1
|
Xing Y, Lin X. Challenges and advances in the management of inflammation in atherosclerosis. J Adv Res 2024:S2090-1232(24)00253-4. [PMID: 38909884 DOI: 10.1016/j.jare.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024] Open
Abstract
INTRODUCTION Atherosclerosis, traditionally considered a lipid-related disease, is now understood as a chronic inflammatory condition with significant global health implications. OBJECTIVES This review aims to delve into the complex interactions among immune cells, cytokines, and the inflammatory cascade in atherosclerosis, shedding light on how these elements influence both the initiation and progression of the disease. METHODS This review draws on recent clinical research to elucidate the roles of key immune cells, macrophages, T cells, endothelial cells, and clonal hematopoiesis in atherosclerosis development. It focuses on how these cells and process contribute to disease initiation and progression, particularly through inflammation-driven processes that lead to plaque formation and stabilization. Macrophages ingest oxidized low-density lipoprotein (oxLDL), which partially converts to high-density lipoprotein (HDL) or accumulates as lipid droplets, forming foam cells crucial for plaque stability. Additionally, macrophages exhibit diverse phenotypes within plaques, with pro-inflammatory types predominating and others specializing in debris clearance at rupture sites. The involvement of CD4+ T and CD8+ T cells in these processes promotes inflammatory macrophage states, suppresses vascular smooth muscle cell proliferation, and enhances plaque instability. RESULTS The nuanced roles of macrophages, T cells, and the related immune cells within the atherosclerotic microenvironment are explored, revealing insights into the cellular and molecular pathways that fuel inflammation. This review also addresses recent advancements in imaging and biomarker technology that enhance our understanding of disease progression. Moreover, it points out the limitations of current treatment and highlights the potential of emerging anti-inflammatory strategies, including clinical trials for agents such as p38MAPK, tumor necrosis factor α (TNF-α), and IL-1β, their preliminary outcomes, and the promising effects of canakinumab, colchicine, and IL-6R antagonists. CONCLUSION This review explores cutting-edge anti-inflammatory interventions, their potential efficacy in preventing and alleviating atherosclerosis, and the role of nanotechnology in delivering drugs more effectively and safely.
Collapse
Affiliation(s)
- Yiming Xing
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China
| | - Xianhe Lin
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China.
| |
Collapse
|
2
|
Piga I, Magni F, Smith A. The journey towards clinical adoption of MALDI-MS-based imaging proteomics: from current challenges to future expectations. FEBS Lett 2024; 598:621-634. [PMID: 38140823 DOI: 10.1002/1873-3468.14795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Among the spatial omics techniques available, mass spectrometry imaging (MSI) represents one of the most promising owing to its capability to map the distribution of hundreds of peptides and proteins, as well as other classes of biomolecules, within a complex sample background in a multiplexed and relatively high-throughput manner. In particular, matrix-assisted laser desorption/ionisation (MALDI-MSI) has come to the fore and established itself as the most widely used technique in clinical research. However, the march of this technique towards clinical utility has been hindered by issues related to method reproducibility, appropriate biocomputational tools, and data storage. Notwithstanding these challenges, significant progress has been achieved in recent years regarding multiple facets of the technology and has rendered it more suitable for a possible clinical role. As such, there is now more robust and extensive evidence to suggest that the technology has the potential to support clinical decision-making processes under appropriate circumstances. In this review, we will discuss some of the recent developments that have facilitated this progress and outline some of the more promising clinical proteomics applications which have been developed with a clear goal towards implementation in mind.
Collapse
Affiliation(s)
- Isabella Piga
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| |
Collapse
|
3
|
Shao X, Shi Y, Wang Y, Zhang L, Bai P, Wang J, Aniwan A, Lin Y, Zhou S, Yu P. Single-Cell Sequencing Reveals the Expression of Immune-Related Genes in Macrophages of Diabetic Kidney Disease. Inflammation 2024; 47:227-243. [PMID: 37777674 DOI: 10.1007/s10753-023-01906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Diabetic kidney disease (DKD) is characterized by macrophage infiltration, which requires further investigation. This study aims to identify immune-related genes (IRGs) in macrophage and explore their potential as therapeutic targets. This study analyzed isolated glomerular cells from three diabetic mice and three control mice. A total of 59 glomeruli from normal kidney samples and 66 from DKD samples were acquired from four kidney transcriptomic profiling datasets. Bioinformatics analysis was conducted using both single-cell RNA (scRNA) and bulk RNA sequencing data to investigate inflammatory responses in DKD. Additionally, the "AUCell" function was used to investigate statistically different gene sets. The significance of each interaction pair was determined by assigning a probability using "CellChat." The study also analyzed the biological diagnostic importance of immune hub genes for DKD and validated the expression of these immune genes in mice models. The top 2000 highly variable genes (HVGs) were identified after data normalization. Subsequently, a total of eight clusters were identified. It is worth mentioning that macrophages showed the highest percentage increase among all cell types in the DKD group. Furthermore, the present study observed significant differences in gene sets related to inflammatory responses and complement pathways. The study also identified several receptor-ligand pairs and co-stimulatory interactions between endothelial cells and macrophages. Notably, SYK, ITGB2, FCER1G, and VAV1 were identified as immunological markers of DKD with promising predictive ability. This study identified distinct cell clusters and four marker genes. SYK, ITGB2, FCER1G, and VAV1 may be important roles. Consequently, the present study extends our understanding regarding IRGs in DKD and provides a foundation for future investigations into the underlying mechanisms.
Collapse
Affiliation(s)
- Xian Shao
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yueyue Shi
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300134, China
| | - Yao Wang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, People's Republic of China
| | - Li Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Pufei Bai
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - JunMei Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Ashanjiang Aniwan
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yao Lin
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
4
|
Takvam M, Wood CM, Kryvi H, Nilsen TO. Role of the kidneys in acid-base regulation and ammonia excretion in freshwater and seawater fish: implications for nephrocalcinosis. Front Physiol 2023; 14:1226068. [PMID: 37457024 PMCID: PMC10339814 DOI: 10.3389/fphys.2023.1226068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Maintaining normal pH levels in the body fluids is essential for homeostasis and represents one of the most tightly regulated physiological processes among vertebrates. Fish are generally ammoniotelic and inhabit diverse aquatic environments that present many respiratory, acidifying, alkalinizing, ionic and osmotic stressors to which they are able to adapt. They have evolved flexible strategies for the regulation of acid-base equivalents (H+, NH4 +, OH- and HCO3 -), ammonia and phosphate to cope with these stressors. The gills are the main regulatory organ, while the kidneys play an important, often overlooked accessory role in acid-base regulation. Here we outline the kidneys role in regulation of acid-base equivalents and two of the key 'urinary buffers', ammonia and phosphate, by integrating known aspects of renal physiology with recent advances in the molecular and cellular physiology of membrane transport systems in the teleost kidneys. The renal transporters (NHE3, NBC1, AE1, SLC26A6) and enzymes (V-type H+ATPase, CAc, CA IV, ammoniagenic enzymes) involved in H+ secretion, bicarbonate reabsorption, and the net excretion of acidic and basic equivalents, ammonia, and inorganic phosphate are addressed. The role of sodium-phosphate cotransporter (Slc34a2b) and rhesus (Rh) glycoproteins (ammonia channels) in conjunction with apical V-type H+ ATPase and NHE3 exchangers in these processes are also explored. Nephrocalcinosis is an inflammation-like disorder due to the precipitation of calcareous material in the kidneys, and is listed as one of the most prevalent pathologies in land-based production of salmonids in recirculating aquaculture systems. The causative links underlying the pathogenesis and etiology of nephrocalcinosis in teleosts is speculative at best, but acid-base perturbation is probably a central pathophysiological cause. Relevant risk factors associated with nephrocalcinosis are hypercapnia and hyperoxia in the culture water. These raise internal CO2 levels in the fish, triggering complex branchial and renal acid-base compensations which may promote formation of kidney stones. However, increased salt loads through the rearing water and the feed may increase the prevalence of nephrocalcinosis. An increased understanding of the kidneys role in acid-base and ion regulation and how this relates to renal diseases such as nephrocalcinosis will have applied relevance for the biologist and aquaculturist alike.
Collapse
Affiliation(s)
- Marius Takvam
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Chris M. Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - H. Kryvi
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tom O. Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Esselman AB, Patterson NH, Migas LG, Dufresne M, Djambazova KV, Colley ME, Van de Plas R, Spraggins JM. Microscopy-Directed Imaging Mass Spectrometry for Rapid High Spatial Resolution Molecular Imaging of Glomeruli. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37319264 DOI: 10.1021/jasms.3c00033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The glomerulus is a multicellular functional tissue unit (FTU) of the nephron that is responsible for blood filtration. Each glomerulus contains multiple substructures and cell types that are crucial for their function. To understand normal aging and disease in kidneys, methods for high spatial resolution molecular imaging within these FTUs across whole slide images is required. Here we demonstrate a workflow using microscopy-driven selected sampling to enable 5 μm pixel size matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) of all glomeruli within whole slide human kidney tissues. Such high spatial resolution imaging entails large numbers of pixels, increasing the data acquisition times. Automating FTU-specific tissue sampling enables high-resolution analysis of critical tissue structures, while concurrently maintaining throughput. Glomeruli were automatically segmented using coregistered autofluorescence microscopy data, and these segmentations were translated into MALDI IMS measurement regions. This allowed high-throughput acquisition of 268 glomeruli from a single whole slide human kidney tissue section. Unsupervised machine learning methods were used to discover molecular profiles of glomerular subregions and differentiate between healthy and diseased glomeruli. Average spectra for each glomerulus were analyzed using Uniform Manifold Approximation and Projection (UMAP) and k-means clustering, yielding 7 distinct groups of differentiated healthy and diseased glomeruli. Pixel-wise k-means clustering was applied to all glomeruli, showing unique molecular profiles localized to subregions within each glomerulus. Automated microscopy-driven, FTU-targeted acquisition for high spatial resolution molecular imaging maintains high-throughput and enables rapid assessment of whole slide images at cellular resolution and identification of tissue features associated with normal aging and disease.
Collapse
Affiliation(s)
- Allison B Esselman
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Lukasz G Migas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Delft Center for Systems and Control, Delft University of Technology, 2628 Delft, The Netherlands
| | - Martin Dufresne
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Katerina V Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Madeline E Colley
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Raf Van de Plas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Delft Center for Systems and Control, Delft University of Technology, 2628 Delft, The Netherlands
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
6
|
Mao ZH, Gao ZX, Liu Y, Liu DW, Liu ZS, Wu P. Single-cell transcriptomics: A new tool for studying diabetic kidney disease. Front Physiol 2023; 13:1053850. [PMID: 36685214 PMCID: PMC9846140 DOI: 10.3389/fphys.2022.1053850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
The kidney is a complex organ comprising various functional partitions and special cell types that play important roles in maintaining homeostasis in the body. Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and is an independent risk factor for cardiovascular diseases. Owing to the complexity and heterogeneity of kidney structure and function, the mechanism of DKD development has not been fully elucidated. Single-cell sequencing, including transcriptomics, epigenetics, metabolomics, and proteomics etc., is a powerful technology that enables the analysis of specific cell types and states, specifically expressed genes or pathways, cell differentiation trajectories, intercellular communication, and regulation or co-expression of genes in various diseases. Compared with other omics, RNA sequencing is a more developed technique with higher utilization of tissues or samples. This article reviewed the application of single-cell transcriptomics in the field of DKD and highlighted the key signaling pathways in specific tissues or cell types involved in the occurrence and development of DKD. The comprehensive understanding of single-cell transcriptomics through single-cell RNA-seq and single-nucleus RNA-seq will provide us new insights into the pathogenesis and treatment strategy of various diseases including DKD.
Collapse
Affiliation(s)
- Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yong Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,*Correspondence: Peng Wu, ; Zhang-Suo Liu,
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,*Correspondence: Peng Wu, ; Zhang-Suo Liu,
| |
Collapse
|
7
|
Kim YS, Choi J, Lee SH. Single-cell and spatial sequencing application in pathology. J Pathol Transl Med 2023; 57:43-51. [PMID: 36623813 PMCID: PMC9846004 DOI: 10.4132/jptm.2022.12.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Traditionally, diagnostic pathology uses histology representing structural alterations in a disease's cells and tissues. In many cases, however, it is supplemented by other morphology-based methods such as immunohistochemistry and fluorescent in situ hybridization. Single-cell RNA sequencing (scRNA-seq) is one of the strategies that may help tackle the heterogeneous cells in a disease, but it does not usually provide histologic information. Spatial sequencing is designed to assign cell types, subtypes, or states according to the mRNA expression on a histological section by RNA sequencing. It can provide mRNA expressions not only of diseased cells, such as cancer cells but also of stromal cells, such as immune cells, fibroblasts, and vascular cells. In this review, we studied current methods of spatial transcriptome sequencing based on their technical backgrounds, tissue preparation, and analytic procedures. With the pathology examples, useful recommendations for pathologists who are just getting started to use spatial sequencing analysis in research are provided here. In addition, leveraging spatial sequencing by integration with scRNA-seq is reviewed. With the advantages of simultaneous histologic and single-cell information, spatial sequencing may give a molecular basis for pathological diagnosis, improve our understanding of diseases, and have potential clinical applications in prognostics and diagnostic pathology.
Collapse
Affiliation(s)
- Yoon-Seob Kim
- Department of Microbiology, The Catholic University of Korea, Seoul,
Korea
- Precision Medicine Research Center/Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, Seoul,
Korea
| | - Jinyong Choi
- Department of Microbiology, The Catholic University of Korea, Seoul,
Korea
- Biomedicine & Health Sciences, The Catholic University of Korea, Seoul,
Korea
| | - Sug Hyung Lee
- Biomedicine & Health Sciences, The Catholic University of Korea, Seoul,
Korea
- Department of Pathology, The Catholic University of Korea, Seoul,
Korea
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| |
Collapse
|
8
|
Rashmi P, Sur S, Sigdel TK, Boada P, Schroeder AW, Damm I, Kretzler M, Hodgin J, Sarwal MM. Multiplexed droplet single-cell sequencing (Mux-Seq) of normal and transplant kidney. Am J Transplant 2022; 22:876-885. [PMID: 34687145 PMCID: PMC8897263 DOI: 10.1111/ajt.16871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/06/2021] [Accepted: 10/09/2021] [Indexed: 01/25/2023]
Abstract
Maintenance of systemic homeostasis by kidney requires the coordinated response of diverse cell types. The use of single-cell RNA sequencing (scRNAseq) for patient tissue samples remains fraught with difficulties with cell isolation, purity, and experimental bias. The ability to characterize immune and parenchymal cells during transplant rejection will be invaluable in defining transplant pathology where tissue availability is restricted to needle biopsy fragments. Herein, we present feasibility data for multiplexing approach for droplet scRNAseq (Mux-Seq). Mux-Seq has the potential to minimize experimental batch bias and variation even with very small sample input. In this first proof-of-concept study for this approach, explant tissues from six normal and two transplant recipients after multiple early post-transplant rejection episodes leading to nephrectomy due to aggressive antibody mediated rejection, were pooled for Mux-Seq. A computational tool, Demuxlet was applied for demultiplexing the individual cells from the pooled experiment. Each sample was also applied individually in a single microfluidic run (singleplex) to correlate results with the pooled data from the same sample. Our applied protocol demonstrated that data from Mux-Seq correlated highly with singleplex (Pearson coefficient 0.982) sequencing results, with the ability to identify many known and novel kidney cell types including different infiltrating immune cells. Trajectory analysis of proximal tubule and endothelial cells demonstrated separation between healthy and injured kidney from transplant explant suggesting evolving stages of cell- specific differentiation in alloimmune injury. This study provides the technical groundwork for understanding the pathogenesis of alloimmune injury and host tissue response in transplant rejection and normal human kidney and provides a protocol for optimized processing precious and low input human kidney biopsy tissue for larger scale studies.
Collapse
Affiliation(s)
- Priyanka Rashmi
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Swastika Sur
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Tara K. Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Patrick Boada
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Andrew W. Schroeder
- Department of Internal Medicine/Nephrology, University of Michigan, Ann Arbor, MI
| | - Izabella Damm
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Matthias Kretzler
- Department of Internal Medicine/Nephrology, University of Michigan, Ann Arbor, MI
| | - Jeff Hodgin
- Department of Internal Medicine/Nephrology, University of Michigan, Ann Arbor, MI
| | - Minnie M. Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA,Corresponding author: Minnie Sarwal, MD, PhD, MRCP, FRCP, Professor in Residence, Surgery/Medicine/Pediatrics, UCSF, Medical Director, Kidney Pancreas Transplant Program, UCSF, Co-Director, T32 Training Program, Transplant Surgery, UCSF, Director, Precision Transplant Medicine, UCSF,
| | | |
Collapse
|
9
|
Glass C, Lafata KJ, Jeck W, Horstmeyer R, Cooke C, Everitt J, Glass M, Dov D, Seidman MA. The Role of Machine Learning in Cardiovascular Pathology. Can J Cardiol 2021; 38:234-245. [PMID: 34813876 DOI: 10.1016/j.cjca.2021.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Machine learning has seen slow but steady uptake in diagnostic pathology over the past decade to assess digital whole-slide images. Machine learning tools have incredible potential to standardise, and likely even improve, histopathologic diagnoses, but they are not yet widely used in clinical practice. We describe the principles of these tools and technologies and some successful preclinical and pretranslational efforts in cardiovascular pathology, as well as a roadmap for moving forward. In nonhuman animal models, one proof-of-principle application is in rodent progressive cardiomyopathy, which is of particular significance to drug toxicity studies. Basic science successes include screening the quality of differentiated stem cells and characterising cardiomyocyte developmental stages, with potential applications for research and toxicology/drug safety screening using derived or native human pluripotent stem cells differentiated into cardiomyocytes. Translational studies of particular note include those with success in diagnosing the various forms of heart allograft rejection. For fully realising the value of these tools in clinical cardiovascular pathology, we identify 3 essential challenges. First is image quality standardisation to ensure that algorithms can be developed and implemented on robust, consistent data. The second is consensus diagnosis; experts don't always agree, and thus "truth" may be difficult to establish, but the algorithms themselves may provide a solution. The third is the need for large-enough data sets to facilitate robust algorithm development, necessitating large cross-institutional shared image databases. The power of histopathology-based machine learning technologies is tremendous, and we outline the next steps needed to capitalise on this power.
Collapse
Affiliation(s)
- Carolyn Glass
- Division of Artificial Intelligence and Computational Pathology, Duke AI Health, Duke University Medical Center, Durham, North Carolina, USA; Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA.
| | - Kyle J Lafata
- Department of Radiology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Electrical and Computer Engineering, Duke Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - William Jeck
- Division of Artificial Intelligence and Computational Pathology, Duke AI Health, Duke University Medical Center, Durham, North Carolina, USA; Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Roarke Horstmeyer
- Division of Artificial Intelligence and Computational Pathology, Duke AI Health, Duke University Medical Center, Durham, North Carolina, USA; Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, North Carolina, USA
| | - Colin Cooke
- Department of Electrical and Computer Engineering, Duke Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Jeffrey Everitt
- Division of Artificial Intelligence and Computational Pathology, Duke AI Health, Duke University Medical Center, Durham, North Carolina, USA; Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew Glass
- Division of Artificial Intelligence and Computational Pathology, Duke AI Health, Duke University Medical Center, Durham, North Carolina, USA; Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - David Dov
- Division of Artificial Intelligence and Computational Pathology, Duke AI Health, Duke University Medical Center, Durham, North Carolina, USA; Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Michael A Seidman
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| |
Collapse
|
10
|
Latt KZ, Heymann J, Yoshida T, Kopp JB. Glomerular Kidney Diseases in the Single-Cell Era. Front Med (Lausanne) 2021; 8:761996. [PMID: 34778322 PMCID: PMC8585743 DOI: 10.3389/fmed.2021.761996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022] Open
Abstract
Recent advances in single-cell technology have enabled investigation of genomic profiles and molecular crosstalk among individual cells obtained from tissues and biofluids at unprecedented resolution. Glomerular diseases, either primary or secondary to systemic diseases, often manifest elements of inflammation and of innate and adaptive immune responses. Application of single-cell methods have revealed cellular signatures of inflammation, cellular injury, and fibrosis. From these signatures, potential therapeutic targets can be inferred and in theory, this approach might facilitate identification of precision therapeutics for these diseases. Single-cell analyses of urine samples and skin lesions from patients with lupus nephritis and of urine samples from patients with diabetic nephropathy and focal segmental glomerulosclerosis have presented potential novel approaches for the diagnosis and monitoring of disease activity. These single-cell approaches, in contrast to kidney biopsy, are non-invasive and could be repeated multiple times as needed.
Collapse
Affiliation(s)
- Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | | | | |
Collapse
|
11
|
Silva PHI, Wiegand A, Daryadel A, Russo G, Ritter A, Gaspert A, Wüthrich RP, Wagner CA, Mohebbi N. Acidosis and alkali therapy in patients with kidney transplant is associated with transcriptional changes and altered abundance of genes involved in cell metabolism and acid-base balance. Nephrol Dial Transplant 2021; 36:1806-1820. [PMID: 34240183 DOI: 10.1093/ndt/gfab210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Metabolic acidosis occurs frequently in patients with kidney transplant and is associated with higher risk for and accelerated loss of graft function. To date, it is not known whether alkali therapy in these patients improves kidney function and whether acidosis and its therapy is associated with altered expression of proteins involved in renal acid-base metabolism. METHODS We collected retrospectively kidney biopsies from 22 patients. Of these patients, 9 had no acidosis, 9 had metabolic acidosis (plasma HCO3- < 22 mmol/l), and 4 had acidosis and received alkali therapy. We performed transcriptome analysis and immunohistochemistry for proteins involved in renal acid-base handling. RESULTS We found the expression of 40 transcripts significantly changed between kidneys from non-acidotic and acidotic patients. These genes are mostly involved in proximal tubule amino acid and lipid metabolism and energy homeostasis. Three transcripts were fully recovered by alkali therapy: the Kir4.2 K+-channel, an important regulator of proximal tubule HCO3--metabolism and transport, ACADSB and SHMT1, genes involved in beta-oxidation and methionine metabolism. Immunohistochemistry showed reduced staining for the proximal tubule NBCe1 HCO3- transporter in kidneys from acidotic patients that recovered with alkali therapy. In addition, the HCO3-exchanger pendrin was affected by acidosis and alkali therapy. CONCLUSIONS Metabolic acidosis in kidney transplant recipients is associated with alterations in the renal transcriptome that are partly restored by alkali therapy. Acid-base transport proteins mostly from proximal tubule were also affected by acidosis and alkali therapy suggesting that the downregulation of critical players contributes to metabolic acidosis in these patients.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| | - Anna Wiegand
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Arezoo Daryadel
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| | - Giancarlo Russo
- Functional Genomics Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Alexander Ritter
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Ariana Gaspert
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Rudolf P Wüthrich
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| | - Nilufar Mohebbi
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Martín-Saiz L, Mosteiro L, Solano-Iturri JD, Rueda Y, Martín-Allende J, Imaz I, Olano I, Ochoa B, Fresnedo O, Fernández JA, Larrinaga G. High-Resolution Human Kidney Molecular Histology by Imaging Mass Spectrometry of Lipids. Anal Chem 2021; 93:9364-9372. [PMID: 34192457 PMCID: PMC8922278 DOI: 10.1021/acs.analchem.1c00649] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
For many years, traditional histology
has been the gold standard
for the diagnosis of many diseases. However, alternative and powerful
techniques have appeared in recent years that complement the information
extracted from a tissue section. One of the most promising techniques
is imaging mass spectrometry applied to lipidomics. Here, we demonstrate
the capabilities of this technique to highlight the architectural
features of the human kidney at a spatial resolution of 10 μm.
Our data demonstrate that up to seven different segments of the nephron
and the interstitial tissue can be readily identified in the sections
according to their characteristic lipid fingerprints and that such
fingerprints are maintained among different individuals (n = 32). These results set the foundation for further studies on the
metabolic bases of the diseases affecting the human kidney.
Collapse
Affiliation(s)
- Lucía Martín-Saiz
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - Lorena Mosteiro
- Service of Anatomic Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Cruces (Barakaldo) 48903, Spain
| | - Jon D Solano-Iturri
- Service of Anatomic Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Cruces (Barakaldo) 48903, Spain.,BioCruces Health Research Institute, Cruces (Barakaldo) 48903, Spain
| | - Yuri Rueda
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - Javier Martín-Allende
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - Igone Imaz
- Service of Anatomic Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Cruces (Barakaldo) 48903, Spain
| | - Iván Olano
- Service of Urology, Cruces University Hospital, Cruces (Barakaldo) 48903, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - Gorka Larrinaga
- BioCruces Health Research Institute, Cruces (Barakaldo) 48903, Spain.,Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain.,Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| |
Collapse
|
13
|
El-Achkar TM, Eadon MT, Menon R, Lake BB, Sigdel TK, Alexandrov T, Parikh S, Zhang G, Dobi D, Dunn KW, Otto EA, Anderton CR, Carson JM, Luo J, Park C, Hamidi H, Zhou J, Hoover P, Schroeder A, Joanes M, Azeloglu EU, Sealfon R, Winfree S, Steck B, He Y, D’Agati V, Iyengar R, Troyanskaya OG, Barisoni L, Gaut J, Zhang K, Laszik Z, Rovin BH, Dagher PC, Sharma K, Sarwal MM, Hodgin JB, Alpers CE, Kretzler M, Jain S. A multimodal and integrated approach to interrogate human kidney biopsies with rigor and reproducibility: guidelines from the Kidney Precision Medicine Project. Physiol Genomics 2021; 53:1-11. [PMID: 33197228 PMCID: PMC7847045 DOI: 10.1152/physiolgenomics.00104.2020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Comprehensive and spatially mapped molecular atlases of organs at a cellular level are a critical resource to gain insights into pathogenic mechanisms and personalized therapies for diseases. The Kidney Precision Medicine Project (KPMP) is an endeavor to generate three-dimensional (3-D) molecular atlases of healthy and diseased kidney biopsies by using multiple state-of-the-art omics and imaging technologies across several institutions. Obtaining rigorous and reproducible results from disparate methods and at different sites to interrogate biomolecules at a single-cell level or in 3-D space is a significant challenge that can be a futile exercise if not well controlled. We describe a "follow the tissue" pipeline for generating a reliable and authentic single-cell/region 3-D molecular atlas of human adult kidney. Our approach emphasizes quality assurance, quality control, validation, and harmonization across different omics and imaging technologies from sample procurement, processing, storage, shipping to data generation, analysis, and sharing. We established benchmarks for quality control, rigor, reproducibility, and feasibility across multiple technologies through a pilot experiment using common source tissue that was processed and analyzed at different institutions and different technologies. A peer review system was established to critically review quality control measures and the reproducibility of data generated by each technology before their being approved to interrogate clinical biopsy specimens. The process established economizes the use of valuable biopsy tissue for multiomics and imaging analysis with stringent quality control to ensure rigor and reproducibility of results and serves as a model for precision medicine projects across laboratories, institutions and consortia.
Collapse
Affiliation(s)
| | | | - Rajasree Menon
- 2University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Blue B. Lake
- 3Jacobs School of Engineering, University of California, San Diego, California
| | - Tara K. Sigdel
- 4University of California San Francisco School of Medicine, San Francisco, California
| | | | - Samir Parikh
- 6Ohio State University College of Medicine, Columbus, Ohio
| | - Guanshi Zhang
- 7UT-Health San Antonio School of Medicine, San Antonio, Texas
| | - Dejan Dobi
- 4University of California San Francisco School of Medicine, San Francisco, California
| | - Kenneth W. Dunn
- 1Indiana University School of Medicine, Indianapolis, Indiana
| | - Edgar A. Otto
- 2University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Christopher R. Anderton
- 7UT-Health San Antonio School of Medicine, San Antonio, Texas,8Pacific Northwest National Laboratory, Richland, Washington
| | - Jonas M. Carson
- 9Schools of Medicine and Public Health, University of Washington, Seattle, Washington
| | - Jinghui Luo
- 2University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Chris Park
- 9Schools of Medicine and Public Health, University of Washington, Seattle, Washington
| | - Habib Hamidi
- 2University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Jian Zhou
- 12Princeton University, Princeton, New Jersey,14Columbia University School of Medicine, New York City, New York
| | - Paul Hoover
- 10Harvard University School of Medicine, Boston Massachusetts
| | - Andrew Schroeder
- 4University of California San Francisco School of Medicine, San Francisco, California
| | - Marianinha Joanes
- 4University of California San Francisco School of Medicine, San Francisco, California
| | | | - Rachel Sealfon
- 12Princeton University, Princeton, New Jersey,14Columbia University School of Medicine, New York City, New York
| | - Seth Winfree
- 1Indiana University School of Medicine, Indianapolis, Indiana
| | - Becky Steck
- 2University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Yongqun He
- 2University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Vivette D’Agati
- 14Columbia University School of Medicine, New York City, New York
| | - Ravi Iyengar
- 11Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Olga G. Troyanskaya
- 12Princeton University, Princeton, New Jersey,14Columbia University School of Medicine, New York City, New York
| | - Laura Barisoni
- 15Duke University School of Medicine, Durham, North Carolina
| | - Joseph Gaut
- 16Washington University in Saint Louis School of Medicine, St. Louis, Missouri
| | - Kun Zhang
- 3Jacobs School of Engineering, University of California, San Diego, California
| | - Zoltan Laszik
- 4University of California San Francisco School of Medicine, San Francisco, California
| | - Brad H. Rovin
- 6Ohio State University College of Medicine, Columbus, Ohio
| | | | - Kumar Sharma
- 7UT-Health San Antonio School of Medicine, San Antonio, Texas
| | - Minnie M. Sarwal
- 4University of California San Francisco School of Medicine, San Francisco, California
| | | | - Charles E. Alpers
- 9Schools of Medicine and Public Health, University of Washington, Seattle, Washington
| | | | - Sanjay Jain
- 16Washington University in Saint Louis School of Medicine, St. Louis, Missouri
| |
Collapse
|
14
|
Herrington CS, Poulsom R, Coates PJ. Recent Advances in Pathology: the 2020 Annual Review Issue of The Journal of Pathology. J Pathol 2020; 250:475-479. [PMID: 32346919 DOI: 10.1002/path.5425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022]
Abstract
This year's Annual Review Issue of The Journal of Pathology contains 18 invited reviews on current research areas in pathology. The subject areas reflect the broad range of topics covered by the journal and this year encompass the development and application of software in digital histopathology, implementation of biomarkers in pathology practice; genetics and epigenetics, and stromal influences in disease. The reviews are authored by experts in their field and provide comprehensive updates in the chosen areas, in which there has been considerable recent progress in our understanding of disease. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- C Simon Herrington
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Richard Poulsom
- The Pathological Society of Great Britain and Ireland, London, UK
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
15
|
Recent Advances on Biomarkers of Early and Late Kidney Graft Dysfunction. Int J Mol Sci 2020; 21:ijms21155404. [PMID: 32751357 PMCID: PMC7432796 DOI: 10.3390/ijms21155404] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
New biomarkers of early and late graft dysfunction are needed in renal transplant to improve management of complications and prolong graft survival. A wide range of potential diagnostic and prognostic biomarkers, measured in different biological fluids (serum, plasma, urine) and in renal tissues, have been proposed for post-transplant delayed graft function (DGF), acute rejection (AR), and chronic allograft dysfunction (CAD). This review investigates old and new potential biomarkers for each of these clinical domains, seeking to underline their limits and strengths. OMICs technology has allowed identifying many candidate biomarkers, providing diagnostic and prognostic information at very early stages of pathological processes, such as AR. Donor-derived cell-free DNA (ddcfDNA) and extracellular vesicles (EVs) are further promising tools. Although most of these biomarkers still need to be validated in multiple independent cohorts and standardized, they are paving the way for substantial advances, such as the possibility of accurately predicting risk of DGF before graft is implanted, of making a “molecular” diagnosis of subclinical rejection even before histological lesions develop, or of dissecting etiology of CAD. Identification of “immunoquiescent” or even tolerant patients to guide minimization of immunosuppressive therapy is another area of active research. The parallel progress in imaging techniques, bioinformatics, and artificial intelligence (AI) is helping to fully exploit the wealth of information provided by biomarkers, leading to improved disease nosology of old entities such as transplant glomerulopathy. Prospective studies are needed to assess whether introduction of these new sets of biomarkers into clinical practice could actually reduce the need for renal biopsy, integrate traditional tools, and ultimately improve graft survival compared to current management.
Collapse
|