1
|
Izadi N, Strmiskova J, Anton M, Hausnerova J, Bartosik M. LAMP-based electrochemical platform for monitoring HPV genome integration at the mRNA level associated with higher risk of cervical cancer progression. J Med Virol 2024; 96:e70008. [PMID: 39420658 DOI: 10.1002/jmv.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Human papillomaviruses (HPVs) represent a diverse group of double-stranded DNA viruses associated with various types of cancers, notably cervical cancer. High-risk types of HPVs exhibit their oncogenic potential through the integration of their DNA into the host genome. This integration event contributes significantly to genomic instability and the progression of malignancy. However, traditional detection methods, such as immunohistochemistry or PCR-based assays, face inherent challenges, and thus alternative tools are being developed to fasten and simplify the analysis. Our study introduces an innovative biosensing platform that combines loop-mediated amplification with electrochemical (EC) analysis for the specific detection of HPV16 integration. By targeting key elements like the E7 mRNA, a central player in HPV integration, and the E2 viral gene transcript lost upon integration, we show clear distinction between episomal and integrated forms of HPV16. Our EC data confirmed higher E7 expression in HPV16-positive cell lines having integrated forms of viral genome, while E2 expression was diminished in cells with fully integrated genomes. Moreover, we revealed distinct expression patterns in cervical tissue of patients, correlating well with digital droplet PCR, qRT-PCR, or immunohistochemical staining. Our platform thus offers insights into HPV integration in clinical samples and facilitates further advancements in cervical cancer research and diagnostics.
Collapse
Affiliation(s)
- Nasim Izadi
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Johana Strmiskova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Milan Anton
- Department of Obstetrics and Gynecology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Jitka Hausnerova
- Department of Pathology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Martin Bartosik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
2
|
Catalán-Castorena O, Garibay-Cerdenares OL, Illades-Aguiar B, Rodríguez-Ruiz HA, Zubillaga-Guerrero MI, Leyva-Vázquez MA, Encarnación-Guevara S, Alarcón-Romero LDC. The role of HR-HPV integration in the progression of premalignant lesions into different cancer types. Heliyon 2024; 10:e34999. [PMID: 39170128 PMCID: PMC11336306 DOI: 10.1016/j.heliyon.2024.e34999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024] Open
Abstract
High-risk human papillomavirus (HR-HPV) is associated with the development of different types of cancer, such as cervical, head and neck (including oral, laryngeal, and oropharyngeal), vulvar, vaginal, penile, and anal cancers. The progression of premalignant lesions to cancer depends on factors associated with the host cell and the different epithelia infected by HPV, such as basal cells of the flat epithelium and the cells of the squamocolumnar transformation zone (STZ) found in the uterine cervix and the anal canal, which is rich in heparan sulfate proteoglycans and integrin-like receptors. On the other hand, factors associated with the viral genotype, infection with multiple viruses, viral load, viral persistence, and type of integration determine the viral breakage pattern and the sites at which the virus integrates into the host cell genome (introns, exons, intergenic regions), inducing the loss of function of tumor suppressor genes and increasing oncogene expression. This review describes the role of viral integration and the molecular mechanisms induced by HR-HPV in different types of tissues. The purpose of this review is to identify the common factors associated with the role of integration events in the progression of premalignant lesions in different types of cancer.
Collapse
Affiliation(s)
- Oscar Catalán-Castorena
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Olga Lilia Garibay-Cerdenares
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
- CONAHCyT-Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Berenice Illades-Aguiar
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Hugo Alberto Rodríguez-Ruiz
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Ma. Isabel Zubillaga-Guerrero
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Marco Antonio Leyva-Vázquez
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | | | - Luz del Carmen Alarcón-Romero
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| |
Collapse
|
3
|
Graham SV. HPV and RNA Binding Proteins: What We Know and What Remains to Be Discovered. Viruses 2024; 16:783. [PMID: 38793664 PMCID: PMC11126060 DOI: 10.3390/v16050783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Papillomavirus gene regulation is largely post-transcriptional due to overlapping open reading frames and the use of alternative polyadenylation and alternative splicing to produce the full suite of viral mRNAs. These processes are controlled by a wide range of cellular RNA binding proteins (RPBs), including constitutive splicing factors and cleavage and polyadenylation machinery, but also factors that regulate these processes, for example, SR and hnRNP proteins. Like cellular RNAs, papillomavirus RNAs have been shown to bind many such proteins. The life cycle of papillomaviruses is intimately linked to differentiation of the epithelial tissues the virus infects. For example, viral late mRNAs and proteins are expressed only in the most differentiated epithelial layers to avoid recognition by the host immune response. Papillomavirus genome replication is linked to the DNA damage response and viral chromatin conformation, processes which also link to RNA processing. Challenges with respect to elucidating how RBPs regulate the viral life cycle include consideration of the orchestrated spatial aspect of viral gene expression in an infected epithelium and the epigenetic nature of the viral episomal genome. This review discusses RBPs that control viral gene expression, and how the connectivity of various nuclear processes might contribute to viral mRNA production.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
4
|
Singh AK, Walavalkar K, Tavernari D, Ciriello G, Notani D, Sabarinathan R. Cis-regulatory effect of HPV integration is constrained by host chromatin architecture in cervical cancers. Mol Oncol 2024; 18:1189-1208. [PMID: 38013620 PMCID: PMC11076994 DOI: 10.1002/1878-0261.13559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Human papillomavirus (HPV) infections are the primary drivers of cervical cancers, and often HPV DNA gets integrated into the host genome. Although the oncogenic impact of HPV encoded genes is relatively well known, the cis-regulatory effect of integrated HPV DNA on host chromatin structure and gene regulation remains less understood. We investigated genome-wide patterns of HPV integrations and associated host gene expression changes in the context of host chromatin states and topologically associating domains (TADs). HPV integrations were significantly enriched in active chromatin regions and depleted in inactive ones. Interestingly, regardless of chromatin state, genomic regions flanking HPV integrations showed transcriptional upregulation. Nevertheless, upregulation (both local and long-range) was mostly confined to TADs with integration, but not affecting adjacent TADs. Few TADs showed recurrent integrations associated with overexpression of oncogenes within them (e.g. MYC, PVT1, TP63 and ERBB2) regardless of proximity. Hi-C and 4C-seq analyses in cervical cancer cell line (HeLa) demonstrated chromatin looping interactions between integrated HPV and MYC/PVT1 regions (~ 500 kb apart), leading to allele-specific overexpression. Based on these, we propose HPV integrations can trigger multimodal oncogenic activation to promote cancer progression.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Kaivalya Walavalkar
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Daniele Tavernari
- Department of Computational BiologyUniversity of Lausanne (UNIL)Switzerland
- Swiss Cancer Center LemanLausanneSwitzerland
- Swiss Institute for Experimental Cancer Research (ISREC), EPFLLausanneSwitzerland
| | - Giovanni Ciriello
- Department of Computational BiologyUniversity of Lausanne (UNIL)Switzerland
- Swiss Cancer Center LemanLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Dimple Notani
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | | |
Collapse
|
5
|
Chatterjee S, Starrett GJ. Microhomology-mediated repair machinery and its relationship with HPV-mediated oncogenesis. J Med Virol 2024; 96:e29674. [PMID: 38757834 DOI: 10.1002/jmv.29674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Human Papillomaviruses (HPV) are a diverse family of non-enveloped dsDNA viruses that infect the skin and mucosal epithelia. Persistent HPV infections can lead to cancer frequently involving integration of the virus into the host genome, leading to sustained oncogene expression and loss of capsid and genome maintenance proteins. Microhomology-mediated double-strand break repair, a DNA double-stranded breaks repair pathway present in many organisms, was initially thought to be a backup but it's now seen as vital, especially in homologous recombination-deficient contexts. Increasing evidence has identified microhomology (MH) near HPV integration junctions, suggesting MH-mediated repair pathways drive integration. In this comprehensive review, we present a detailed summary of both the mechanisms underlying MH-mediated repair and the evidence for its involvement in HPV integration in cancer. Lastly, we highlight the involvement of these processes in the integration of other DNA viruses and the broader implications on virus lifecycles and host innate immune response.
Collapse
Affiliation(s)
- Subhajit Chatterjee
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriel J Starrett
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Yan X, Mischel P, Chang H. Extrachromosomal DNA in cancer. Nat Rev Cancer 2024; 24:261-273. [PMID: 38409389 DOI: 10.1038/s41568-024-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
Extrachromosomal DNA (ecDNA) has recently been recognized as a major contributor to cancer pathogenesis that is identified in most cancer types and is associated with poor outcomes. When it was discovered over 60 years ago, ecDNA was considered to be rare, and its impact on tumour biology was not well understood. The application of modern imaging and computational techniques has yielded powerful new insights into the importance of ecDNA in cancer. The non-chromosomal inheritance of ecDNA during cell division results in high oncogene copy number, intra-tumoural genetic heterogeneity and rapid tumour evolution that contributes to treatment resistance and shorter patient survival. In addition, the circular architecture of ecDNA results in altered patterns of gene regulation that drive elevated oncogene expression, potentially enabling the remodelling of tumour genomes. The generation of clusters of ecDNAs, termed ecDNA hubs, results in interactions between enhancers and promoters in trans, yielding a new paradigm in oncogenic transcription. In this Review, we highlight the rapid advancements in ecDNA research, providing new insights into ecDNA biogenesis, maintenance and transcription and its role in promoting tumour heterogeneity. To conclude, we delve into a set of unanswered questions whose answers will pave the way for the development of ecDNA targeted therapeutic approaches.
Collapse
Affiliation(s)
- Xiaowei Yan
- Department of Dermatology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Paul Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Howard Chang
- Department of Dermatology, Stanford University, Stanford, CA, USA.
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Yuan S, Qian C, Zhang H, Xing Y. Preliminary study of HPV integration status on the occurrence and development of vaginal intraepithelial neoplasia. J Obstet Gynaecol Res 2024; 50:478-484. [PMID: 38072997 DOI: 10.1111/jog.15855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/27/2023] [Indexed: 03/04/2024]
Abstract
AIM The aim of this study was to investigate how the integration status of HPV in the vaginal epithelium affects the development of vaginal intraepithelial neoplasia (VaIN). METHODS Twenty-four vaginal tissues were collected before applying high-throughput viral integration detection (HIVID), medical records of them were documented, including age, thin-prep cytologic test (TCT) and HPV test results, colposcopic biopsy pathology, and other clinical data, such as history of total hysterectomy for cervical lesions, whether they were infected with HPV16/18 with a follow-up span of 2 years. We summarized the distribution of HPV integration on the host chromosome and HPV type, as well as the hotspot integration gene and its role in the development of VaIN. RESULTS In this study, 24 cases suffered from VaIN were involved. HPV integration was detected in 11 cases; furthermore, we discovered HPV 16 and 73, chromosome 1 and 2 possessed most HPV integration sites while EMBP1, CLO5A1, EHF, ELF5 as dominate hot spots. Taken clinical outcome into account, we found a significant difference between HPV integration occurrence and VaIN (p = 0.011). CONCLUSION (1) This study found a statistical difference between HPV integration and the occurrence of VaIN; (2) HPV integration may provide a new clinical predictor for VaIN and facilitate risk assessment and stratified management of high-risk patients.
Collapse
Affiliation(s)
- Shuning Yuan
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Qian
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hailong Zhang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Xing
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Li X, Ren C, Huang A, Zhao Y, Wang L, Shen H, Gao C, Chen B, Zhu T, Xiong J, Zhu D, Huang Y, Ding J, Yuan Z, Ding W, Wang H. PIBF1 regulates multiple gene expression via impeding long-range chromatin interaction to drive the malignant transformation of HPV16 integration epithelial cells. J Adv Res 2024; 57:163-180. [PMID: 37182685 PMCID: PMC10918350 DOI: 10.1016/j.jare.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
INTRODUCTION Human papillomavirus (HPV) integration can induce gene expression dysregulation by destroying higher-order chromatin structure in cervical cancer. OBJECTIVES We established a 13q22 site-specific HPV16 gene knock-in cell model to interrogate the changes in chromatin structure at the initial stages of host cell malignant transformation. METHODS We designed a CRISPR-Cas9 system with sgRNA targeting 13q22 site and constructed the HPV16 gene donor. Cells were cotransfected, screened, and fluorescence sorted. The whole genome sequencing (WGS) was used to confirm the precise HPV16 gene integration site. Western blot and qRT-PCR were used to measure gene expression. In vitro and in vivo analysis were performed to estimate the tumorigenic potential of the HPV16 knock-in cell model. Combined Hi-C, chromatin immunoprecipitation and RNA sequencing analyses revealed correlations between chromatin structure and gene expression. We performed a coimmunoprecipitation assay with anti-PIBF1 antibody to identify endogenous interacting proteins. In vivo analysis was used to determine the role of PIBF1 in the tumor growth of cervical cancer cells. RESULTS We successfully established a 13q22 site-specific HPV16 gene knock-in cell model. We found that HPV integration promoted cell proliferation, invasion and stratified growth in vitro, and monoclonal proliferation in vivo. HPV integration divided the affected topologically associated domain (TAD) into two smaller domains, and the progesterone-induced blocking factor 1 (PIBF1) gene near the integration site was upregulated, although PIBF1 was not enriched at the domain boundary by CUT-Tag signal analysis. Moreover, PIBF1 was found to interact with the cohesin complex off chromatin to reduce contact domain formation by disrupting the cohesin ring-shaped structure, causing dysregulation of tumorigenesis-related genes. Xenograft experiments determined the role of PIBF1 in the proliferation in cervical cancer cells. CONCLUSION We highlight that PIBF1, a potential chromatin structure regulatory protein, is activated by HPV integration, which provides new insights into HPV integration-driven cervical carcinogenesis.
Collapse
Affiliation(s)
- Xiaomin Li
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Ci Ren
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anni Huang
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Zhao
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, China
| | - Liming Wang
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Shen
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chun Gao
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bingxin Chen
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tong Zhu
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinfeng Xiong
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Da Zhu
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianlin Ding
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zan Yuan
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, China.
| | - Wencheng Ding
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hui Wang
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Nachira D, Congedo MT, D’Argento E, Meacci E, Evangelista J, Sassorossi C, Calabrese G, Nocera A, Kuzmych K, Santangelo R, Rindi G, Margaritora S. The Role of Human Papilloma Virus (HPV) in Primary Lung Cancer Development: State of the Art and Future Perspectives. Life (Basel) 2024; 14:110. [PMID: 38255725 PMCID: PMC10817459 DOI: 10.3390/life14010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Notably, the incidence of lung cancer among never-smokers, predominantly women, has been rising in recent years. Among the various implicated risk factors, human papilloma virus (HPV) may play a role in the development of NSCLC in a certain subset of patients. The prevalence of high-risk HPV-DNA within human neoplastic lung cells varies across the world; however, the carcinogenetic role of HPV in NSCLC has not been completely understood. Bloodstream could be one of the routes of transmission from infected sites to the lungs, along with oral (through unprotected oral sex) and airborne transmission. Previous studies reported an elevated risk of NSCLC in patients with prior HPV-related tumors, such as cervical, laryngeal, or oropharyngeal cancer, with better prognosis for HPV-positive lung cancers compared to negative forms. On the other hand, 16% of NSCLC patients present circulating HPV-DNA in peripheral blood along with miRNAs expression. Typically, these patients have a poorly differentiated NSCLC, often diagnosed at an advanced stage. However, HPV-positive lung cancers seem to have a better response to target therapies (EGFR) and immune checkpoint inhibitors and show an increased sensitivity to platinum-based treatments. This review summarizes the current evidence regarding the role of HPV in NSCLC development, especially among patients with a history of HPV-related cancers. It also examines the diagnostic and prognostic significance of HPV, investigating new future perspectives to enhance cancer screening, diagnostic protocols, and the development of more targeted therapies tailored to specific cohorts of NSCLC patients with confirmed HPV infection.
Collapse
Affiliation(s)
- Dania Nachira
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| | - Maria Teresa Congedo
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| | - Ettore D’Argento
- Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Elisa Meacci
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| | - Jessica Evangelista
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| | - Carolina Sassorossi
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| | - Giuseppe Calabrese
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| | - Adriana Nocera
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| | - Khrystyna Kuzmych
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| | - Rosaria Santangelo
- Institute of Microbiology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Guido Rindi
- Institute of Pathology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Stefano Margaritora
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| |
Collapse
|
10
|
Cui X, Li Y, Zhang C, Qi Y, Sun Y, Li W. Multiple HPV integration mode in the cell lines based on long-reads sequencing. Front Microbiol 2023; 14:1294146. [PMID: 38169727 PMCID: PMC10758443 DOI: 10.3389/fmicb.2023.1294146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Background The integration of human papillomavirus (HPV) is closely related to the occurrence of cervical cancer. However, little is known about the complete state of HPV integration into the host genome. Methods In this study, three HPV-positive cell lines, HeLa, SiHa, and CaSki, were subjected to NANOPORE long-read sequencing to detect HPV integration. Analysis of viral integration patterns using independently developed software (HPV-TSD) yielded multiple complete integration patterns for the three HPV cell lines. Results We found distinct differences between the integration patterns of HPV18 and HPV16. Furthermore, the integration characteristics of the viruses were significantly different, even though they all belonged to HPV16 integration. The HPV integration in the CaSki cells was relatively complex. The HPV18 integration status in HeLa cells was the dominant, whereas the percentage of integrated HPV 16 in SiHa and CaSki cells was significantly lower. In addition, the virus sequences in the HeLa cells were incomplete and existed in an integrated state. We also identified a large number of tandem repeats in HPV16 and HPV18 integration. Our study not only clarified the feasibility of high-throughput long-read sequencing in the study of HPV integration, but also explored a variety of HPV integration models, and confirmed that viral integration is an important form of HPV in cell lines. Conclusion Elucidating HPV integration patterns will provide critical guidance for developing a detection algorithm for HPV integration, as well as the application of virus integration in clinical practice and drug research and development.
Collapse
Affiliation(s)
- Xiaofang Cui
- Jining Medical University, Jining, Shandong, China
- Department of Bioinformatics, School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | | | - Chuanpeng Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yanwei Qi
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | | | - Weiyang Li
- Jining Medical University, Jining, Shandong, China
- Department of Bioinformatics, School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
11
|
Na J, Li Y, Wang J, Wang X, Lu J, Han S. The correlation between multiple HPV infections and the occurrence, development, and prognosis of cervical cancer. Front Microbiol 2023; 14:1220522. [PMID: 37577444 PMCID: PMC10416435 DOI: 10.3389/fmicb.2023.1220522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Cervical carcinoma is the fourth female malignant tumor in the world, and the persistent infection of high-risk human papillomavirus (HPV) is recognized as the most common cause. This article studies the correlation between multiple HPV infections and the occurrence, development, and prognosis of cervical cancer in order to provide more references for clinical diagnosis and treatment. We conducted a retrospective analysis of the clinical data of 400 cervical carcinoma patients admitted to our hospital from 2015 to 2023. The collected patient data include age, HPV infection status, tumor size and morphology, local infiltration depth, diagnostic staging, surgical approach, vascular cancer thrombus status, lymph node status, and postoperative HPV follow-up status. We use SPSS statistical software for data analysis. Our research shows that the high-risk age group for cervical carcinoma is concentrated between 41 and 60 years old, which is basically consistent with the age range of the high incidence of HPV infection. In the statistics for HPV infection types, ~67.7% of patients are single HPV-infected, 25.29% are double infected, and 7.00% are infected with three or more types of HPV. Among the multiple HPV infections, most of the patients are younger than 40 years old and older than 70 years old, with double infection accounting for the majority. The top five HPV subtypes with high detection rates belong to high-risk subtypes, which are the HPV16, 18, 58, 33, and 52 subtypes, respectively. There was no significant relationship between multiple HPV infections and cervical cancer stage, lesion size, pathological tissue type, tissue differentiation degree/vascular cancer thrombus, and lymph node metastasis, and there was no significant difference in the results between the groups. In summary, multiple types of HPV infection in the cervix are common. We found that multiple infections, mainly HPV16, are closely related to cervical cancer. For the HPV16, 18, 58, 33, and 52 subtypes of infection, especially for patients younger than 40 years old and older than 70 years old, priority should be given to prevention and treatment. The relationship between multiple HPV infections and the progression and prognosis of cervical carcinoma requires further research, which could better guide cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | | | | | - JunLing Lu
- Department of Gynecology and Obstetrics, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shichao Han
- Department of Gynecology and Obstetrics, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Kusakabe M, Taguchi A, Tanikawa M, Hoshi D, Tsuchimochi S, Qian X, Toyohara Y, Kawata A, Wagatsuma R, Yamaguchi K, Yamamoto Y, Ikemura M, Sone K, Mori-Uchino M, Matsunaga H, Tsuruga T, Nagamatsu T, Kukimoto I, Wada-Hiraike O, Kawazu M, Ushiku T, Takeyama H, Oda K, Kawana K, Hippo Y, Osuga Y. Application of organoid culture from HPV18-positive small cell carcinoma of the uterine cervix for precision medicine. Cancer Med 2023; 12:8476-8489. [PMID: 36691316 PMCID: PMC10134306 DOI: 10.1002/cam4.5588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/27/2022] [Accepted: 12/17/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Small cell carcinoma of the uterine cervix (SCCC) is a rare and highly malignant human papillomavirus (HPV)-associated cancer in which human genes related to the integration site can serve as a target for precision medicine. The aim of our study was to establish a workflow for precision medicine of HPV-associated cancer using patient-derived organoid. METHODS Organoid was established from the biopsy of a patient diagnosed with HPV18-positive SCCC. Therapeutic targets were identified by whole exome sequencing (WES) and RNA-seq analysis. Drug sensitivity testing was performed using organoids and organoid-derived mouse xenograft model. RESULTS WES revealed that both the original tumor and organoid had 19 somatic variants in common, including the KRAS p.G12D pathogenic variant. Meanwhile, RNA-seq revealed that HPV18 was integrated into chromosome 8 at 8q24.21 with increased expression of the proto-oncogene MYC. Drug sensitivity testing revealed that a KRAS pathway inhibitor exerted strong anti-cancer effects on the SCCC organoid compared to a MYC inhibitor, which were also confirmed in the xenograft model. CONCLUSION In this study, we confirmed two strategies for identifying therapeutic targets of HPV-derived SCCC, WES for identifying pathogenic variants and RNA sequencing for identifying HPV integration sites. Organoid culture is an effective tool for unveiling the oncogenic process of rare tumors and can be a breakthrough for the development of precision medicine for patients with HPV-positive SCCC.
Collapse
Affiliation(s)
- Misako Kusakabe
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Hoshi
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Saki Tsuchimochi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Xi Qian
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Toyohara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Kawata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryota Wagatsuma
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,CBBD-OIL, AIST-Waseda University, Tokyo, Japan
| | - Kohei Yamaguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Yamamoto
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masako Ikemura
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mayuyo Mori-Uchino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroko Matsunaga
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Tetsushi Tsuruga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,CBBD-OIL, AIST-Waseda University, Tokyo, Japan.,Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshitaka Hippo
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Kajitani N, Schwartz S. The role of RNA-binding proteins in the processing of mRNAs produced by carcinogenic papillomaviruses. Semin Cancer Biol 2022; 86:482-496. [PMID: 35181475 DOI: 10.1016/j.semcancer.2022.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/08/2023]
Abstract
Human papillomaviruses (HPV) are epitheliotropic DNA tumor viruses that are prevalent in the human population. A subset of the HPVs termed high-risk HPVs (HR-HPVs) are causative agents of anogenital cancers and head-and-neck cancers. Cancer is the result of persistent high-risk HPV infections that have not been cleared by the immune system of the host. These infections are characterized by dysregulated HPV gene expression, in particular constitutive high expression of the HPV E6 and E7 oncogenes and absence of the highly immunogenic viral L1 and L2 capsid proteins. HPVs make extensive use of alternative mRNA splicing to express its genes and are therefore highly dependent on cellular RNA-binding proteins for proper gene expression. Levels of RNA-binding proteins are altered in HPV-containing premalignant cervical lesions and in cervical cancer. Here we review our current knowledge of RNA-binding proteins that control HPV gene expression. We focus on RNA-binding proteins that control expression of the E6 and E7 oncogenes since they initiate and drive development of cancer and on the immunogenic L1 and L2 proteins as there silencing may contribute to immune evasion during carcinogenesis. Furthermore, cellular RNA-binding proteins are essential for HPV gene expression and as such may be targets for therapy to HPV infections and HPV-driven cancers.
Collapse
Affiliation(s)
- Naoko Kajitani
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC-B9, 751 23, Uppsala, Sweden; Department of Laboratory Medicine, Lund University, BMC-B13, 221 84, Lund, Sweden
| | - Stefan Schwartz
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC-B9, 751 23, Uppsala, Sweden; Department of Laboratory Medicine, Lund University, BMC-B13, 221 84, Lund, Sweden.
| |
Collapse
|
14
|
Ramberg IMS. Human papillomavirus-related neoplasia of the ocular adnexa. Acta Ophthalmol 2022; 100 Suppl 272:3-33. [PMID: 36203222 PMCID: PMC9827891 DOI: 10.1111/aos.15244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 01/12/2023]
Abstract
Human papillomaviruses (HPV) are involved in approximately 5% of solid cancers worldwide. The mucosotropic genotypes infect the stratified epithelium of various locations, where persistent infection may lead to invasive carcinomas. While the causative role of HPV in certain anogenital and head and neck carcinomas is well established, the role of HPV in carcinomas arising in the mucosal membranes of the ocular adnexal tissue (the lacrimal drainage system and the conjunctiva) has been a topic of great uncertainty. Therefore, we conducted a series of studies to assess the correlation between HPV and carcinomas arising in the mucosa of the ocular adnexal tissue and characterize the clinical, histopathological, and genomic features of the tumors in the context of HPV status in a Danish nationwide cohort. We collected clinical and histopathological data and tumor specimens from patients with carcinomas of the conjunctiva and the lacrimal drainage system, and their potential precursors, identified in Danish nationwide registries. The HPV status of the tumors was determined by the combined use of HPV DNA polymerase chain reaction (PCR), HPV E6/E7 mRNA in-situ hybridization, and p16 immunohistochemistry. The genomic profile was investigated by high-throughput DNA sequencing targeting 523 cancer-relevant genes. The literature to date on carcinomas of the lacrimal drainage system and the conjunctiva was summarized. In the Danish cohort, 67% of all carcinomas of the lacrimal drainage system and 21% of all conjunctival carcinomas were HPV-positive. HPV16 was the most frequently implicated genotype. A full-thickness expression of the viral oncogenes E6 and E7 was evident in almost all HPV DNA-positive cases. The HPV-positive carcinomas of the conjunctiva and the lacrimal drainage system shared histopathological and genomic features distinct from their HPV-negative counterparts. The HPV-positive carcinomas were characterized by a non-keratinizing morphology, p16 overexpression, high transcriptional activity of HPV E6/E7, and frequent pathogenic variants in the PI3K-AKT signaling cascade. In contrast, the HPV-negative carcinomas were characterized by a keratinizing morphology, lack of p16 and E6/E7 expression, and frequent somatic pathogenic variants in TP53, CDKN2A, and RB1. Among the patients with conjunctival tumors, HPV positivity was associated with a younger age at diagnosis and a higher risk of recurrence. In conclusion, the results support an etiological role of HPV in a subset of conjunctival and LDS carcinomas and their precursor lesions. Our investigations have shown that the HPV-positive carcinomas of the ocular adnexa share genomic and phenotypic characteristics with HPV-positive carcinomas of other anatomical locations. Therefore, these patients may be eligible for inclusion in future basket trials and future treatment regimens tailored to the more frequently occurring HPV-positive carcinomas of other locations. Future research will further elucidate the diagnostic, prognostic, and predictive role of HPV in these carcinomas.
Collapse
|
15
|
da Silva J, da Costa CC, de Farias Ramos I, Laus AC, Sussuchi L, Reis RM, Khayat AS, Cavalli LR, Pereira SR. Upregulated miRNAs on the TP53 and RB1 Binding Seedless Regions in High-Risk HPV-Associated Penile Cancer. Front Genet 2022; 13:875939. [PMID: 35812732 PMCID: PMC9263206 DOI: 10.3389/fgene.2022.875939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer development by the human papillomavirus (HPV) infection can occur through the canonical HPV/p53/RB1 pathway mediated by the E2/E6/E7 viral oncoproteins. During the transformation process, HPV inserts its genetic material into host Integration Sites (IS), affecting coding genes and miRNAs. In penile cancer (PeCa) there is limited data on the miRNAs that regulate mRNA targets associated with HPV, such as the TP53 and RB1 genes. Considering the high frequency of HPV infection in PeCa patients in Northeast Brazil, global miRNA expression profiling was performed in high-risk HPV-associated PeCa that presented with TP53 and RB1 mRNA downregulated expression. The miRNA expression profile of 22 PeCa tissue samples and five non-tumor penile tissues showed 507 differentially expressed miRNAs: 494 downregulated and 13 upregulated (let-7a-5p, miR-130a-3p, miR-142-3p, miR-15b-5p miR-16-5p, miR-200c-3p, miR-205-5p, miR-21-5p, miR-223-3p, miR-22-3p, miR-25-3p, miR-31-5p and miR-93-5p), of which 11 were identified to be in HPV16-IS and targeting TP53 and RB1 genes. One hundred and thirty-one and 490 miRNA binding sites were observed for TP53 and RB1, respectively, most of which were in seedless regions. These findings suggest that up-regulation of miRNA expression can directly repress TP53 and RB1 expression by their binding sites in the non-canonical seedless regions.
Collapse
Affiliation(s)
- Jenilson da Silva
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, Brazil
| | - Carla Cutrim da Costa
- Degree in Biological Sciences, Department of Biology, Federal University of Maranhão, São Luís, Brazil
| | - Ingryd de Farias Ramos
- Postgraduate Program in Oncology and Medical Sciences, Federal University of Pará, Belém, Brazil
| | - Ana Carolina Laus
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Luciane Sussuchi
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - André Salim Khayat
- Oncology Research Center, Federal University of Pará, Belém, Brazil
- Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Silma Regina Pereira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, Brazil
- *Correspondence: Silma Regina Pereira,
| |
Collapse
|
16
|
Javadzadeh S, Rajkumar U, Nguyen N, Sarmashghi S, Luebeck J, Shang J, Bafna V. FastViFi: Fast and accurate detection of (Hybrid) Viral DNA and RNA. NAR Genom Bioinform 2022; 4:lqac032. [PMID: 35493723 PMCID: PMC9041341 DOI: 10.1093/nargab/lqac032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/13/2022] Open
Abstract
DNA viruses are important infectious agents known to mediate a large number of human diseases, including cancer. Viral integration into the host genome and the formation of hybrid transcripts are also associated with increased pathogenicity. The high variability of viral genomes, however requires the use of sensitive ensemble hidden Markov models that add to the computational complexity, often requiring > 40 CPU-hours per sample. Here, we describe FastViFi, a fast 2-stage filtering method that reduces the computational burden. On simulated and cancer genomic data, FastViFi improved the running time by 2 orders of magnitude with comparable accuracy on challenging data sets. Recently published methods have focused on identification of location of viral integration into the human host genome using local assembly, but do not extend to RNA. To identify human viral hybrid transcripts, we additionally developed ensemble Hidden Markov Models for the Epstein Barr virus (EBV) to add to the models for Hepatitis B (HBV), Hepatitis C (HCV) viruses and the Human Papillomavirus (HPV), and used FastViFi to query RNA-seq data from Gastric cancer (EBV) and liver cancer (HBV/HCV). FastViFi ran in <10 minutes per sample and identified multiple hybrids that fuse viral and human genes suggesting new mechanisms for oncoviral pathogenicity. FastViFi is available at https://github.com/sara-javadzadeh/FastViFi.
Collapse
Affiliation(s)
- Sara Javadzadeh
- Department of Computer Science & Engineering, UC San Diego, La Jolla, California, USA
| | - Utkrisht Rajkumar
- Department of Computer Science & Engineering, UC San Diego, La Jolla, California, USA
| | - Nam Nguyen
- Boundless Bio, Inc. 11099 N Torrey Pines Rd, La Jolla, CA, USA
| | - Shahab Sarmashghi
- Department of Electrical and Computer Engineering, UC San Diego, La Jolla, California, USA
| | - Jens Luebeck
- Bioinformatics & Systems Biology Graduate Program, UC San Diego, La Jolla, California, USA
| | - Jingbo Shang
- Department of Computer Science & Engineering, UC San Diego, La Jolla, California, USA
| | - Vineet Bafna
- Department of Computer Science & Engineering, UC San Diego, La Jolla, California, USA
- Boundless Bio, Inc. 11099 N Torrey Pines Rd, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, California, USA
| |
Collapse
|
17
|
Glathar AR, Oyelakin A, Gluck C, Bard J, Sinha S. p63 Directs Subtype-Specific Gene Expression in HPV+ Head and Neck Squamous Cell Carcinoma. Front Oncol 2022; 12:879054. [PMID: 35712470 PMCID: PMC9192977 DOI: 10.3389/fonc.2022.879054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
The complex heterogeneity of head and neck squamous cell carcinoma (HNSCC) reflects a diverse underlying etiology. This heterogeneity is also apparent within Human Papillomavirus-positive (HPV+) HNSCC subtypes, which have distinct gene expression profiles and patient outcomes. One aggressive HPV+ HNSCC subtype is characterized by elevated expression of genes involved in keratinization, a process regulated by the oncogenic transcription factor ΔNp63. Furthermore, the human TP63 gene locus is a frequent HPV integration site and HPV oncoproteins drive ΔNp63 expression, suggesting an unexplored functional link between ΔNp63 and HPV+ HNSCC. Here we show that HPV+ HNSCCs can be molecularly stratified according to ΔNp63 expression levels and derive a ΔNp63-associated gene signature profile for such tumors. We leveraged RNA-seq data from p63 knockdown cells and ChIP-seq data for p63 and histone marks from two ΔNp63high HPV+ HNSCC cell lines to identify an epigenetically refined ΔNp63 cistrome. Our integrated analyses reveal crucial ΔNp63-bound super-enhancers likely to mediate HPV+ HNSCC subtype-specific gene expression that is anchored, in part, by the PI3K-mTOR pathway. These findings implicate ΔNp63 as a key regulator of essential oncogenic pathways in a subtype of HPV+ HNSCC that can be exploited as a biomarker for patient stratification and treatment choices.
Collapse
|
18
|
Hao C, Zheng Y, Jönsson J, Cui X, Yu H, Wu C, Kajitani N, Schwartz S. hnRNP G/RBMX enhances HPV16 E2 mRNA splicing through a novel splicing enhancer and inhibits production of spliced E7 oncogene mRNAs. Nucleic Acids Res 2022; 50:3867-3891. [PMID: 35357488 PMCID: PMC9023273 DOI: 10.1093/nar/gkac213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 12/27/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) E2 is an essential HPV16 protein. We have investigated how HPV16 E2 expression is regulated and have identifed a splicing enhancer that is required for production of HPV16 E2 mRNAs. This uridine-less splicing enhancer sequence (ACGAGGACGAGGACAAGGA) contains 84% adenosine and guanosine and 16% cytosine and consists of three ‘AC(A/G)AGG’-repeats. Mutational inactivation of the splicing enhancer reduced splicing to E2-mRNA specific splice site SA2709 and resulted in increased levels of unspliced E1-encoding mRNAs. The splicing enhancer sequence interacted with cellular RNA binding protein hnRNP G that promoted splicing to SA2709 and enhanced E2 mRNA production. The splicing-enhancing function of hnRNP G mapped to amino acids 236–286 of hnRNP G that were also shown to interact with splicing factor U2AF65. The interactions between hnRNP G and HPV16 E2 mRNAs and U2AF65 increased in response to keratinocyte differentiation as well as by the induction of the DNA damage response (DDR). The DDR reduced sumoylation of hnRNP G and pharmacological inhibition of sumoylation enhanced HPV16 E2 mRNA splicing and interactions between hnRNP G and E2 mRNAs and U2AF65. Intriguingly, hnRNP G also promoted intron retention of the HPV16 E6 coding region thereby inhibiting production of spliced E7 oncogene mRNAs.
Collapse
Affiliation(s)
- Chengyu Hao
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Yunji Zheng
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden.,School of Pharmacy, Binzhou Medical University, 264003 Yantai, China
| | - Johanna Jönsson
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC-B9, 751 23 Uppsala, Sweden.,Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Xiaoxu Cui
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Haoran Yu
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Chengjun Wu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, 116024 Dalian, China
| | - Naoko Kajitani
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC-B9, 751 23 Uppsala, Sweden.,Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Stefan Schwartz
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC-B9, 751 23 Uppsala, Sweden.,Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| |
Collapse
|
19
|
Winkelmann R, Bankov K, von der Grün J, Cinatl J, Wild PJ, Vallo S, Demes M. The routine use of LCD-Array hybridisation technique for HPV subtyping in the diagnosis of penile carcinoma compared to other methods. BMC Urol 2022; 22:10. [PMID: 35093044 PMCID: PMC8801096 DOI: 10.1186/s12894-022-00962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Routine human papillomavirus (HPV) testing is performed in cervival cancer and is required for classification of some head and neck cancers. In penile cancer a statement on HPV association of the carcinoma is required. In most cases p16 immunohistochemistry as a surrogate marker is applied in this setting. Since differing clinical outcomes for HPV positive and HPV negative tumors are described we await HPV testing to be requested more frequently by clinicians, also in the context of HPV vaccination, where other HPV subtypes are expected to emerge. METHOD Therefore, a cohort of archived, formalin-fixed paraffin embedded (FFPE) penile neoplasias was stained for p16 and thereafter tested for HPV infection status via PCR based methods. Additionally to Sanger sequencing, we chose LCD-Array technique (HPV 3.5 LCD-Array Kit, Chipron; LCD-Array) for the detection of HPV in our probes expecting a less time consuming and sensitive HPV test for our probes. RESULTS We found that LCD-Array is a sensitive and feasible method for HPV testing in routine diagnostics applicable to FFPE material in our cohort. Our cohort of penile carcinomas and carcinomas in situ was associated with HPV infection in 61% of cases. We detected no significant association between HPV infection status and histomorphological tumor characteristics as well as overall survival. CONCLUSIONS We showed usability of molecular HPV testing on a cohort of archived penile carcinomas. To the best of our knowledge, this is the first study investigating LCD-Array technique on a cohort of penile neoplasias.
Collapse
Affiliation(s)
- Ria Winkelmann
- Dr. Senckenberg Institute of Pathology, University of Frankfurt, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| | - Katrin Bankov
- Dr. Senckenberg Institute of Pathology, University of Frankfurt, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Jens von der Grün
- Department of Radiation Oncology, University of Frankfurt, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, University of Frankfurt, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, University of Frankfurt, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Stefan Vallo
- Institute of Medical Virology, University of Frankfurt, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Melanie Demes
- Dr. Senckenberg Institute of Pathology, University of Frankfurt, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Yang S, Zhao Q, Tang L, Chen Z, Wu Z, Li K, Lin R, Chen Y, Ou D, Zhou L, Xu J, Qin Q. Whole Genome Assembly of Human Papillomavirus by Nanopore Long-Read Sequencing. Front Genet 2022; 12:798608. [PMID: 35058971 PMCID: PMC8764290 DOI: 10.3389/fgene.2021.798608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) is a causal agent for most cervical cancers. The physical status of the HPV genome in these cancers could be episomal, integrated, or both. HPV integration could serve as a biomarker for clinical diagnosis, treatment, and prognosis. Although whole-genome sequencing by next-generation sequencing (NGS) technologies, such as the Illumina sequencing platform, have been used for detecting integrated HPV genome in cervical cancer, it faces challenges of analyzing long repeats and translocated sequences. In contrast, Oxford nanopore sequencing technology can generate ultra-long reads, which could be a very useful tool for determining HPV genome sequence and its physical status in cervical cancer. As a proof of concept, in this study, we completed whole genome sequencing from a cervical cancer tissue and a CaSki cell line with Oxford Nanopore Technologies. From the cervical cancer tissue, a 7,894 bp-long HPV35 genomic sequence was assembled from 678 reads at 97-fold coverage of HPV genome, sharing 99.96% identity with the HPV sequence obtained by Sanger sequencing. A 7904 bp-long HPV16 genomic sequence was assembled from data generated from the CaSki cell line at 3857-fold coverage, sharing 99.99% identity with the reference genome (NCBI: U89348). Intriguingly, long reads generated by nanopore sequencing directly revealed chimeric cellular-viral sequences and concatemeric genomic sequences, leading to the discovery of 448 unique integration breakpoints in the CaSki cell line and 60 breakpoints in the cervical cancer sample. Taken together, nanopore sequencing is a unique tool to identify HPV sequences and would shed light on the physical status of HPV genome in its associated cancers.
Collapse
Affiliation(s)
- Shuaibing Yang
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Qianqian Zhao
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Lihua Tang
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zejia Chen
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhaoting Wu
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Kaixin Li
- Undergraduate Program of Innovation and Entrepreneurship, Shantou University Medical College, Shantou, China
| | - Ruoru Lin
- Undergraduate Program of Innovation and Entrepreneurship, Shantou University Medical College, Shantou, China
| | - Yang Chen
- Undergraduate Program of Innovation and Entrepreneurship, Shantou University Medical College, Shantou, China
| | - Danlin Ou
- Undergraduate Program of Innovation and Entrepreneurship, Shantou University Medical College, Shantou, China
| | - Li Zhou
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jianzhen Xu
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou, China
| |
Collapse
|
21
|
Pang J, Nguyen N, Luebeck J, Ball L, Finegersh A, Ren S, Nakagawa T, Flagg M, Sadat S, Mischel PS, Xu G, Fisch K, Guo T, Cahill G, Panuganti B, Bafna V, Califano J. Extrachromosomal DNA in HPV-Mediated Oropharyngeal Cancer Drives Diverse Oncogene Transcription. Clin Cancer Res 2021; 27:6772-6786. [PMID: 34548317 PMCID: PMC8710294 DOI: 10.1158/1078-0432.ccr-21-2484] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Human papillomavirus (HPV) plays a major role in oncogenesis and circular extrachromosomal DNA (ecDNA) is found in many cancers. However, the relationship between HPV and circular ecDNA in human cancer is not understood. EXPERIMENTAL DESIGN Forty-four primary tumor tissue samples were obtained from a cohort of patients with HPV-positive oropharynx squamous cell carcinoma (OPSCC). Twenty-eight additional HPV oropharyngeal cancer (HPVOPC) tumors from The Cancer Genome Atlas (TCGA) project were analyzed as a separate validation cohort. Genomic, transcriptomic, proteomic, computational, and functional analyses of HPVOPC were applied to these datasets. RESULTS Our analysis revealed circular, oncogenic DNA in nearly all HPVOPC, with circular human and human-viral hybrid ecDNA present in over a third of HPVOPC and viral circular DNA in remaining tumors. Hybrid ecDNA highly express fusion transcripts from HPV promoters and HPV oncogenes linked to downstream human transcripts that drive oncogenic transformation and immune evasion, and splice multiple, diverse human acceptors to a canonical SA880 viral donor site. HPVOPC have high E6*I expression with specific viral oncogene expression pattern related to viral or hybrid ecDNA composition. CONCLUSIONS Nonchromosomal circular oncogenic DNA is a dominant feature of HPVOPC, revealing an unanticipated link between HPV and ecDNA that leverages the power of extrachromosomal inheritance to drive HPV and somatic oncogene expression.
Collapse
Affiliation(s)
- John Pang
- UC San Diego School of Medicine, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, La Jolla, California
| | - Nam Nguyen
- UC San Diego Jacobs School of Engineering, Department of Computer Science and Engineering, La Jolla, California
| | - Jens Luebeck
- Bioinformatics & Systems Biology Graduate Program, University of California at San Diego, La Jolla, California
| | - Laurel Ball
- UC San Diego School of Medicine, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, La Jolla, California
| | - Andrey Finegersh
- UC San Diego School of Medicine, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, La Jolla, California
| | - Shuling Ren
- UC San Diego School of Medicine, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, La Jolla, California
| | - Takuya Nakagawa
- UC San Diego School of Medicine, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, La Jolla, California
| | - Mitchell Flagg
- UC San Diego School of Medicine, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, La Jolla, California
| | - Sayed Sadat
- UC San Diego School of Medicine, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, La Jolla, California
| | - Paul S Mischel
- Stanford University School of Medicine, Department of Pathology, ChEM-H, Stanford, California
| | - Guorong Xu
- UC San Diego School of Medicine, Center for Computational Biology and Bioinformatics, La Jolla, California
| | - Kathleen Fisch
- UC San Diego School of Medicine, Center for Computational Biology and Bioinformatics, La Jolla, California
| | - Theresa Guo
- UC San Diego School of Medicine, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, La Jolla, California
- Johns Hopkins University School of Medicine, Otolaryngology-Head and Neck Surgery, Baltimore, Maryland
| | - Gabrielle Cahill
- UC San Diego School of Medicine, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, La Jolla, California
| | - Bharat Panuganti
- UC San Diego School of Medicine, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, La Jolla, California
| | - Vineet Bafna
- UC San Diego Jacobs School of Engineering, Department of Computer Science and Engineering, La Jolla, California.
| | - Joseph Califano
- UC San Diego School of Medicine, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, La Jolla, California.
- Bioinformatics & Systems Biology Graduate Program, University of California at San Diego, La Jolla, California
| |
Collapse
|
22
|
Genome-Wide Profiling Reveals HPV Integration Pattern and Activated Carcinogenic Pathways in Penile Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13236104. [PMID: 34885212 PMCID: PMC8657281 DOI: 10.3390/cancers13236104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Penile squamous cell carcinoma (PSCC) has been regarded as an HPV-related cancer for a long time. However, the integration pattern and carcinogenic pathways of HPV in PSCC remain unclear. The results of this study provide insights into the HPV-related carcinogenic mechanism in PSCC, which may be less prone to involvement in the traditional E6/E7 carcinogenic process, and are characterized by effects on the host genome, which result in the inactivation of tumor suppressors (CADM2, etc.) and the activation of oncogenes (KLF5, etc.), thus activating oncogenic signaling pathways (MAPK, JAK/STAT, etc.). This study could enhance our understanding of HPV integration and pave the way for subsequent HPV studies in PSCC. Abstract Human papillomavirus (HPV) is a significant etiologic driver of penile squamous cell carcinoma (PSCC). The integration pattern of HPV and its carcinogenic mechanism in PSCC remain largely unclear. We retrospectively reviewed 108 PSCC cases who received surgery between 2008 and 2017. Using high-throughput viral integration detection, we identified 35 HPV-integrated PSCCs. Unlike cervical cancer, the HPV E2 oncogene was not prone to involvement in integration. Eleven of the 35 (31.4%) HPV-integrated PSCCs harbored intact HPV E2; these tumors had lower HPV E6 and E7 expression and higher expression of p53 and pRb proteins than those with disrupted E2 did (p < 0.001 and p = 0.024). Integration breakpoints are preferentially distributed in or near host genes, including previously reported hotspots (KLF5, etc.) and newly identified hotspots (CADM2, etc.), which are mainly involved in oncogenic signaling pathways (MAPK, JAK/STAT, etc.). Regarding the phosphorylation levels of JNK, p38 was higher in HPV-positive tumors with MAPK-associated integration than those in HPV-positive tumors with other integration and those in HPV-negative tumors. In vitro, KLF5 knockdown inhibited proliferation and invasion of PSCC cells, while silencing CADM2 promoted migration and invasion. In conclusion, this study enhances our understanding of HPV-induced carcinogenesis in PSCC, which may not only rely on the E6/E7 oncogenes, but mat also affect the expression of critical genes and thus activate oncogenic pathways.
Collapse
|
23
|
Causes and Consequences of HPV Integration in Head and Neck Squamous Cell Carcinomas: State of the Art. Cancers (Basel) 2021; 13:cancers13164089. [PMID: 34439243 PMCID: PMC8394665 DOI: 10.3390/cancers13164089] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/29/2022] Open
Abstract
A constantly increasing incidence in high-risk Human Papillomaviruses (HPV)s driven head and neck squamous cell carcinomas (HNSCC)s, especially of oropharyngeal origin, is being observed. During persistent infections, viral DNA integration into the host genome may occur. Studies are examining if the physical status of the virus (episomal vs. integration) affects carcinogenesis and eventually has further-reaching consequences on disease progression and outcome. Here, we review the literature of the most recent five years focusing on the impact of HPV integration in HNSCCs, covering aspects of detection techniques used (from PCR up to NGS approaches), integration loci identified, and associations with genomic and clinical data. The consequences of HPV integration in the human genome, including the methylation status and deregulation of genes involved in cell signaling pathways, immune evasion, and response to therapy, are also summarized.
Collapse
|
24
|
Mouse papillomavirus type 1 (MmuPV1) DNA is frequently integrated in benign tumors by microhomology-mediated end-joining. PLoS Pathog 2021; 17:e1009812. [PMID: 34343212 PMCID: PMC8362953 DOI: 10.1371/journal.ppat.1009812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/13/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
MmuPV1 is a useful model for studying papillomavirus-induced tumorigenesis. We used RNA-seq to look for chimeric RNAs that map to both MmuPV1 and host genomes. In tumor tissues, a higher proportion of total viral reads were virus-host chimeric junction reads (CJRs) (1.9‰ - 7‰) than in tumor-free tissues (0.6‰ - 1.3‰): most CJRs mapped to the viral E2/E4 region. Although most of the MmuPV1 integration sites were mapped to intergenic regions and introns throughout the mouse genome, integrations were seen more than once in several genes: Malat1, Krt1, Krt10, Fabp5, Pard3, and Grip1; these data were confirmed by rapid amplification of cDNA ends (RACE)-Single Molecule Real-Time (SMRT)-seq or targeted DNA-seq. Microhomology sequences were frequently seen at host-virus DNA junctions. MmuPV1 infection and integration affected the expression of host genes. We found that factors for DNA double-stranded break repair and microhomology-mediated end-joining (MMEJ), such as H2ax, Fen1, DNA polymerase Polθ, Cdk1, and Plk1, exhibited a step-wise increase and Mdc1 a decrease in expression in MmuPV1-infected tissues and MmuPV1 tumors relative to normal tissues. Increased expression of mitotic kinases CDK1 and PLK1 appears to be correlated with CtIP phosphorylation in MmuPV1 tumors, suggesting a role for MMEJ-mediated DNA joining in the MmuPV1 integration events that are associated with MmuPV1-induced progression of tumors. Persistent high-risk HPV infection leads viral DNA integration into the host genome and promotes viral carcinogenesis. We have been using the MmuPV1 mouse-infection model to study papillomavirus tumorigenesis and asked whether MmuPV1 DNA also integrates into the genomes of infected mouse cells. Strikingly, we found that MmuPV1 integration into the infected host genome, like high-risk HPV infections, is very common and the mapped integration sites were distributed on all of the mouse chromosomes. Consistently, we identified microhomology sequences in the range of 2–10 nts always at the integration junction regions. We further verified the MMEJ-mediated viral DNA integration in tumor tissues during MmuPV1 infection and a step-wise increase in the expression of the DNA repair MMEJ host factors from normal tissues, to tumor-free MmuPV1 infected tissues, and then to MmuPV1 tumors. Our observations provide the first evidence of MmuPV1 integration in virus-infected cells and a conceptual advance of how papillomavirus DNA integration contributes to the development of papillomavirus-associated precancers to cancers.
Collapse
|
25
|
Groves IJ, Drane ELA, Michalski M, Monahan JM, Scarpini CG, Smith SP, Bussotti G, Várnai C, Schoenfelder S, Fraser P, Enright AJ, Coleman N. Short- and long-range cis interactions between integrated HPV genomes and cellular chromatin dysregulate host gene expression in early cervical carcinogenesis. PLoS Pathog 2021; 17:e1009875. [PMID: 34432858 PMCID: PMC8439666 DOI: 10.1371/journal.ppat.1009875] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/14/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
Development of cervical cancer is directly associated with integration of human papillomavirus (HPV) genomes into host chromosomes and subsequent modulation of HPV oncogene expression, which correlates with multi-layered epigenetic changes at the integrated HPV genomes. However, the process of integration itself and dysregulation of host gene expression at sites of integration in our model of HPV16 integrant clone natural selection has remained enigmatic. We now show, using a state-of-the-art 'HPV integrated site capture' (HISC) technique, that integration likely occurs through microhomology-mediated repair (MHMR) mechanisms via either a direct process, resulting in host sequence deletion (in our case, partially homozygously) or via a 'looping' mechanism by which flanking host regions become amplified. Furthermore, using our 'HPV16-specific Region Capture Hi-C' technique, we have determined that chromatin interactions between the integrated virus genome and host chromosomes, both at short- (<500 kbp) and long-range (>500 kbp), appear to drive local host gene dysregulation through the disruption of host:host interactions within (but not exceeding) host structures known as topologically associating domains (TADs). This mechanism of HPV-induced host gene expression modulation indicates that integration of virus genomes near to or within a 'cancer-causing gene' is not essential to influence their expression and that these modifications to genome interactions could have a major role in selection of HPV integrants at the early stage of cervical neoplastic progression.
Collapse
Affiliation(s)
- Ian J. Groves
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Emma L. A. Drane
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Marco Michalski
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jack M. Monahan
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Cinzia G. Scarpini
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen P. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Giovanni Bussotti
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Csilla Várnai
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Peter Fraser
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Anton J. Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
Pinatti LM, Gu W, Wang Y, Elhossiny A, Bhangale AD, Brummel CV, Carey TE, Mills RE, Brenner JC. SearcHPV: A novel approach to identify and assemble human papillomavirus-host genomic integration events in cancer. Cancer 2021; 127:3531-3540. [PMID: 34160069 DOI: 10.1002/cncr.33691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Human papillomavirus (HPV) is a well-established driver of malignant transformation at a number of sites, including head and neck, cervical, vulvar, anorectal, and penile squamous cell carcinomas; however, the impact of HPV integration into the host human genome on this process remains largely unresolved. This is due to the technical challenge of identifying HPV integration sites, which includes limitations of existing informatics approaches to discovering viral-host breakpoints from low-read-coverage sequencing data. METHODS To overcome this limitation, the authors developed SearcHPV, a new HPV detection pipeline based on targeted capture technology, and applied the algorithm to targeted capture data. They performed an integrated analysis of SearcHPV-defined breakpoints with genome-wide linked-read sequencing to identify potential HPV-related structural variations. RESULTS Through an analysis of HPV+ models, the authors showed that SearcHPV detected HPV-host integration sites with a higher sensitivity and specificity than 2 other commonly used HPV detection callers. SearcHPV uncovered HPV integration sites adjacent to known cancer-related genes, including TP63, MYC, and TRAF2, and near regions of large structural variation. The authors further validated the junction contig assembly feature of SearcHPV, which helped to accurately identify viral-host junction breakpoint sequences. They found that viral integration occurred through a variety of DNA repair mechanisms, including nonhomologous end joining, alternative end joining, and microhomology-mediated repair. CONCLUSIONS In summary, SearcHPV is a new optimized tool for the accurate detection of HPV-human integration sites from targeted capture DNA sequencing data.
Collapse
Affiliation(s)
- Lisa M Pinatti
- Cancer Biology Program, Program in the Biomedical Sciences, Rackham Graduate School, University of Michigan, Ann Arbor, Michigan.,Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Wenjin Gu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Yifan Wang
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Ahmed Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Apurva D Bhangale
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Collin V Brummel
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Thomas E Carey
- Cancer Biology Program, Program in the Biomedical Sciences, Rackham Graduate School, University of Michigan, Ann Arbor, Michigan.,Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, Michigan Medicine, Ann Arbor, Michigan.,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - J Chad Brenner
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, Michigan Medicine, Ann Arbor, Michigan.,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
27
|
Roepman P, de Bruijn E, van Lieshout S, Schoenmaker L, Boelens MC, Dubbink HJ, Geurts-Giele WRR, Groenendijk FH, Huibers MMH, Kranendonk MEG, Roemer MGM, Samsom KG, Steehouwer M, de Leng WWJ, Hoischen A, Ylstra B, Monkhorst K, van der Hoeven JJM, Cuppen E. Clinical Validation of Whole Genome Sequencing for Cancer Diagnostics. J Mol Diagn 2021; 23:816-833. [PMID: 33964451 DOI: 10.1016/j.jmoldx.2021.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/17/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
Whole genome sequencing (WGS) using fresh-frozen tissue and matched blood samples from cancer patients may become the most complete genetic tumor test. With the increasing availability of small biopsies and the need to screen more number of biomarkers, the use of a single all-inclusive test is preferable over multiple consecutive assays. To meet high-quality diagnostics standards, we optimized and clinically validated WGS sample and data processing procedures, resulting in a technical success rate of 95.6% for fresh-frozen samples with sufficient (≥20%) tumor content. Independent validation of identified biomarkers against commonly used diagnostic assays showed a high sensitivity (recall; 98.5%) and precision (positive predictive value; 97.8%) for detection of somatic single-nucleotide variants and insertions and deletions (across 22 genes), and high concordance for detection of gene amplification (97.0%; EGFR and MET) as well as somatic complete loss (100%; CDKN2A/p16). Gene fusion analysis showed a concordance of 91.3% between DNA-based WGS and an orthogonal RNA-based gene fusion assay. Microsatellite (in)stability assessment showed a sensitivity of 100% with a precision of 94%, and virus detection (human papillomavirus), an accuracy of 100% compared with standard testing. In conclusion, whole genome sequencing has a >95% sensitivity and precision compared with routinely used DNA techniques in diagnostics, and all relevant mutation types can be detected reliably in a single assay.
Collapse
Affiliation(s)
- Paul Roepman
- Hartwig Medical Foundation, Amsterdam, the Netherlands.
| | | | | | | | - Mirjam C Boelens
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hendrikus J Dubbink
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | - Floris H Groenendijk
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Manon M H Huibers
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Margaretha G M Roemer
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Kris G Samsom
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marloes Steehouwer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wendy W J de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bauke Ylstra
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Kim Monkhorst
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, the Netherlands; Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
28
|
Aldersley J, Lorenz DR, Mouw KW, D'Andrea AD, Gabuzda D. Genomic Landscape of Primary and Recurrent Anal Squamous Cell Carcinomas in Relation to HPV Integration, Copy-Number Variation, and DNA Damage Response Genes. Mol Cancer Res 2021; 19:1308-1321. [PMID: 33883185 DOI: 10.1158/1541-7786.mcr-20-0884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/02/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022]
Abstract
The incidence of anal squamous cell carcinoma (ASCC) has been increasing, particularly in populations with HIV. Human papillomavirus (HPV) is the causal factor in 85% to 90% of ASCCs, but few studies evaluated HPV genotypes and integrations in relation to genomic alterations in ASCC. Using whole-exome sequence data for primary (n = 56) and recurrent (n = 31) ASCC from 72 patients, we detected HPV DNA in 87.5% of ASCC, of which HPV-16, HPV-18, and HPV-6 were detected in 56%, 22%, and 33% of HIV-positive (n = 9) compared with 83%, 3.2%, and 1.6% of HIV-negative cases (n = 63), respectively. Recurrent copy-number variations (CNV) involving genes with documented roles in cancer included amplification of PI3KCA and deletion of APC in primary and recurrent tumors; amplifications of CCND1, MYC, and NOTCH1 and deletions of BRCA2 and RB1 in primary tumors; and deletions of ATR, FANCD2, and FHIT in recurrent tumors. DNA damage response genes were enriched among recurrently deleted genes in recurrent ASCCs (P = 0.001). HPV integrations were detected in 29 of 76 (38%) ASCCs and were more frequent in stage III-IV versus stage I-II tumors. HPV integrations were detected near MYC and CCND1 amplifications and recurrent targets included NFI and MUC genes. These results suggest HPV genotypes in ASCC differ by HIV status, HPV integration is associated with ASCC progression, and DNA damage response genes are commonly disrupted in recurrent ASCCs. IMPLICATIONS: These data provide the largest whole-exome sequencing study of the ASCC genomic landscape to date and identify HPV genotypes, integrations, and recurrent CNVs in primary or recurrent ASCCs.
Collapse
Affiliation(s)
- Jordan Aldersley
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - David R Lorenz
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Dana Gabuzda
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
29
|
Pathogenic Role of Immune Evasion and Integration of Human Papillomavirus in Oropharyngeal Cancer. Microorganisms 2021; 9:microorganisms9050891. [PMID: 33919460 PMCID: PMC8143538 DOI: 10.3390/microorganisms9050891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The incidence of oropharyngeal cancer (OPC) is increasing remarkably among all head and neck cancers, mainly due to its association with the human papillomavirus (HPV). Most HPVs are eliminated by the host’s immune system; however, because HPV has developed an effective immune evasion mechanism to complete its replication cycle, a small number of HPVs are not eliminated, leading to persistent infection. Moreover, during the oncogenic process, the extrachromosomal HPV genome often becomes integrated into the host genome. Integration involves the induction and high expression of E6 and E7, leading to cell cycle activation and increased genomic instability in the host. Therefore, integration is an important event in oncogenesis, although the associated mechanism remains unclear, especially in HPV-OPC. In this review, we summarize the current knowledge on HPV-mediated carcinogenesis, with special emphasis on immune evasion and integration mechanisms, which are crucial for oncogenesis.
Collapse
|
30
|
Artesi M, Hahaut V, Cole B, Lambrechts L, Ashrafi F, Marçais A, Hermine O, Griebel P, Arsic N, van der Meer F, Burny A, Bron D, Bianchi E, Delvenne P, Bours V, Charlier C, Georges M, Vandekerckhove L, Van den Broeke A, Durkin K. PCIP-seq: simultaneous sequencing of integrated viral genomes and their insertion sites with long reads. Genome Biol 2021; 22:97. [PMID: 33823910 PMCID: PMC8025556 DOI: 10.1186/s13059-021-02307-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/25/2021] [Indexed: 12/30/2022] Open
Abstract
The integration of a viral genome into the host genome has a major impact on the trajectory of the infected cell. Integration location and variation within the associated viral genome can influence both clonal expansion and persistence of infected cells. Methods based on short-read sequencing can identify viral insertion sites, but the sequence of the viral genomes within remains unobserved. We develop PCIP-seq, a method that leverages long reads to identify insertion sites and sequence their associated viral genome. We apply the technique to exogenous retroviruses HTLV-1, BLV, and HIV-1, endogenous retroviruses, and human papillomavirus.
Collapse
Affiliation(s)
- Maria Artesi
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
- Laboratory of Human Genetics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
| | - Vincent Hahaut
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
| | - Basiel Cole
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital and Ghent University, 9000 Ghent, Belgium
| | - Laurens Lambrechts
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital and Ghent University, 9000 Ghent, Belgium
- BioBix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Fereshteh Ashrafi
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ambroise Marçais
- Service d’hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Olivier Hermine
- Service d’hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Philip Griebel
- Vaccine and Infectious Disease Organization, VIDO-Intervac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3 Canada
| | - Natasa Arsic
- Vaccine and Infectious Disease Organization, VIDO-Intervac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3 Canada
| | - Frank van der Meer
- Faculty of Veterinary Medicine: Ecosystem and Public Health, Calgary, AB Canada
| | - Arsène Burny
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
| | - Dominique Bron
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
| | - Elettra Bianchi
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Vincent Bours
- Laboratory of Human Genetics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Department of Human Genetics, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Carole Charlier
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
| | - Michel Georges
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital and Ghent University, 9000 Ghent, Belgium
| | - Anne Van den Broeke
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
| | - Keith Durkin
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
| |
Collapse
|
31
|
Garza-Rodríguez ML, Oyervides-Muñoz MA, Pérez-Maya AA, Sánchez-Domínguez CN, Berlanga-Garza A, Antonio-Macedo M, Valdés-Chapa LD, Vidal-Torres D, Vidal-Gutiérrez O, Pérez-Ibave DC, Treviño V. Analysis of HPV Integrations in Mexican Pre-Tumoral Cervical Lesions Reveal Centromere-Enriched Breakpoints and Abundant Unspecific HPV Regions. Int J Mol Sci 2021; 22:ijms22063242. [PMID: 33810183 PMCID: PMC8005155 DOI: 10.3390/ijms22063242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/11/2023] Open
Abstract
Human papillomavirus (HPV) DNA integration is a crucial event in cervical carcinogenesis. However, scarce studies have focused on studying HPV integration (HPVint) in early-stage cervical lesions. Using HPV capture followed by sequencing, we investigated HPVint in pre-tumor cervical lesions. Employing a novel pipeline, we analyzed reads containing direct evidence of the integration breakpoint. We observed multiple HPV infections in most of the samples (92%) with a median integration rate of 0.06% relative to HPV mapped reads corresponding to two or more sequence breakages. Unlike cancer studies, most integrations events were unique (supported by one read), consistent with the lack of clonal selection. Congruent to other studies, we found that breakpoints could occur, practically, in any part of the viral genome. We noted that L1 had a higher frequency of rupture integration (25%). Based on host genome integration frequencies, we found previously reported integration sites in cancer for genes like FHIT, CSMD1, and LRP1B and putatively many new ones such as those exemplified in CSMD3, ROBO2, and SETD3. Similar host integrations regions and genes were observed in diverse HPV types within many genes and even equivalent integration positions in different samples and HPV types. Interestingly, we noted an enrichment of integrations in most centromeres, suggesting a possible mechanism where HPV exploits this structural machinery to facilitate integration. Supported by previous findings, overall, our analysis provides novel information and insights about HPVint.
Collapse
Affiliation(s)
- María Lourdes Garza-Rodríguez
- Hospital Universitario “Dr. José Eleuterio González”, Centro Universitario Contra el Cáncer, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (M.L.G.-R.); (D.C.P.-I.); (O.V.-G.)
| | - Mariel Araceli Oyervides-Muñoz
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico;
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro Monterrey, Nuevo León 64460, Mexico; (A.A.P.-M.); (C.N.S.-D.)
| | - Antonio Alí Pérez-Maya
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro Monterrey, Nuevo León 64460, Mexico; (A.A.P.-M.); (C.N.S.-D.)
| | - Celia Nohemí Sánchez-Domínguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro Monterrey, Nuevo León 64460, Mexico; (A.A.P.-M.); (C.N.S.-D.)
| | - Anais Berlanga-Garza
- Departamento de Ginecología y Obstetricia, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (A.B.-G.); (M.A.-M.); (L.D.V.-C.); (D.V.-T.)
| | - Mauro Antonio-Macedo
- Departamento de Ginecología y Obstetricia, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (A.B.-G.); (M.A.-M.); (L.D.V.-C.); (D.V.-T.)
| | - Lezmes Dionicio Valdés-Chapa
- Departamento de Ginecología y Obstetricia, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (A.B.-G.); (M.A.-M.); (L.D.V.-C.); (D.V.-T.)
| | - Diego Vidal-Torres
- Departamento de Ginecología y Obstetricia, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (A.B.-G.); (M.A.-M.); (L.D.V.-C.); (D.V.-T.)
| | - Oscar Vidal-Gutiérrez
- Hospital Universitario “Dr. José Eleuterio González”, Centro Universitario Contra el Cáncer, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (M.L.G.-R.); (D.C.P.-I.); (O.V.-G.)
| | - Diana Cristina Pérez-Ibave
- Hospital Universitario “Dr. José Eleuterio González”, Centro Universitario Contra el Cáncer, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (M.L.G.-R.); (D.C.P.-I.); (O.V.-G.)
| | - Víctor Treviño
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. Morones Prieto 3000, Colonia Los Doctores, Nuevo León 64710, Mexico
- Correspondence:
| |
Collapse
|
32
|
Genome-wide profiling of BK polyomavirus integration in bladder cancer of kidney transplant recipients reveals mechanisms of the integration at the nucleotide level. Oncogene 2020; 40:46-54. [PMID: 33051598 DOI: 10.1038/s41388-020-01502-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 11/08/2022]
Abstract
Chronic BK polyomavirus (BKPyV) infection is recognized as a potential oncogenic factor of urothelial carcinoma (UC) in renal transplant recipients. Recent studies have reported a positive correlation among BKPyV integration, persistent overexpression of viral large T antigen (TAg), and malignancy, yet little is known about the specific integration mechanisms and the impacts of viral integration. Here, we performed whole-genome sequencing (WGS) and viral capture-based sequencing on high-grade immunohistochemically TAg-positive UCs in two renal transplant recipients. A total of 181 integration sites, including the three found by WGS, were identified by viral capture-based sequencing, indicating its enhanced sensitivity and ability in identifying low-read integration sites in subpopulations of the tumor cells. The microhomologies between human and BKPyV genomes were significantly enriched in the flanking regions of 84.5% the integration sites, with a median length of 7 bp. Notably, 75 human genes formed fusion sequences due to viral insertional integration. Among them, the expression of 15 genes were statistically associated with UC based on GEO2R expression analysis. Our results indicated a multisite and multifragment linear integration pattern and a potential microhomology or nonhomologous end joining integration mechanism at the single-nucleotide level. We put forward a potential selection mechanism driven by immunity and centered on viral integration in the carcinogenesis of BKPyV.
Collapse
|
33
|
Pinatti LM, Walline HM, Carey TE, Klussmann JP, Huebbers CU. Viral Integration Analysis Reveals Likely Common Clonal Origin of Bilateral HPV16-Positive, p16-Positive Tonsil Tumors. ACTA ACUST UNITED AC 2020; 4:680-696. [PMID: 32954225 PMCID: PMC7497862 DOI: 10.26502/acmcr.96550248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infections with high-risk human papilloma viruses (HPV) are responsible for a significant number of oropharyngeal squamous cell carcinoma (OPSCC), with infection rates currently rising at epidemic rates in the western world. Synchronous bilateral HPV+ tumors of both tonsils are a very rare event whose understanding, however, could provide important insights into virus-driven tumor development and progression and whether such integration events are of clonal origin. In this study we analyzed a single case of a bilateral tonsillar p16+ HPV+OPSCC. The viral integration status of the various tumor samples was determined by integration-specific PCR methods and sequencing, which identified viral insertion sites and affected host genes. Integration events were further confirmed by transcript analysis. Analysis of the tumors revealed common viral integration events involving the CD36 gene, as well as a unique event in the LAMA3 gene which resulted in loss of LAMA3 exon one in both tissues that had lost the complex viral LAMA3 integration event. In addition, there were several integration events into intergenic regions. This suggests a common origin but individual evolution of the tumors, supporting the single-clone hypothesis of bilateral tumor development. This hypothesis is further supported by the fact that the two cellular genes LAMA3 and CD36 as targets of viral integration are involved in cell migration and ECM-receptor interactions, which provides a possible mechanism for clonal migration from one tonsil to another.
Collapse
Affiliation(s)
- Lisa M. Pinatti
- Cancer Biology Program, Program in the Biomedical Sciences, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Heather M. Walline
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Thomas E. Carey
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jens Peter Klussmann
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christian U. Huebbers
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Jean-Uhrmacher-Institute for Otorhinolaryngological Research, University of Cologne, Cologne, Germany
- Corresponding Author: Dr. Christian U. Huebbers, Jean-Uhrmacher-Institute for Otorhinolaryngological Research, University of Cologne, Cologne, Germany, Tel: +49221478-97017; Fax +4922147897010;
| |
Collapse
|
34
|
Farooq QUA, Shaukat Z, Zhou T, Aiman S, Gong W, Li C. Inferring Virus-Host relationship between HPV and its host Homo sapiens using protein interaction network. Sci Rep 2020; 10:8719. [PMID: 32457456 PMCID: PMC7251128 DOI: 10.1038/s41598-020-65837-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Human papilloma virus (HPV) is a serious threat to human life globally with over 100 genotypes including cancer causing high risk HPVs. Study on protein interaction maps of pathogens with their host is a recent trend in ‘omics’ era and has been practiced by researchers to find novel drug targets. In current study, we construct an integrated protein interaction map of HPV with its host human in Cytoscape and analyze it further by using various bioinformatics tools. We found out 2988 interactions between 12 HPV and 2061 human proteins among which we identified MYLK, CDK7, CDK1, CDK2, JAK1 and 6 other human proteins associated with multiple viral oncoproteins. The functional enrichment analysis of these top-notch key genes is performed using KEGG pathway and Gene Ontology analysis, which reveals that the gene set is enriched in cell cycle a crucial cellular process, and the second most important pathway in which the gene set is involved is viral carcinogenesis. Among the viral proteins, E7 has the highest number of associations in the network followed by E6, E2 and E5. We found out a group of genes which is not targeted by the existing drugs available for HPV infections. It can be concluded that the molecules found in this study could be potential targets and could be used by scientists in their drug design studies.
Collapse
Affiliation(s)
- Qurat Ul Ain Farooq
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Zeeshan Shaukat
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Tong Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Sara Aiman
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Weikang Gong
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Chunhua Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
35
|
Biological Pathways of HPV-Induced Carcinogenesis. Sex Transm Infect 2020. [DOI: 10.1007/978-3-030-02200-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
36
|
Boon SS, Chen Z, Li J, Lee KYC, Cai L, Zhong R, Chan PKS. Human papillomavirus type 18 oncoproteins exert their oncogenicity in esophageal and tongue squamous cell carcinoma cell lines distinctly. BMC Cancer 2019; 19:1211. [PMID: 31830929 PMCID: PMC6909509 DOI: 10.1186/s12885-019-6413-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Background Increasing evidence indicates an etiological role of human papillomavirus (HPV) in head and neck cancers, particularly oropharyngeal squamous cell carcinoma (OPSCC). However, the association between HPV and other cancers, including esophageal and tongue remains unclear. This study delineated the molecular characteristics of HPV18 E6 and E7 in esophageal (EC109 and EC9706) and tongue (Tca83) cancer cell lines with reference to cervical cancer (HeLa). Methods We analysed the HPV transcription profiles of esophageal and tongue cancer cells through Next-generation RNA sequencing, and the role of HPV18 E6 and E7 in these cells was assessed via siRNA approach, Western blotting and immunofluorescence assays. Results Overall, the HPV transcription profiles of esophageal and tongue cancer cells mimicked that of cervical cancer cells, with notable disruption of E2, and expression of E6, spliced E6 (E6*), E7, E1 and L1 transcripts. As with cervical cancer cells, p53 and its downstream transactivation target, p21, were found to be the major targets of E6 in esophageal and tongue cancer cell lines. Intriguingly, E7 preferentially targeted p130 in the two esophageal cancer cell lines, instead of pRb as in cervical cancer. Tca83 exhibited an E7 to E6 transcript ratio comparable to HeLa (cervix), targeted the ERK1/2 and MMP2 pathways, and was dependent on E6 and E7 to survive and proliferate. In contrast, both the esophageal cancer cell lines were distinct from HeLa in these aspects. Conclusions This is the first study that delineates transcript expression and protein interaction of HPV18 E6 and E7 in esophageal and tongue cancer cell lines, suggesting that HPV plays a role in inducing these cancers, albeit via distinct pathways than those observed in cervical cancer.
Collapse
Affiliation(s)
- Siaw Shi Boon
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jintao Li
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, China
| | - Karen Y C Lee
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Liuyang Cai
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, China
| | - Paul K S Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
37
|
Vonsky M, Shabaeva M, Runov A, Lebedeva N, Chowdhury S, Palefsky JM, Isaguliants M. Carcinogenesis Associated with Human Papillomavirus Infection. Mechanisms and Potential for Immunotherapy. BIOCHEMISTRY (MOSCOW) 2019; 84:782-799. [PMID: 31509729 DOI: 10.1134/s0006297919070095] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human papillomavirus (HPV) infection is responsible for approximately 5% of all cancers and is associated with 30% of all pathogen-related cancers. Cervical cancer is the third most common cancer in women worldwide; about 70% of cervical cancer cases are caused by the high-risk HPVs (HR HPVs) of genotypes 16 and 18. HPV infection occurs mainly through sexual contact; however, viral transmission via horizontal and vertical pathways is also possible. After HPV infection of basal keratinocytes or ecto-endocervical transition zone cells, viral DNA persists in the episomal form. In most cases, infected cells are eliminated by the immune system. Occasionally, elimination fails, and HPV infection becomes chronic. Replication of HPVs in dividing epithelial cells is accompanied by increased expression of the E6 and E7 oncoproteins. These oncoproteins are responsible for genomic instability, disruption of the cell cycle, cell proliferation, immortalization, and malignant transformation of HPV-infected cells. Besides, E6 and E7 oncoproteins induce immunosuppression, preventing the detection of HPV-infected and transformed cells by the immune system. HPV integration into the genome of the host cell leads to the upregulation of E6 and E7 expression and contributes to HPV-associated malignization. Prophylactic HPV vaccines can prevent over 80% of HPV-associated anogenital cancers. The vaccine elicits immune response that prevents initial infection with a given HPV type but does not eliminate persistent virus once infection has occurred and does not prevent development of the HPV-associated neoplasias, which necessitates the development of therapeutic vaccines to treat chronic HPV infections and HPV-associated malignancies.
Collapse
Affiliation(s)
- M Vonsky
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Almazov National Medical Research Center, St. Petersburg, 197341, Russia
| | - M Shabaeva
- Pavlov First St. Petersburg State Medical University, St. Petersburg, 197022, Russia.
| | - A Runov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.,Almazov National Medical Research Center, St. Petersburg, 197341, Russia.,Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, 123098, Russia
| | - N Lebedeva
- Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, 123098, Russia. .,Moscow Regional Center of AIDS and Infectious Diseases Prevention and Treatment, Moscow, 129110, Russia
| | - S Chowdhury
- University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - J M Palefsky
- University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA.
| | - M Isaguliants
- Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, 123098, Russia. .,Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, Moscow, 108819, Russia.,Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, SE-171 77, Sweden.,Riga Stradins University, Department of Pathology, Riga, LV-1007, Latvia
| |
Collapse
|
38
|
Li W, Tian S, Wang P, Zang Y, Chen X, Yao Y, Li W. The characteristics of HPV integration in cervical intraepithelial cells. J Cancer 2019; 10:2783-2787. [PMID: 31258786 PMCID: PMC6584928 DOI: 10.7150/jca.31450] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/25/2019] [Indexed: 01/01/2023] Open
Abstract
Cervical cancer is one of the most common malignant tumors in gynecology. Deploying HIVID, a cost-effective technique to detect HPV integration sites, our team had studied the characteristics of HPV integrations in cervical exfoliated cells. Our results indicated that both the sample proportion and the number of HPV integrations gradually increased following the development of cervical lesion. Meanwhile, our data also revealed that there were recurrent genes integrated by HPV in cervical exfoliated cells. Collectively, the HPV integration breakpoints were highly enriched in the intron and promoter regions. Intriguingly, the gene pathway analysis indicated that the HPV-integrated genes were strongly inclined to pathways of metabolism of xenobiotics by cytochrome P450, chemical carcinogenesis and steroid hormone biosynthesis. In conclusion, this study unveiled the HPV integration patterns and the associated recurrent genes in cervical epithelial exfoliated cells. Altogether, our data suggested that the HPV integrations in cervical exfoliated cells might have vital clinical significance, and probably also diagnostic and/or prognostic values in future clinical applications.
Collapse
Affiliation(s)
- Weiping Li
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Shuang Tian
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, P. R. China
| | | | | | - Xin Chen
- ME Genomics Inc., Shenzhen, P. R. China
| | - Yuanqing Yao
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Weiyang Li
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
| |
Collapse
|
39
|
Chera BS, Kumar S, Beaty BT, Marron D, Jefferys S, Green R, Goldman EC, Amdur R, Sheets N, Dagan R, Hayes DN, Weiss J, Grilley-Olson JE, Zanation A, Hackman T, Blumberg JM, Patel S, Weissler M, Tan XM, Parker JS, Mendenhall W, Gupta GP. Rapid Clearance Profile of Plasma Circulating Tumor HPV Type 16 DNA during Chemoradiotherapy Correlates with Disease Control in HPV-Associated Oropharyngeal Cancer. Clin Cancer Res 2019; 25:4682-4690. [PMID: 31088830 DOI: 10.1158/1078-0432.ccr-19-0211] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/22/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE To identify a profile of circulating tumor human papilloma virus (HPV) DNA (ctHPVDNA) clearance kinetics that is associated with disease control after chemoradiotherapy (CRT) for HPV-associated oropharyngeal squamous cell carcinoma (OPSCC). EXPERIMENTAL DESIGN A multi-institutional prospective biomarker trial was conducted in 103 patients with (i) p16-positive OPSCC, (ii) M0 disease, and (iii) receipt of definitive CRT. Blood specimens were collected at baseline, weekly during CRT, and at follow-up visits. Optimized multianalyte digital PCR assays were used to quantify ctHPVDNA (types 16/18/31/33/35) in plasma. A control cohort of 55 healthy volunteers and 60 patients with non-HPV-associated malignancy was also analyzed. RESULTS Baseline plasma ctHPVDNA had high specificity (97%) and high sensitivity (89%) for detecting newly diagnosed HPV-associated OPSCC. Pretreatment ctHPV16DNA copy number correlated with disease burden, tumor HPV copy number, and HPV integration status. We define a ctHPV16DNA favorable clearance profile as having high baseline copy number (>200 copies/mL) and >95% clearance of ctHPV16DNA by day 28 of CRT. Nineteen of 67 evaluable patients had a ctHPV16DNA favorable clearance profile, and none had persistent or recurrent regional disease after CRT. In contrast, patients with adverse clinical risk factors (T4 or >10 pack years) and an unfavorable ctHPV16DNA clearance profile had a 35% actuarial rate of persistent or recurrent regional disease after CRT (P = 0.0049). CONCLUSIONS A rapid clearance profile of ctHPVDNA may predict likelihood of disease control in patients with HPV-associated OPSCC patients treated with definitive CRT and may be useful in selecting patients for deintensified therapy.
Collapse
Affiliation(s)
- Bhishamjit S Chera
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Sunil Kumar
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Brian T Beaty
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - David Marron
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Bioinformatics Core, University of North Carolina Hospitals, Chapel Hill, North Carolina
| | - Stuart Jefferys
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Bioinformatics Core, University of North Carolina Hospitals, Chapel Hill, North Carolina
| | - Rebecca Green
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Emily C Goldman
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Robert Amdur
- Department of Radiation Oncology, University of Florida Hospitals, Gainesville, Florida
| | - Nathan Sheets
- Department of Radiation Oncology, UNC Rex Hospitals, Raleigh, North Carolina
| | - Roi Dagan
- University of Florida Health Proton Therapy Institute, Jacksonville, Florida
| | - D Neil Hayes
- West Cancer Center, University of Tennessee, Memphis, Tennessee
| | - Jared Weiss
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Division of Hematology Oncology, Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina
| | - Juneko E Grilley-Olson
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Division of Hematology Oncology, Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina
| | - Adam Zanation
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Trevor Hackman
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jeffrey M Blumberg
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Samip Patel
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Mark Weissler
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Xianming M Tan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Bioinformatics Core, University of North Carolina Hospitals, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - William Mendenhall
- Department of Radiation Oncology, University of Florida Hospitals, Gainesville, Florida
| | - Gaorav P Gupta
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
40
|
Campos RG, Malacara Rosas A, Gutiérrez Santillán E, Delgado Gutiérrez M, Torres Orozco RE, García Martínez ED, Torres Bernal LF, Rosas Cabral A. Unusual prevalence of high-risk genotypes of human papillomavirus in a group of women with neoplastic lesions and cervical cancer from Central Mexico. PLoS One 2019; 14:e0215222. [PMID: 30998701 PMCID: PMC6474327 DOI: 10.1371/journal.pone.0215222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Human papillomavirus has been identified as a main etiological agent in the
development of cervical cancer. HPV 16 and 18 have been reported the most widely
prevalent genotypes worldwide. We conducted a study analyzing the prevalence of
high and low risk human papillomavirus viral types in the Mexican state of
Aguascalientes and neighboring cities in the states of Jalisco and Zacatecas in
central Mexico. Specific viral genotype was determined by a PCR and
hybridization-based detection test. The presence of 37 high- and low-risk HPV
genotypes was evaluated in 883 female participants. Of these, 350 presented
low-grade squamous intraepithelial lesions (LGSIL), 176 presented high-grade
squamous intraepithelial lesions (HGSIL), 107 suffered from cervical cancer and
250 women with negative cytological report for intraepithelial lesion or
malignancy (NILM). HPV 51 was the most prevalent genotype, followed by HPV 16:
overall prevalence of HPV 51, including single infections and co-infections was
31.2% in women with LGSIL, whereas prevalence of HPV 16 was 25.1%. Among women
with HGSIL, HPV 51 prevalence was 47.2% and HPV 16 was 30.1%. Prevalence of HPV
51 in women with cervical cancer was 49.5% and type 16 was 33.6%. Between single
and co-infections, most co-infections were not associated with later stages of
the disease, except 51/16 and some others. HPV 51 showed a significant
correlation with the progression of the disease (OR = 10.81 for LGSIL, 19.38 for
HGSIL and 22.95 for ICC), and when analyzing all other genotypes, five different
groups depending on their correlation with all lesion grades were determined.
According to our findings, HPV genotype 51 has a higher prevalence than HPV 16
and 18 in the Mexican state of Aguascalientes and neighboring cities in the
states of Jalisco and Zacatecas in Central Mexico.
Collapse
Affiliation(s)
- Rafael Gutiérrez Campos
- Department of Chemistry, Center for Basic Sciences, Autonomous University
of Aguascalientes, Aguascalientes, Aguascalientes, México
- * E-mail:
| | - Angélica Malacara Rosas
- Department of Chemistry, Center for Basic Sciences, Autonomous University
of Aguascalientes, Aguascalientes, Aguascalientes, México
| | - Elvia Gutiérrez Santillán
- Hospital General de Zona Número 6, Instituto Mexicano del Seguro Social,
Monterrey, Nuevo León, México
| | - Mireya Delgado Gutiérrez
- Hospital General de Zona Número 1, Instituto Mexicano del Seguro Social,
Aguascalientes, Aguascalientes, México
| | - Rusland Enrique Torres Orozco
- Department of Chemistry, Center for Basic Sciences, Autonomous University
of Aguascalientes, Aguascalientes, Aguascalientes, México
| | - Elí Daniel García Martínez
- Department of Chemistry, Center for Basic Sciences, Autonomous University
of Aguascalientes, Aguascalientes, Aguascalientes, México
| | - Luis Fernando Torres Bernal
- Department of Medicine, Center for Health Sciences, Autonomous University
of Aguascalientes, Aguascalientes, México
| | - Alejandro Rosas Cabral
- Department of Medicine, Center for Health Sciences, Autonomous University
of Aguascalientes, Aguascalientes, México
| |
Collapse
|
41
|
Li T, Unger ER, Rajeevan MS. Universal human papillomavirus typing by whole genome sequencing following target enrichment: evaluation of assay reproducibility and limit of detection. BMC Genomics 2019; 20:231. [PMID: 30894118 PMCID: PMC6425667 DOI: 10.1186/s12864-019-5598-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We recently described a method for unbiased detection of all known human papillomaviruses (HPV) types with the potential for the determination of their variant and integration from the resulting whole genome sequence data. Considering the complex workflow for target-enriched next generation sequencing (NGS), we focused on the reproducibility and limit of detection (LOD) of this new universal HPV typing assay in this study. RESULTS We evaluated the reproducibility and LOD for HPV genotyping based on our recently published method that used RNA-baits targeting whole genomes of 191 HPV types, Agilent SureSelect protocol for target enrichment and Illumina HiSeq 2500 for sequencing (eWGS, enriched whole genome sequencing). Two libraries, prepared from pooled plasmids representing 9 vaccine HPV types at varying input (1-625 copies/reaction), were sequenced twice giving four replicates for evaluating reproducibility and LOD. eWGS showed high correlation in the number of reads mapped to HPV reference genomes between the two flow-cell lanes within (R2 = 1) and between experiments (R2 = 0.99). The number of mapped reads was positively correlated to copy number (β = 13.9, p < 0.0001). The limit of blank (LOB) could be calculated based on mapped reads to HPV types not included in each sample. HPV genotyping was reproducible for all 9 types at 625 copies using multiple cut-off criteria but LOD was 25 copies based on number of reads above LOB even when multiple types were present. eWGS showed no bias for HPV genotyping under single or multiple infection (p = 0.16-0.99). CONCLUSIONS The universal eWGS method for HPV genotyping has sensitivity, competitive with widely used consensus PCR methods with reduced type competition, and with the potential for determination of variant and integration status. The protocol used in this study, using defined samples varying in complexity and copy number, analyzed in replicate and duplicate assays, is applicable to most WGS methods.
Collapse
Affiliation(s)
- Tengguo Li
- Division of High-Consequence Pathogens & Pathology, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Elizabeth R Unger
- Division of High-Consequence Pathogens & Pathology, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Mangalathu S Rajeevan
- Division of High-Consequence Pathogens & Pathology, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| |
Collapse
|
42
|
Savini C, Yang R, Savelyeva L, Göckel-Krzikalla E, Hotz-Wagenblatt A, Westermann F, Rösl F. Folate Repletion after Deficiency Induces Irreversible Genomic and Transcriptional Changes in Human Papillomavirus Type 16 (HPV16)-Immortalized Human Keratinocytes. Int J Mol Sci 2019; 20:ijms20051100. [PMID: 30836646 PMCID: PMC6429418 DOI: 10.3390/ijms20051100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 01/01/2023] Open
Abstract
Supplementation of micronutrients like folate is a double-edged sword in terms of their ambivalent role in cell metabolism. Although several epidemiological studies support a protective role of folate in carcinogenesis, there are also data arguing for an opposite effect. To address this issue in the context of human papillomavirus (HPV)-induced transformation, the molecular events of different folate availability on human keratinocytes immortalized by HPV16 E6 and E7 oncoproteins were examined. Several sublines were established: Control (4.5 µM folate), folate deficient (0.002 µM folate), and repleted cells (4.5 µM folate). Cells were analyzed in terms of oncogene expression, DNA damage and repair, karyotype changes, whole-genome sequencing, and transcriptomics. Here we show that folate depletion irreversibly induces DNA damage, impairment of DNA repair fidelity, and unique chromosomal alterations. Repleted cells additionally underwent growth advantage and enhanced clonogenicity, while the above mentioned impaired molecular properties became even more pronounced. Overall, it appears that a period of folate deficiency followed by repletion can shape immortalized cells toward an anomalous phenotype, thereby potentially contributing to carcinogenesis. These observations should elicit questions and inquiries for broader additional studies regarding folate fortification programs, especially in developing countries with micronutrient deficiencies and high HPV prevalence.
Collapse
Affiliation(s)
- Claudia Savini
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Ruwen Yang
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Larisa Savelyeva
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Elke Göckel-Krzikalla
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Agnes Hotz-Wagenblatt
- Omics IT and Data Management, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Frank Westermann
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|