1
|
Crilly NP, Zita MD, Beaver AK, Sysa-Shah P, Bhalodia A, Gabrielson K, Adamo L, Mugnier MR. A murine model of Trypanosoma brucei-induced myocarditis and cardiac dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.560950. [PMID: 37873308 PMCID: PMC10592974 DOI: 10.1101/2023.10.05.560950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models of T. brucei infection. Despite the importance of T. brucei as a cause of cardiac dysfunction and the dramatic socioeconomic impact of African trypanosomiases in sub-Saharan Africa, there are currently no reproducible murine models of T. brucei-associated cardiomyopathy. We present the first clinically relevant, reproducible murine model of cardiac dysfunction in chronic T. brucei infection. Similar to humans, mice showed histological evidence of myocarditis and elevation of serum NT-proBNP with electrocardiographic abnormalities. Serum NT-proBNP levels were elevated prior to the development of severe ventricular dysfunction. On flow cytometry, myocarditis was associated with an increase of most myocardial immune cell populations, including multiple T cell and macrophage subsets, corroborating the notion that T. brucei-associated cardiac damage is an immune-mediated event. This novel mouse model represents a powerful and practical tool to investigate the pathogenesis of T. brucei-mediated heart damage and supports the development of therapeutic options for T. brucei-associated cardiac disease.
Collapse
Affiliation(s)
- Nathan P. Crilly
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marcelle Dina Zita
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexander K. Beaver
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Molecular Imaging Service Center and Cancer Functional Imaging Core, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aashik Bhalodia
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathy Gabrielson
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Monica R. Mugnier
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Browne DJ, Miller CM, Doolan DL. Technical pitfalls when collecting, cryopreserving, thawing, and stimulating human T-cells. Front Immunol 2024; 15:1382192. [PMID: 38812513 PMCID: PMC11133553 DOI: 10.3389/fimmu.2024.1382192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
The collection, cryopreservation, thawing, and culture of peripheral blood mononuclear cells (PBMCs) can profoundly influence T cell viability and immunogenicity. Gold-standard PBMC processing protocols have been developed by the Office of HIV/AIDS Network Coordination (HANC); however, these protocols are not universally observed. Herein, we have explored the current literature assessing how technical variation during PBMC processing can influence cellular viability and T cell immunogenicity, noting inconsistent findings between many of these studies. Amid the mounting concerns over scientific replicability, there is growing acknowledgement that improved methodological rigour and transparent reporting is required to facilitate independent reproducibility. This review highlights that in human T cell studies, this entails adopting stringent standardised operating procedures (SOPs) for PBMC processing. We specifically propose the use of HANC's Cross-Network PBMC Processing SOP, when collecting and cryopreserving PBMCs, and the HANC member network International Maternal Pediatric Adolescent AIDS Clinical Trials (IMPAACT) PBMC Thawing SOP when thawing PBMCs. These stringent and detailed protocols include comprehensive reporting procedures to document unavoidable technical variations, such as delayed processing times. Additionally, we make further standardisation and reporting recommendations to minimise and document variability during this critical experimental period. This review provides a detailed overview of the challenges inherent to a procedure often considered routine, highlighting the importance of carefully considering each aspect of SOPs for PBMC collection, cryopreservation, thawing, and culture to ensure accurate interpretation and comparison between studies.
Collapse
Affiliation(s)
- Daniel J. Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Catherine M. Miller
- College of Medicine and Dentistry, James Cook University, Cairns, QLD, Australia
| | - Denise L. Doolan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
3
|
Groll T, Aupperle-Lellbach H, Mogler C, Steiger K. [Comparative pathology in oncology-Best practice]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:190-197. [PMID: 38602524 DOI: 10.1007/s00292-024-01327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Comparative experimental pathology is a research field at the interface of human and veterinary medicine. It is focused on the comparative study of similarities and differences between spontaneous and experimentally induced diseases in animals (animal models) compared to human diseases. The use of animal models for studying human diseases is an essential component of biomedical research. Interdisciplinary teams with species-specific expertise should collaborate wherever possible and maintain close communication. Mutual openness, cooperation, and willingness to learn form the basis for a fruitful collaboration. Research projects jointly led by or involving both animal and human pathologists make a significant contribution to high-quality biomedical research. Such approaches are promising not only in oncological research, as outlined in this article, but also in other research areas where animal models are regularly used, such as infectiology, neurology, and developmental biology.
Collapse
Affiliation(s)
- Tanja Groll
- Institut für Pathologie und Pathologische Anatomie, School of Medicine and Health, Technische Universität München, Trogerstraße 18, 81675, München, Deutschland
- Comparative Experimental Pathology (CEP), School of Medicine and Health, Technische Universität München, München, Deutschland
| | - Heike Aupperle-Lellbach
- Institut für Pathologie und Pathologische Anatomie, School of Medicine and Health, Technische Universität München, Trogerstraße 18, 81675, München, Deutschland
- Comparative Experimental Pathology (CEP), School of Medicine and Health, Technische Universität München, München, Deutschland
- LABOKLIN GmbH & Co. KG, Bad Kissingen, Deutschland
| | - Carolin Mogler
- Institut für Pathologie und Pathologische Anatomie, School of Medicine and Health, Technische Universität München, Trogerstraße 18, 81675, München, Deutschland
- Comparative Experimental Pathology (CEP), School of Medicine and Health, Technische Universität München, München, Deutschland
| | - Katja Steiger
- Institut für Pathologie und Pathologische Anatomie, School of Medicine and Health, Technische Universität München, Trogerstraße 18, 81675, München, Deutschland.
- Comparative Experimental Pathology (CEP), School of Medicine and Health, Technische Universität München, München, Deutschland.
| |
Collapse
|
4
|
Weiermayer P, Frass M, Fibert P, Klein-Laansma C, Ulbrich-Zürni S. Recommendations for Designing, Conducting and Reporting Clinical Observational Studies in Homeopathic Veterinary Medicine. HOMEOPATHY 2023; 112:226-239. [PMID: 36929496 PMCID: PMC10586889 DOI: 10.1055/s-0043-1760845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/02/2022] [Indexed: 03/18/2023]
Abstract
BACKGROUND Clinical observational studies are an important methodological approach in human and veterinary research, examining and describing treatment experience with good external validity. There are currently few observational studies in the field of homeopathic veterinary medicine. AIM The aim of the study was to develop recommendations for designing, conducting and reporting observational studies in homeopathic veterinary medicine. MATERIALS AND METHODS A literature review was performed using various search strategies for identifying guidelines and checklist tools relevant for observational studies, veterinary research and homeopathy. Useful guidelines were selected. Prior recommendations for designing and conducting observational studies in human homeopathic medicine were supplemented with recommendations for homeopathic veterinary medicine that were evaluated by an expert panel. RESULTS The veterinary extension of the Strengthening the Reporting of Observational Studies in Epidemiology - Veterinary (STROBE-Vet) statement was identified as a useful tool to improve the reporting quality of observational studies, and it has been supplemented here with additional recommendations that are applicable to homeopathy. STROBE-Vet is complemented in the literature by several reports, checklists and guidelines on veterinary medicine in general, such as the Checklist for One Health Epidemiological Reporting of Evidence (COHERE) and the Animal Health Surveillance Reporting Guidelines (AHSURED). Identified items that related to laboratory animal research were excluded as non-relevant to our study. CONCLUSION Clinical observational studies are an important methodological approach, having currently unrealized potential in the field of homeopathic veterinary medicine. With relatively minor adjustments, the practical guidelines and checklists available to researchers in designing, conducting and reporting observational studies in human homeopathic medicine have been adapted for homeopathic veterinary medicine, for which high quality can be assured by implementing recommendations such as those in STROBE-Vet. With the emergence of the One Health concept, the COHERE checklist can be viewed with growing significance.
Collapse
Affiliation(s)
- Petra Weiermayer
- WissHom: Research Department, Scientific Society for Homeopathy, Köthen, Germany
| | - Michael Frass
- Department of Medicine I (emeritus), Medical University of Vienna, Vienna, Austria
- Institute for Homeopathic Research, Vienna, Austria
| | - Philippa Fibert
- Department of Psychology and Pedagogic Science, St Mary's University, Twickenham, United Kingdom
| | | | - Susanne Ulbrich-Zürni
- WissHom: Scientific Society for Homeopathy, Köthen, Germany
- Institute of Integrative Medicine, University of Witten/Herdecke, Herdecke, Germany
| |
Collapse
|
5
|
Domarecka E, Szczepek AJ. Universal Recommendations on Planning and Performing the Auditory Brainstem Responses (ABR) with a Focus on Mice and Rats. Audiol Res 2023; 13:441-458. [PMID: 37366685 DOI: 10.3390/audiolres13030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Translational audiology research aims to transfer basic research findings into practical clinical applications. While animal studies provide essential knowledge for translational research, there is an urgent need to improve the reproducibility of data derived from these studies. Sources of variability in animal research can be grouped into three areas: animal, equipment, and experimental. To increase standardization in animal research, we developed universal recommendations for designing and conducting studies using a standard audiological method: auditory brainstem response (ABR). The recommendations are domain-specific and are intended to guide the reader through the issues that are important when applying for ABR approval, preparing for, and conducting ABR experiments. Better experimental standardization, which is the goal of these guidelines, is expected to improve the understanding and interpretation of results, reduce the number of animals used in preclinical studies, and improve the translation of knowledge to the clinic.
Collapse
Affiliation(s)
- Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
- Faculty of Medicine and Health Sciences, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
6
|
Sahar A, Nicorescu I, Barran G, Paterson M, Hilkens CM, Lord P. Tolerogenic dendritic cell reporting: Has a minimum information model made a difference? PeerJ 2023; 11:e15352. [PMID: 37273539 PMCID: PMC10239229 DOI: 10.7717/peerj.15352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 06/06/2023] Open
Abstract
Minimum information models are reporting frameworks that describe the essential information that needs to be provided in a publication, so that the work can be repeated or compared to other work. In 2016, Minimum Information about Tolerogenic Antigen-Presenting cells (MITAP) was created to standardize the reporting on tolerogenic antigen-presenting cells, including tolerogenic dendritic cells (tolDCs). tolDCs is a generic term for dendritic cells that have the ability to (re-)establish immune tolerance; they have been developed as a cell therapy for autoimmune diseases or for the prevention of transplant rejection. Because protocols to generate these therapeutic cells vary widely, MITAP was deemed to be a pivotal reporting tool by and for the tolDC community. In this paper, we explored the impact that MITAP has had on the tolDC field. We did this by examining a subset of the available literature on tolDCs. Our analysis shows that MITAP is used in only the minority of relevant papers (14%), but where it is used the amount of metadata available is slightly increased over where it is not. From this, we conclude that MITAP has been a partial success, but that much more needs to be done if standardized reporting is to become common within the discipline.
Collapse
Affiliation(s)
- Ayesha Sahar
- School of Computing Science, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Ioana Nicorescu
- Translational & Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Gabrielle Barran
- Translational & Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Megan Paterson
- Translational & Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Catharien M.U. Hilkens
- Translational & Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Phillip Lord
- School of Computing Science, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
7
|
McInnes EF, Meyerholz DK, Arends MJ. Concerns about pathology expertise and data quality. J Pathol 2023; 259:468. [PMID: 36715663 DOI: 10.1002/path.6058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Affiliation(s)
| | | | - Mark J Arends
- The Pathological Society of Great Britain and Ireland, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Karp NA, Pearl EJ, Stringer EJ, Barkus C, Ulrichsen JC, Percie du Sert N. A qualitative study of the barriers to using blinding in in vivo experiments and suggestions for improvement. PLoS Biol 2022; 20:e3001873. [PMID: 36395326 PMCID: PMC9714947 DOI: 10.1371/journal.pbio.3001873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/01/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022] Open
Abstract
In animal experiments, blinding (also known as masking) is a methodological strategy to reduce the risk that scientists, animal care staff, or other staff involved in the research may consciously or subconsciously influence the outcome. Lack of masking has been shown to correlate with an overestimation of treatment efficacy and false positive findings. We conducted exploratory interviews across academic and a commercial setting to discuss the implementation of masking at four stages of the experiment: during allocation and intervention, during the conduct of the experiment, during the outcome assessment, and during the data analysis. The objective was to explore the awareness, engagement, perceptions, and the barriers to implementing masking in animal experiments. We conducted multiple interviews, to explore 30 different experiments, and found examples of excellent practice but also areas where masking was rarely implemented. Significant barriers arose from the operational and informatic systems implemented. These systems have prioritised the management of welfare without considering how to allow researchers to use masking in their experiments. For some experiments, there was a conflict between the management of welfare for an individual animal versus delivering a robust experiment where all animals are treated in the same manner. We identified other challenges related to the level of knowledge on the purpose of masking or the implementation and the work culture. The exploration of these issues provides insight into how we, as a community, can identify the most significant barriers in a given research environment. Here, we offer practical solutions to enable researchers to implement masking as standard. To move forward, we need both the individual scientists to embrace the use of masking and the facility managers and institutes to engage and provide a framework that supports the scientists.
Collapse
Affiliation(s)
- Natasha A. Karp
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
- * E-mail:
| | | | - Emma J. Stringer
- Biomedical Services Unit, University of Birmingham, Birmingham, United Kingdom
| | | | | | | |
Collapse
|
9
|
Chiriboga L, Callis GM, Wang Y, Chlipala E. Guide for collecting and reporting metadata on protocol variables and parameters from slide-based histotechnology assays to enhance reproducibility. J Histotechnol 2022; 45:132-147. [DOI: 10.1080/01478885.2022.2134022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Luis Chiriboga
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- NYULH Center for Biospecimen Research and Development, New York, NY, USA
| | | | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas, MO, USA
| | | |
Collapse
|
10
|
Piedra-Mora C, Robinson SR, Tostanoski LH, Dayao DAE, Chandrashekar A, Bauer K, Wrijil L, Ducat S, Hayes T, Yu J, Bondzie EA, McMahan K, Sellers D, Giffin V, Hope D, Nampanya F, Mercado NB, Kar S, Andersen H, Tzipori S, Barouch DH, Martinot AJ. Reduced SARS-CoV-2 disease outcomes in Syrian hamsters receiving immune sera: Quantitative image analysis in pathologic assessments. Vet Pathol 2022; 59:648-660. [PMID: 35521761 DOI: 10.1177/03009858221095794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is a need to standardize pathologic endpoints in animal models of SARS-CoV-2 infection to help benchmark study quality, improve cross-institutional comparison of data, and assess therapeutic efficacy so that potential drugs and vaccines for SARS-CoV-2 can rapidly advance. The Syrian hamster model is a tractable small animal model for COVID-19 that models clinical disease in humans. Using the hamster model, the authors used traditional pathologic assessment with quantitative image analysis to assess disease outcomes in hamsters administered polyclonal immune sera from previously challenged rhesus macaques. The authors then used quantitative image analysis to assess pathologic endpoints across studies performed at different institutions using different tissue processing protocols. The authors detail pathological features of SARS-CoV-2 infection longitudinally and use immunohistochemistry to quantify myeloid cells and T lymphocyte infiltrates during SARS-CoV-2 infection. High-dose immune sera protected hamsters from weight loss and diminished viral replication in tissues and reduced lung lesions. Cumulative pathology scoring correlated with weight loss and was robust in distinguishing IgG efficacy. In formalin-infused lungs, quantitative measurement of percent area affected also correlated with weight loss but was less robust in non-formalin-infused lungs. Longitudinal immunohistochemical assessment of interstitial macrophage infiltrates showed that peak infiltration corresponded to weight loss, yet quantitative assessment of macrophage, neutrophil, and CD3+ T lymphocyte numbers did not distinguish IgG treatment effects. Here, the authors show that quantitative image analysis was a useful adjunct tool for assessing SARS-CoV-2 treatment outcomes in the hamster model.
Collapse
Affiliation(s)
- Cesar Piedra-Mora
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
- Beth Israel Medical Center, Boston, MA
| | - Sally R Robinson
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | | | - Denise A E Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | | | | | - Linda Wrijil
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - Sarah Ducat
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - Tammy Hayes
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | | | | | | | | | | | | | | | | | | | | | - Saul Tzipori
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | | | - Amanda J Martinot
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| |
Collapse
|
11
|
Abstract
The COVID-19 pandemic has highlighted the critical role that animal models play in elucidating the pathogenesis of emerging diseases and rapidly analyzing potential medical countermeasures. Relevant pathologic outcomes are paramount in evaluating preclinical models and therapeutic outcomes and require careful advance planning. While there are numerous guidelines for attaining high-quality pathology specimens in routine animal studies, preclinical studies using coronaviruses are often conducted under biosafety level-3 (BSL3) conditions, which pose unique challenges and technical limitations. In such settings, rather than foregoing pathologic outcomes because of the inherent constraints of high-containment laboratory protocols, modifications can be made to conventional best practices of specimen collection. Particularly for those unfamiliar with working in a high-containment laboratory, the authors describe the logistics of conducting such work, focusing on animal experiments in BSL3 conditions. To promote scientific rigor and reproducibility and maximize the value of animal use, the authors provide specific points to be considered before, during, and following a high-containment animal study. The authors provide procedural modifications for attaining good quality pathologic assessment of the mouse lung, central nervous system, and blood specimens under high-containment conditions while being conscientious to maximize animal use for other concurrent assays.
Collapse
|
12
|
Meyerholz DK, Adissu HA, Carvalho T, Atkins HM, Rissi DR, Beck AP, Ward JM, Piersigilli A. Exclusion of Expert Contributors From Authorship Limits the Quality of Scientific Articles. Vet Pathol 2021; 58:650-654. [PMID: 33906549 DOI: 10.1177/03009858211011943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Veterinary pathologists are key contributors to multidisciplinary biomedical research. However, they are occasionally excluded from authorship in published articles despite their substantial intellectual and data contributions. To better understand the potential origins and implications of this practice, we identified and analyzed 29 scientific publications where the contributing pathologist was excluded as an author. The amount of pathologist-generated data contributions were similar to the calculated average contributions for authors, suggesting that the amount of data contributed by the pathologist was not a valid factor for their exclusion from authorship. We then studied publications with pathologist-generated contributions to compare the effects of inclusion or exclusion of the pathologist as an author. Exclusion of the pathologist from authorship was associated with significantly lower markers of rigor and reproducibility compared to articles in which the pathologist was included as author. Although this study did not find justification for the exclusion of pathologists from authorship, potential consequences of their exclusion on data quality were readily detectable.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alessandra Piersigilli
- Weill Cornell Medical College, New York, NY, USA.,Current address:Alessandra Piersigilli, Takeda Pharmaceuticals, Cambridge, MA, USA
| |
Collapse
|
13
|
Hoenerhoff MJ, Meyerholz DK, Brayton C, Beck AP. Challenges and Opportunities for the Veterinary Pathologist in Biomedical Research. Vet Pathol 2020; 58:258-265. [PMID: 33327888 DOI: 10.1177/0300985820974005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Animal models have critical roles in biomedical research in promoting understanding of human disease and facilitating development of new therapies and diagnostic techniques to improve human and animal health. In the study of myriad human conditions, each model requires in-depth characterization of its assets and limitations in order for it to be used to greatest advantage. Veterinary pathology expertise is critical in understanding the relevance and translational validity of animal models to conditions under study, assessing morbidity and mortality, and validating outcomes as relevant or not to the study interventions. Clear communication with investigators and education of research personnel on the use and interpretation of pathology endpoints in animal models are critical to the success of any research program. The veterinary pathologist is underutilized in biomedical research due to many factors including misconceptions about high fiscal costs, lack of perceived value, limited recognition of their expertise, and the generally low number of veterinary pathologists currently employed in biomedical research. As members of the multidisciplinary research team, veterinary pathologists have an important role to educate scientists, ensure accurate interpretation of pathology data, maximize rigor, and ensure reproducibility to provide the most reliable data for animal models in biomedical research.
Collapse
|
14
|
Knoblaugh SE, Hohl TM, La Perle KMD. Pathology Principles and Practices for Analysis of Animal Models. ILAR J 2019; 59:40-50. [PMID: 31053847 DOI: 10.1093/ilar/ilz001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/03/2019] [Indexed: 12/18/2022] Open
Abstract
Over 60% of NIH extramural funding involves animal models, and approximately 80% to 90% of these are mouse models of human disease. It is critical to translational research that animal models are accurately characterized and validated as models of human disease. Pathology analysis, including histopathology, is essential to animal model studies by providing morphologic context to in vivo, molecular, and biochemical data; however, there are many considerations when incorporating pathology endpoints into an animal study. Mice, and in particular genetically modified models, present unique considerations because these modifications are affected by background strain genetics, husbandry, and experimental conditions. Comparative pathologists recognize normal pathobiology and unique phenotypes that animals, including genetically modified models, may present. Beyond pathology, comparative pathologists with research experience offer expertise in animal model development, experimental design, optimal specimen collection and handling, data interpretation, and reporting. Critical pathology considerations in the design and use of translational studies involving animals are discussed, with an emphasis on mouse models.
Collapse
Affiliation(s)
- Sue E Knoblaugh
- Department of Veterinary Biosciences, and Comparative Pathology & Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, Ohio
| | - Tobias M Hohl
- Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Krista M D La Perle
- Department of Veterinary Biosciences, and Comparative Pathology & Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, Ohio
| |
Collapse
|
15
|
Meyerholz DK, Beck AP. Fundamental Concepts for Semiquantitative Tissue Scoring in Translational Research. ILAR J 2019; 59:13-17. [PMID: 30715381 PMCID: PMC6927897 DOI: 10.1093/ilar/ily025] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
Failure to reproduce results from some scientific studies has raised awareness of the critical need for reproducibility in translational studies. Macroscopic and microscopic examination is a common approach to determine changes in tissues, but text descriptions and visual images have limitations for group comparisons. Semiquantitative scoring is a way of transforming qualitative tissue data into numerical data that allow more robust group comparisons. Semiquantitative scoring has broad uses in preclinical and clinical studies for evaluation of tissue lesions. Reproducibility can be improved by constraining bias through appropriate experimental design, randomization of tissues, effective use of multidisciplinary collaborations, and valid masking procedures. Scoring can be applied to tissue lesions (eg, size, distribution, characteristics) and also to tissues through evaluation of staining distribution and intensity. Semiquantitative scores should be validated to demonstrate relevance to biological data and to demonstrate observer reproducibility. Statistical analysis should make use of appropriate tests to give robust confidence in the results and interpretations. Following key principles of semiquantitative scoring will not only enhance descriptive tissue evaluation but also improve quality, reproducibility, and rigor of tissue studies.
Collapse
Affiliation(s)
- David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
16
|
Steiger K, Ballke S, Yen HY, Seelbach O, Alkhamas A, Boxberg M, Schwamborn K, Knolle PA, Weichert W, Mogler C. [Histopathological research laboratories in translational research : Conception and integration into the infrastructure of pathological institutes]. DER PATHOLOGE 2019; 40:172-178. [PMID: 30027333 DOI: 10.1007/s00292-018-0458-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A systematic review of histopathology from experimental animal systems is an essential part of up-to-date biomedical research. Pathologists at university hospitals are especially and increasingly challenged by these specialized and time-consuming duties. This article presents and analyzes a new laboratory structure of comparative experimental pathology-jointly lead by veterinary and human pathologists-which might solve this problem. The focus is on the establishment and full integration of this laboratory structure into a local, regional, and nationwide biomedical research cluster. A detailed comparison with an established structure of routine histopathology laboratories discusses merits and benefits as well as disadvantages.
Collapse
Affiliation(s)
- K Steiger
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland. .,Comparative Experimental Pathology, Technische Universität München, München, Deutschland. .,Vergleichende Experimentelle Pathologie, Institut für Pathologie, Technische Universität München, Trogerstraße 18, 81675, München, Deutschland.
| | - S Ballke
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland.,Comparative Experimental Pathology, Technische Universität München, München, Deutschland
| | - H-Y Yen
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland.,Comparative Experimental Pathology, Technische Universität München, München, Deutschland.,Partnerstandort München, Deutsches Konsortium für Translationale Krebsforschung, München, Deutschland
| | - O Seelbach
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland.,Comparative Experimental Pathology, Technische Universität München, München, Deutschland
| | - A Alkhamas
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland.,Comparative Experimental Pathology, Technische Universität München, München, Deutschland.,Partnerstandort München, Deutsches Konsortium für Translationale Krebsforschung, München, Deutschland
| | - M Boxberg
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland.,Comparative Experimental Pathology, Technische Universität München, München, Deutschland
| | - K Schwamborn
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland.,Comparative Experimental Pathology, Technische Universität München, München, Deutschland
| | - P A Knolle
- Institut für Molekulare Immunologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - W Weichert
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland.,Comparative Experimental Pathology, Technische Universität München, München, Deutschland.,Partnerstandort München, Deutsches Konsortium für Translationale Krebsforschung, München, Deutschland
| | - C Mogler
- Institut für allgemeine Pathologie und pathologische Anatomie, Technische Universität München, München, Deutschland.,Comparative Experimental Pathology, Technische Universität München, München, Deutschland
| |
Collapse
|
17
|
Bolon B, Baze W, Shilling CJ, Keatley KL, Patrick DJ, Schafer KA. Good Laboratory Practice in the Academic Setting: Fundamental Principles for Nonclinical Safety Assessment and GLP-Compliant Pathology Support When Developing Innovative Biomedical Products. ILAR J 2019; 59:18-28. [DOI: 10.1093/ilar/ily008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/26/2018] [Indexed: 11/12/2022] Open
Abstract
AbstractDevelopment of new biomedical products necessitates nonclinical safety assessment in animals as a means of assessing potential risk to human patients. Pivotal nonclinical safety studies that support human clinical trials are performed according to Good Laboratory Practice (GLP) guidelines, which are designed to ensure that the study was conducted under carefully controlled conditions using standardized and validated procedures that will yield a reliable, reproducible, and traceable data set. The GLP guidelines established by different regulatory agencies address organizational structure, personnel responsibilities, personnel training practices, quality assurance (ensuring compliance), facilities, equipment, standard operating procedures, study documentation (record keeping), and record and sample retention. Academic institutions engaging in nonclinical safety assessment on-site have multiple options for implementing a GLP quality system. This article outlines the rationale supporting the use of a GLP-compliant or GLP-like quality system in academia and reviews key concepts needed to efficiently and effectively implement GLP in the academic setting. Emphasis is given to provision of GLP-compliant pathology support as (1) pathology data are an essential component of GLP nonclinical safety testing, (2) familiarity with pathology-related GLP procedures typically is gained first outside the academic setting, and (3) microscopic pathology diagnoses and interpretations require special accommodations to ensure that they are undertaken in a GLP-compliant fashion.
Collapse
Affiliation(s)
| | - Wallace Baze
- University of Texas MD Anderson Cancer Center, Michale E. Keeling Center for Comparative Medicine and Research, Department of Veterinary Sciences, Bastrop, Texas
| | - Christopher J Shilling
- The Research Institute at Nationwide Children’s Hospital, Center for Clinical and Translational Science, Drug and Device Development Services, Columbus, Ohio
| | | | | | | |
Collapse
|
18
|
Everitt JI, Treuting PM, Scudamore C, Sellers R, Turner PV, Ward JM, Zeiss CJ. Pathology Study Design, Conduct, and Reporting to Achieve Rigor and Reproducibility in Translational Research Using Animal Models. ILAR J 2019; 59:4-12. [DOI: 10.1093/ilar/ily020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
AbstractIn translational research, animal models are an important tool to aid in decision-making when taking potential therapies into human clinical trials. Recently, there have been a number of papers that have suggested limited concordance of preclinical animal experiments with subsequent human clinical experience. Assessments of preclinical animal studies have led to concerns about the reproducibility of data and have highlighted the need for an emphasis on rigor and quality in the planning, conduct, analysis, and reporting of such studies. The incorporation of a wider role for the comparative pathologist using pathology best practices in the planning and conduct of animal model-based research is one way to increase the quality and reproducibility of data. The use of optimal design and planning of tissue collection, incorporation of pathology methods into written protocols, conduct of pathology procedures using accepted best practices, and the use of optimal pathology analysis and reporting methods enhance the quality of the data acquired from many types of preclinical animal models and studies. Many of these pathology practices are well established in the discipline of toxicologic pathology and have a proven and useful track record in enhancing the data from animal-based studies used in safety assessment of human therapeutics. Some of this experience can be adopted by the wider community of preclinical investigators to increase the reproducibility of animal study data.
Collapse
Affiliation(s)
| | | | | | | | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | | - Caroline J Zeiss
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
19
|
Principles and approaches for reproducible scoring of tissue stains in research. J Transl Med 2018; 98:844-855. [PMID: 29849125 DOI: 10.1038/s41374-018-0057-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/16/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023] Open
Abstract
Evaluation of tissues is a common and important aspect of translational research studies. Labeling techniques such as immunohistochemistry can stain cells/tissues to enhance identification of specific cell types, cellular activation states, and protein expression. While qualitative evaluation of labeled tissues has merit, use of semiquantitative and quantitative scoring approaches can greatly enhance the rigor of the tissue data. Adhering to key principles for reproducible scoring can enhance the quality and reproducibility of the tissue data so as to maximize its biological relevance and scientific impact.
Collapse
|
20
|
Pinart M, Nimptsch K, Bouwman J, Dragsted LO, Yang C, De Cock N, Lachat C, Perozzi G, Canali R, Lombardo R, D'Archivio M, Guillaume M, Donneau AF, Jeran S, Linseisen J, Kleiser C, Nöthlings U, Barbaresko J, Boeing H, Stelmach-Mardas M, Heuer T, Laird E, Walton J, Gasparini P, Robino A, Castaño L, Rojo-Martínez G, Merino J, Masana L, Standl M, Schulz H, Biagi E, Nurk E, Matthys C, Gobbetti M, de Angelis M, Windler E, Zyriax BC, Tafforeau J, Pischon T. Joint Data Analysis in Nutritional Epidemiology: Identification of Observational Studies and Minimal Requirements. J Nutr 2018; 148:285-297. [PMID: 29490094 DOI: 10.1093/jn/nxx037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023] Open
Abstract
Background Joint data analysis from multiple nutrition studies may improve the ability to answer complex questions regarding the role of nutritional status and diet in health and disease. Objective The objective was to identify nutritional observational studies from partners participating in the European Nutritional Phenotype Assessment and Data Sharing Initiative (ENPADASI) Consortium, as well as minimal requirements for joint data analysis. Methods A predefined template containing information on study design, exposure measurements (dietary intake, alcohol and tobacco consumption, physical activity, sedentary behavior, anthropometric measures, and sociodemographic and health status), main health-related outcomes, and laboratory measurements (traditional and omics biomarkers) was developed and circulated to those European research groups participating in the ENPADASI under the strategic research area of "diet-related chronic diseases." Information about raw data disposition and metadata sharing was requested. A set of minimal requirements was abstracted from the gathered information. Results Studies (12 cohort, 12 cross-sectional, and 2 case-control) were identified. Two studies recruited children only and the rest recruited adults. All studies included dietary intake data. Twenty studies collected blood samples. Data on traditional biomarkers were available for 20 studies, of which 17 measured lipoproteins, glucose, and insulin and 13 measured inflammatory biomarkers. Metabolomics, proteomics, and genomics or transcriptomics data were available in 5, 3, and 12 studies, respectively. Although the study authors were willing to share metadata, most refused, were hesitant, or had legal or ethical issues related to sharing raw data. Forty-one descriptors of minimal requirements for the study data were identified to facilitate data integration. Conclusions Combining study data sets will enable sufficiently powered, refined investigations to increase the knowledge and understanding of the relation between food, nutrition, and human health. Furthermore, the minimal requirements for study data may encourage more efficient secondary usage of existing data and provide sufficient information for researchers to draft future multicenter research proposals in nutrition.
Collapse
Affiliation(s)
- Mariona Pinart
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jildau Bouwman
- TNO, Microbiology and Systems Biology Group, Zeist, Netherlands
| | - Lars O Dragsted
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Chen Yang
- Department of Food Safety and Food Quality, Ghent University, Ghent, Belgium
| | - Nathalie De Cock
- Department of Food Safety and Food Quality, Ghent University, Ghent, Belgium
| | - Carl Lachat
- Department of Food Safety and Food Quality, Ghent University, Ghent, Belgium
| | | | | | - Rosario Lombardo
- The Microsoft Research-University of Trento Centre for Computational and Systems Biology (COSBI), Trentino, Italy
| | - Massimo D'Archivio
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Stephanie Jeran
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jakob Linseisen
- Helmholtz Zentrum München, Institute of Epidemiology, Neuherberg, Germany.,Ludwig-Maximilians-Universität (LMU) München, Medical Faculty, Institute of Medical Information Processing, Biometry, and Epidemiology (IBE), Chair of Epidemiology at University Centre for Health Care Sciences at the Augsburg Clinic (UNIKA-T Augsburg), Ausburg, Germany
| | - Christina Kleiser
- Helmholtz Zentrum München, Institute of Epidemiology, Neuherberg, Germany
| | - Ute Nöthlings
- Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Janett Barbaresko
- Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Marta Stelmach-Mardas
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.,Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Thorsten Heuer
- Department of Nutritional Behavior, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Eamon Laird
- Centre for Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Janette Walton
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Antonietta Robino
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Luis Castaño
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Rare Diseases Networking Biomedical Research Centre (CIBERER), BioCruces-Hospital Universitario Cruces-The University of the Basque Country (Basque: Euskal Herriko Unibertsitatea/Spanish: Universidad del País Vasco (UPV/EHU)), Barakaldo, Spain
| | - Gemma Rojo-Martínez
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.,Unidad de Gestión Clínica (UGC) Endocrinology and Nutrition. Hospital Regional Universitario de Málaga, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Jordi Merino
- Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, Reus, Spain.,Diabetes Unit and Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Luis Masana
- Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, Reus, Spain
| | - Marie Standl
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Epidemiology I, Neuherberg, Germany
| | - Holger Schulz
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Epidemiology I, Neuherberg, Germany
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Eha Nurk
- National Institute for Health Development, Tallinn, Estonia
| | - Christophe Matthys
- Department of Clinical and Experimental Medicine, The Katholieke Universiteit Leuven (KU Leuven) and Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, Bolzano, Italy
| | - Maria de Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Eberhard Windler
- Preventive Medicine, University Heart Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit-Christiane Zyriax
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean Tafforeau
- Scientific Institute of Public Health, Brussels, Belgium
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Charité Universitätsmedizin Berlin, Berlin, Germany.,MDC/BIH Biobank, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
21
|
Schofield PN, Ward JM, Sundberg JP. Show and tell: disclosure and data sharing in experimental pathology. Dis Model Mech 2017; 9:601-5. [PMID: 27483498 PMCID: PMC4920154 DOI: 10.1242/dmm.026054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Reproducibility of data from experimental investigations using animal models is increasingly under scrutiny because of the potentially negative impact of poor reproducibility on the translation of basic research. Histopathology is a key tool in biomedical research, in particular for the phenotyping of animal models to provide insights into the pathobiology of diseases. Failure to disclose and share crucial histopathological experimental details compromises the validity of the review process and reliability of the conclusions. We discuss factors that affect the interpretation and validation of histopathology data in publications and the importance of making these data accessible to promote replicability in research. Summary: Reproducibility of findings in experiments using model organisms has recently become a source of concern, particularly for translational science. We discuss factors affecting the interpretation and reliability of experimental pathology findings in the mouse, and how disclosure and transparent reporting are crucial for replicability.
Collapse
Affiliation(s)
- Paul N Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | |
Collapse
|
22
|
Bolon B, Newbigging S, Boyd KL. Pathology Evaluation of Developmental Phenotypes in Neonatal and Juvenile Mice. ACTA ACUST UNITED AC 2017; 7:191-219. [DOI: 10.1002/cpmo.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Kelli L. Boyd
- Vanderbilt University Medical Center; Nashville Tennessee
| |
Collapse
|
23
|
Meyerholz DK, Sieren JC, Beck AP, Flaherty HA. Approaches to Evaluate Lung Inflammation in Translational Research. Vet Pathol 2017; 55:42-52. [PMID: 28812529 DOI: 10.1177/0300985817726117] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation is a common feature in several types of lung disease and is a frequent end point to validate lung disease models, evaluate genetic or environmental impact on disease severity, or test the efficacy of new therapies. Questions relevant to a study should be defined during experimental design and techniques selected to specifically address these scientific queries. In this review, the authors focus primarily on the breadth of techniques to evaluate lung inflammation that have both clinical and preclinical applications. Stratification of approaches to assess lung inflammation can diminish weaknesses inherent to each technique, provide data validation, and increase the reproducibility of a study. Specialized techniques (eg, imaging, pathology) often require experienced personnel to collect, evaluate, and interpret the data; these experts should be active contributors to the research team through reporting of the data. Scoring of tissue lesions is a useful method to transform observational pathologic data into semiquantitative or quantitative data for statistical analysis and enhanced rigor. Each technique to evaluate lung inflammation has advantages and limitations; understanding these parameters can help identify approaches that best complement one another to increase the rigor and translational significance of data.
Collapse
Affiliation(s)
- David K Meyerholz
- 1 Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jessica C Sieren
- 2 Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,3 Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amanda P Beck
- 4 Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Heather A Flaherty
- 5 Department of Veterinary Pathology, Iowa State University, Ames, IA, USA
| |
Collapse
|
24
|
Ward JM, Schofield PN, Sundberg JP. Reproducibility of histopathological findings in experimental pathology of the mouse: a sorry tail. Lab Anim (NY) 2017; 46:146-151. [PMID: 28328876 DOI: 10.1038/laban.1214] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022]
Abstract
Reproducibility of in vivo research using the mouse as a model organism depends on many factors, including experimental design, strain or stock, experimental protocols, and methods of data evaluation. Gross and histopathology are often the endpoints of such research and there is increasing concern about the accuracy and reproducibility of diagnoses in the literature. To reproduce histopathological results, the pathology protocol, including necropsy methods and slide preparation, should be followed by interpretation of the slides by a pathologist familiar with reading mouse slides and familiar with the consensus medical nomenclature used in mouse pathology. Likewise, it is important that pathologists are consulted as reviewers of manuscripts where histopathology is a key part of the investigation. The absence of pathology expertise in planning, executing and reviewing in vivo research using mice leads to questionable pathology-based findings and conclusions from studies, even in high-impact journals. We discuss the various aspects of this problem, give some examples from the literature and suggest solutions.
Collapse
Affiliation(s)
| | - Paul N Schofield
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK.,The Jackson Laboratory, Bar Harbor, Maine, USA
| | | |
Collapse
|
25
|
Bustin SA, Huggett JF. Reproducibility of biomedical research - The importance of editorial vigilance. BIOMOLECULAR DETECTION AND QUANTIFICATION 2017; 11:1-3. [PMID: 28331813 PMCID: PMC5348116 DOI: 10.1016/j.bdq.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many journal editors are a failing to implement their own authors' instructions, resulting in the publication of many articles that do not meet basic standards of transparency, employ unsuitable data analysis methods and report overly optimistic conclusions. This problem is particularly acute where quantitative measurements are made and results in the publication of papers that lack scientific rigor and contributes to the concerns with regard to the reproducibility of biomedical research. This hampers research areas such as biomarker identification, as reproducing all but the most striking changes is challenging and translation to patient care rare.
Collapse
Affiliation(s)
- Stephen A Bustin
- Faculty of Medical Science , Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| | - Jim F Huggett
- Analytical Microbiology, School of Bioscience and Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, GU2 7XH, United Kingdom
| |
Collapse
|
26
|
Speirs V, Morrisey B, Holen I, Blyth K, Carter P, Chelala C, Jones L. SEARCHBreast: An online resource designed to increase the efficiency of using materials derived from breast cancer studies in animals. J Pathol 2016; 240:120. [PMID: 27265197 PMCID: PMC5095870 DOI: 10.1002/path.4755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 05/16/2016] [Accepted: 06/01/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Valerie Speirs
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Bethny Morrisey
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Ingunn Holen
- Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | | | | |
Collapse
|
27
|
Arends MJ, White ES, Whitelaw CBA. Animal and cellular models of human disease. J Pathol 2016; 238:137-40. [PMID: 26482929 DOI: 10.1002/path.4662] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/17/2015] [Indexed: 02/02/2023]
Abstract
In this eighteenth (2016) Annual Review Issue of The Journal of Pathology, we present a collection of 19 invited review articles that cover different aspects of cellular and animal models of disease. These include genetically-engineered models, chemically-induced models, naturally-occurring models, and combinations thereof, with the focus on recent methodological and conceptual developments across a wide range of human diseases.
Collapse
Affiliation(s)
- Mark J Arends
- Centre for Comparative Pathology, University of Edinburgh, Edinburgh, UK
| | - Eric S White
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Michigan Medical School, Ann Arbor, USA
| | | |
Collapse
|
28
|
Sharma AK, Morrison JP, Rao DB, Pardo ID, Garman RH, Bolon B. Toxicologic Pathology Analysis for Translational Neuroscience. Int J Toxicol 2016; 35:410-9. [DOI: 10.1177/1091581816636372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A half-day American College of Toxicology continuing education course presented key issues often confronted by translational neuroscientists when predicting human risk from animal-derived toxicologic pathology data. Two talks correlated discrete structures with major functions in brains of rodents and nonrodents. The third lecture provided practical advice to obtain highly homologous rodent brain sections for quantitative morphometry in developmental neurotoxicity testing. The last presentation discussed demographic influences (eg, species, strain, sex, age), physiological attributes (eg, body composition, brain vascularity, pharmacokinetic/pharmacodynamic patterns, etc), and husbandry parameters (eg, group housing) recognized to impact the actions of neuroactive chemicals. Speakers described common cases of real-world challenges to animal data interpretation encountered when designing studies or extrapolating biological responses across species. The efficiency of translational neuroscience efforts will likely be enhanced as new methods (eg, high-resolution non-invasive imaging) improve our capability to cross-connect subtle anatomic and/or biochemical lesions with functional changes over time.
Collapse
Affiliation(s)
| | | | - Deepa B. Rao
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD, USA
| | | | | | | |
Collapse
|
29
|
Treuting PM, Snyder JM, Ikeno Y, Schofield PN, Ward JM, Sundberg JP. The Vital Role of Pathology in Improving Reproducibility and Translational Relevance of Aging Studies in Rodents. Vet Pathol 2016; 53:244-9. [PMID: 26792843 PMCID: PMC4835687 DOI: 10.1177/0300985815620629] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pathology is a discipline of medicine that adds great benefit to aging studies of rodents by integrating in vivo, biochemical, and molecular data. It is not possible to diagnose systemic illness, comorbidities, and proximate causes of death in aging studies without the morphologic context provided by histopathology. To date, many rodent aging studies do not utilize end points supported by systematic necropsy and histopathology, which leaves studies incomplete, contradictory, and difficult to interpret. As in traditional toxicity studies, if the effect of a drug, dietary treatment, or altered gene expression on aging is to be studied, systematic pathology analysis must be included to determine the causes of age-related illness, moribundity, and death. In this Commentary, the authors discuss the factors that should be considered in the design of aging studies in mice, with the inclusion of robust pathology practices modified after those developed by toxicologic and discovery research pathologists. Investigators in the field of aging must consider the use of histopathology in their rodent aging studies in this era of integrative and preclinical geriatric science (geroscience).
Collapse
Affiliation(s)
- P M Treuting
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - J M Snyder
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Y Ikeno
- Barshop Institute and Department of Pathology, University of Texas Health Science Center at San Antonio; Research Service and Geriatric Research and Education Clinical Center, Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - P N Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK The Jackson Laboratory, Bar Harbor, ME, USA
| | - J M Ward
- Global VetPathology, Montgomery Village, MD, USA
| | | |
Collapse
|