.20; 95% CI 0.09, 0.45). There were suggestive associations of TNF with venous thromboembolism (OR 2.18; 95% CI 1.32, 3.59), endometrial cancer (OR 0.25; 95% CI 0.07, 0.94), and lung cancer (OR 0.45; 95% CI 0.21, 0.94). INTERPRETATION This study found evidence of causal associations of increased TNF levels with higher risk of common cardiovascular diseases and lower risk of overall and certain cancers.
Collapse
Affiliation(s)
- Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 17177, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Paul Carter
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Maria Bruzelius
- Coagulation Unit, Department of Hematology, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Amy M Mason
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom; National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
| | - Ang Lin
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stephen Burgess
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom; MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 17177, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
44
|
Di Mitri D, Mirenda M, Vasilevska J, Calcinotto A, Delaleu N, Revandkar A, Gil V, Boysen G, Losa M, Mosole S, Pasquini E, D'Antuono R, Masetti M, Zagato E, Chiorino G, Ostano P, Rinaldi A, Gnetti L, Graupera M, Martins Figueiredo Fonseca AR, Pereira Mestre R, Waugh D, Barry S, De Bono J, Alimonti A. Re-education of Tumor-Associated Macrophages by CXCR2 Blockade Drives Senescence and Tumor Inhibition in Advanced Prostate Cancer. Cell Rep 2020; 28:2156-2168.e5. [PMID: 31433989 PMCID: PMC6715643 DOI: 10.1016/j.celrep.2019.07.068] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/05/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages (TAMs) represent a major component of the tumor microenvironment supporting tumorigenesis. TAMs re-education has been proposed as a strategy to promote tumor inhibition. However, whether this approach may work in prostate cancer is unknown. Here we find that Pten-null prostate tumors are strongly infiltrated by TAMs expressing C-X-C chemokine receptor type 2 (CXCR2), and activation of this receptor through CXCL2 polarizes macrophages toward an anti-inflammatory phenotype. Notably, pharmacological blockade of CXCR2 receptor by a selective antagonist promoted the re-education of TAMs toward a pro-inflammatory phenotype. Strikingly, CXCR2 knockout monocytes infused in Ptenpc−/−; Trp53pc−/− mice differentiated in tumor necrosis factor alpha (TNF-α)-releasing pro-inflammatory macrophages, leading to senescence and tumor inhibition. Mechanistically, PTEN-deficient tumor cells are vulnerable to TNF-α-induced senescence, because of an increase of TNFR1. Our results identify TAMs as targets in prostate cancer and describe a therapeutic strategy based on CXCR2 blockade to harness anti-tumorigenic potential of macrophages against this disease. CXCR2 blockade drives re-education of tumor-associated macrophages (TAMs) Infusion of CXCR2-KO monocytes in tumor-bearing mice blocks tumor progression PTEN deletion sensitizes tumor cells to TNF-α-induced senescence and growth arrest
Collapse
Affiliation(s)
- Diletta Di Mitri
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Michela Mirenda
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland
| | | | | | - Nicolas Delaleu
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Swiss Institute of Bioinformatics, Lausanne, Switzerland; 2C SysBioMed, 6646 Contra, Switzerland
| | | | - Veronica Gil
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Gunther Boysen
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Marco Losa
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland
| | | | - Rocco D'Antuono
- Institute for Research in Biomedicine (IRB), 6500 Bellinzona, Switzerland
| | - Michela Masetti
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Elena Zagato
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland
| | - Giovanna Chiorino
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, Via Malta, 3, 13900 Biella, Italy
| | - Paola Ostano
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, Via Malta, 3, 13900 Biella, Italy
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland
| | - Letizia Gnetti
- Pathology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Mariona Graupera
- Vascular Signalling Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Program Against Cancer Therapeutic Resistance (ProCURE), Barcelona, Spain; CIBERONC, Madrid, Spain
| | - Ana Raquel Martins Figueiredo Fonseca
- Vascular Signalling Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Program Against Cancer Therapeutic Resistance (ProCURE), Barcelona, Spain; CIBERONC, Madrid, Spain
| | - Ricardo Pereira Mestre
- Medical Oncology, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - David Waugh
- Movember Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Simon Barry
- IMED Oncology AstraZeneca, Li KaShing Centre, Cambridge, UK
| | - Johann De Bono
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Faculty of Medicine, Università della Svizzera Italiana, 1011 Lugano, Switzerland; Department of Medicine, University of Padua, 35131 Padua, Italy; Medical Oncology, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland.
| |
Collapse
|
45
|
Chen Y, Wang K, Shang M, Zhao S, Zhang Z, Yang H, Chen Z, Du R, Wang Q, Chen B. Exploration of DNA Methylation-Driven Genes in Papillary Thyroid Carcinoma Based on the Cancer Genome Atlas. J Comput Biol 2020; 28:99-114. [PMID: 32790501 DOI: 10.1089/cmb.2019.0471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the incidence of thyroid carcinoma is reported to be the highest among malignancies of endocrine system, its diagnosis is still unsatisfactory. This study sought to explore the key DNA methylation-driven genes in the development of papillary thyroid carcinoma (PTC) via a bioinformatic analysis based on the Cancer Genome Atlas (TCGA) database and was validated using the Gene Expression Omnibus (GEO) database. The level 3 DNA methylation, mRNA expression, and clinical data of 499 patients with PTC were obtained from the TCGA database. The R package LIMMA, edgeR, and MethylMix were applied to explore the DNA methylation-driven genes in PTC. The ConsensusPathDB software, DAVID, and STRING databases were used for Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses, as well as protein/protein interaction network construction individually. To verify the result, the explored genes were validated using GSE97466 data set retrieved from the GEO database. Fifty-seven (57) methylation-driven genes were detected via MethylMix based on a beta mixture model that compared the DNA methylation state of tumor tissues with that of the normal tissues. Eventually, three genes (TNFRSF1A, CLDN1, and CASP1) were identified to be the most potential biomarkers for the diagnosis or treatment of PTC. These results suggest the crucial roles of TNFRSF1A, CLDN1, and CASP1 in the tumorigenesis of PTC and provide a vital bioinformatic basis for further experimental validations and clinical applications.
Collapse
Affiliation(s)
- Yanwei Chen
- Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Keke Wang
- Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Mengyuan Shang
- Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Shuangshuang Zhao
- Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Zheng Zhang
- Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Haizhen Yang
- Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Zheming Chen
- Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Rui Du
- Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Baoding Chen
- Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
46
|
Current trends in cancer immunotherapy: a literature-mining analysis. Cancer Immunol Immunother 2020; 69:2425-2439. [PMID: 32556496 DOI: 10.1007/s00262-020-02630-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 11/27/2022]
Abstract
Cancer immunotherapy is a rapidly growing field that is completely transforming oncology care. Mining this knowledge base for biomedically important information is becoming increasingly challenging, due to the expanding number of scientific publications, and the dynamic evolution of this subject with time. In this study, we have employed a literature-mining approach that was used to analyze the cancer immunotherapy-related publications listed in PubMed and quantify emerging trends. A total of 93,033 publications published in 5055 journals have been retrieved, and 141 meaningful topics have been identified, which were further classified into eight distinct categories. Statistical analysis indicates a mean annual increase in the number of published papers of approximately 8% in the last 20 years. The research topics that exhibited the highest trends included "immune checkpoint inhibitors," "tumor microenvironment," "HPV vaccination," "CAR T-cells," and "gene mutations/tumor profiling." The top identified cancer types included "lung," "colorectal," and "breast cancer," and a shift in popularity from hematological to solid tumors was observed. As regards clinical research, a transition from early phase clinical trials to randomized control trials was recorded, indicating that the field is entering a more advanced phase of development. Overall, this mining approach provided an unbiased analysis of the cancer immunotherapy literature in a time-conserving and scale-efficient manner.
Collapse
|
47
|
Mercogliano MF, Bruni S, Elizalde PV, Schillaci R. Tumor Necrosis Factor α Blockade: An Opportunity to Tackle Breast Cancer. Front Oncol 2020; 10:584. [PMID: 32391269 PMCID: PMC7189060 DOI: 10.3389/fonc.2020.00584] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and the principal cause of mortality by malignancy in women and represents a main problem for public health worldwide. Tumor necrosis factor α (TNFα) is a pro-inflammatory cytokine whose expression is increased in a variety of cancers. In particular, in breast cancer it correlates with augmented tumor cell proliferation, higher malignancy grade, increased occurrence of metastasis and general poor prognosis for the patient. These characteristics highlight TNFα as an attractive therapeutic target, and consequently, the study of soluble and transmembrane TNFα effects and its receptors in breast cancer is an area of active research. In this review we summarize the recent findings on TNFα participation in luminal, HER2-positive and triple negative breast cancer progression and metastasis. Also, we describe TNFα role in immune response against tumors and in chemotherapy, hormone therapy, HER2-targeted therapy and anti-immune checkpoint therapy resistance in breast cancer. Furthermore, we discuss the use of TNFα blocking strategies as potential therapies and their clinical relevance for breast cancer. These TNFα blocking agents have long been used in the clinical setting to treat inflammatory and autoimmune diseases. TNFα blockade can be achieved by monoclonal antibodies (such as infliximab, adalimumab, etc.), fusion proteins (etanercept) and dominant negative proteins (INB03). Here we address the different effects of each compound and also analyze the use of potential biomarkers in the selection of patients who would benefit from a combination of TNFα blocking agents with HER2-targeted treatments to prevent or overcome therapy resistance in breast cancer.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
48
|
MIF inhibitor, ISO-1, attenuates human pancreatic cancer cell proliferation, migration and invasion in vitro, and suppresses xenograft tumour growth in vivo. Sci Rep 2020; 10:6741. [PMID: 32317702 PMCID: PMC7174354 DOI: 10.1038/s41598-020-63778-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
This study sought to investigate the biological effects of specific MIF inhibitor, ISO-1, on the proliferation, migration and invasion of PANC-1 human pancreatic cells in vitro, and on tumour growth in a xenograft tumour model in vivo. The effect of ISO-1 on PANC-1 cell proliferation was examined using CCK-8 cell proliferation assay. The effect of ISO-1 on collective cell migration and recolonization of PANC-1 cells was evaluated using the cell-wound closure migration assay. The effect of ISO-1 on the migration and invasion of individual PANC-1 cells in a 3-dimensional environment in response to a chemo-attractant was investigated through the use of Transwell migration/invasion assays. Quantitative real time PCR and western blot analyses were employed to investigate the effects of ISO-1 on MIF, NF-κB p65 and TNF-α mRNA and protein expression respectively. Finally, a xenograft tumor model in BALB/c nude mice were used to assess the in vivo effects of ISO-1 on PANC-1-induced tumor growth. We found high expression of MIF in pancreatic cancer tissues. We demonstrated that ISO-1 exerts anti-cancer effects on PANC-1 cell proliferation, migration and invasion in vitro, and inhibited PANC-1 cell-induced tumour growth in xenograft mice in vivo. Our data suggests that ISO-1 and its derivative may have potential therapeutic applications in pancreatic cancer.
Collapse
|
49
|
Moody R, Wilson K, Jaworowski A, Plebanski M. Natural Compounds with Potential to Modulate Cancer Therapies and Self-Reactive Immune Cells. Cancers (Basel) 2020; 12:cancers12030673. [PMID: 32183059 PMCID: PMC7139800 DOI: 10.3390/cancers12030673] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-related deaths are approaching 10 million each year. Survival statistics for some cancers, such as ovarian cancer, have remained unchanged for decades, with women diagnosed at stage III or IV having over 80% chance of a lethal cancer recurrence after standard first-line treatment (reductive surgery and chemotherapy). New treatments and adjunct therapies are needed. In ovarian cancer, as in other cancers, the immune response, particularly cytotoxic (CD8+) T cells are correlated with a decreased risk of recurrence. As well as completely new antigen targets resulting from DNA mutations (neo-antigens), these T cells recognize cancer-associated overexpressed, re-expressed or modified self-proteins. However, there is concern that activation of self-reactive responses may also promote off-target pathology. This review considers the complex interplay between cancer-reactive and self-reactive immune cells and discusses the potential uses for various leading immunomodulatory compounds, derived from plant-based sources, as a cancer therapy option or to modulate potential autoimmune pathology. Along with reviewing well-studied compounds such as curcumin (from turmeric), epigallocatechin gallate (EGCG, from green tea) and resveratrol (from grapes and certain berries), it is proposed that compounds from novel sources, for example, native Australian plants, will provide a useful source for the fine modulation of cancer immunity in patients.
Collapse
|
50
|
Hajiasgharzadeh K, Somi MH, Sadigh-Eteghad S, Mokhtarzadeh A, Shanehbandi D, Mansoori B, Mohammadi A, Doustvandi MA, Baradaran B. The dual role of alpha7 nicotinic acetylcholine receptor in inflammation-associated gastrointestinal cancers. Heliyon 2020; 6:e03611. [PMID: 32215331 PMCID: PMC7090353 DOI: 10.1016/j.heliyon.2020.e03611] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Alpha7 nicotinic acetylcholine receptor (α7nAChR) is one of the main subtypes of nAChRs that modulates various cancer-related properties including proliferative, anti-apoptotic, pro-angiogenic and pro-metastatic activities in most of the cancers. It also plays a crucial role in inflammation control through the cholinergic anti-inflammatory pathway in numerous pathophysiological contexts. Such diverse physiological and pathological functions that initiate from this receptor may have significant impacts in determining the outcome of different cancers. Various tissues of gastrointestinal (GI) cancers such as gastric, colorectal, pancreatic and liver cancers have shown the up-regulated expression of α7nAChR as compared to normal adjacent tissues. According to the well-established connection between inflammation and tumorigenesis in the digestive system, there are mounting studies demonstrated either stimulatory or inhibitory effects of α7nAChR signaling in the development of GI cancers. To date, the precise underlying mechanisms related to this receptor in patients with GI cancers have not been fully elucidated. Regarding the paradoxical modulatory effects of this receptor in carcinogenesis, in this review, we aim to summarize the accumulated evidence about the involvement of α7nAChR in inflammation-associated GI cancers. It seems that the complex influences of α7nAChR may be a promising target in designing novel strategies in the treatment of such pathologic conditions.
Collapse
Affiliation(s)
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|