1
|
Ma D, Feng Y, Lin X. Immune and non-immune mediators in the fibrosis pathogenesis of salivary gland in Sjögren's syndrome. Front Immunol 2024; 15:1421436. [PMID: 39469708 PMCID: PMC11513355 DOI: 10.3389/fimmu.2024.1421436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Sjögren's syndrome (SS) or Sjögren's disease (SjD) is a systemic autoimmune disease clinically manifested as sicca symptoms. This disease primarily impacts the functionality of exocrine glands, specifically the lacrimal and salivary glands (SG). SG fibrosis, an irreversible morphological change, is a severe consequence that occurs in the later stages of the disease due to sustained inflammation. However, the mechanism underlying SG fibrosis in SS remains under-investigated. Glandular fibrosis may arise from chronic sialadenitis, in which the interactions between infiltrating lymphocytes and epithelial cells potentially contributes to fibrotic pathogenesis. Thus, both immune and non-immune cells are closely involved in this process, while their interplays are not fully understood. The molecular mechanism of tissue fibrosis is partly associated with an imbalance of immune responses, in which the transforming growth factor-beta (TGF-β)-dependent epithelial-mesenchymal transition (EMT) and extracellular matrix remodeling are recently investigated. In addition, viral infection has been implicated in the pathogenesis of SS. Viral-specific innate immune response could exacerbate the autoimmune progression, resulting in overt inflammation in SG. Notably, post-COVID patients exhibit typical SS symptoms and severe inflammatory sialadenitis, which are positively correlated with SG damage. In this review, we discuss the immune and non-immune risk factors in SG fibrosis and summarize the evidence to understand the mechanisms upon autoimmune progression in SS.
Collapse
Affiliation(s)
- Danbao Ma
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Xiang Lin
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| |
Collapse
|
2
|
Bao J, Liu C, Song H, Mao Z, Qu W, Yu F, Shen Y, Jiang J, Chen X, Wang R, Wang Q, Chen W, Zheng S, Chen Y. Cepharanthine attenuates pulmonary fibrosis via modulating macrophage M2 polarization. BMC Pulm Med 2024; 24:444. [PMID: 39261812 PMCID: PMC11391720 DOI: 10.1186/s12890-024-03250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a group of chronic interstitial pulmonary diseases characterized by myofibroblast proliferation and extracellular matrix (ECM) deposition. However, current treatments are not satisfactory. Therefore, more effective therapies need to be explored. Cepharanthine (CEP) is a naturally occurring alkaloid that has recently been reported to have multiple pharmacological effects, particularly in chronic inflammation. METHODS For in vivo experiments, first, a pulmonary fibrosis murine model was generated via tracheal injection of bleomycin (BLM). Second, the clinical manifestations and histopathological changes of the mice were used to verify that treatment with CEP might significantly reduce BLM-induced fibrosis. Furthermore, flow cytometric analysis was used to analyze the changes in the number of M2 macrophages in the lung tissues before and after treatment with CEP to explore the relationship between macrophage M2 polarization and pulmonary fibrosis. In vitro, we constructed two co-culture systems (THP-1 and MRC5 cells, RAW264.7 and NIH 3T3 cells), and measured the expression of fibrosis-related proteins to explore whether CEP could reduce pulmonary fibrosis by regulating macrophage M2 polarization and fibroblast activation. RESULTS The results showed that the intranasal treatment of CEP significantly attenuated the symptoms of pulmonary fibrosis induced by BLM in a murine model. Our findings also indicated that CEP treatment markedly reduced the expression of fibrosis markers, including TGF-β1, collagen I, fibronectin and α-SMA, in the mouse lung. Furthermore, in vitro studies demonstrated that CEP attenuated pulmonary fibrosis by inhibiting fibroblast activation through modulating macrophage M2 polarization and reducing TGF-β1 expression. CONCLUSIONS This study demonstrated the potential and efficacy of CEP in the treatment of pulmonary fibrosis. In particular, this study revealed a novel mechanism of CEP in inhibiting fibroblast activation by regulating macrophage M2 polarization and reducing the expression of fibrosis-associated factors. Our findings open a new direction for future research into the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiaqi Bao
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chang Liu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Huafeng Song
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou, Infectious Disease Hospital Affiliated to Soochow University, No. 10, Guangqian Road, Xiangcheng District, Suzhou, 215000, China
| | - Zheying Mao
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wenxin Qu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Fei Yu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yifei Shen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jingjing Jiang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiao Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ruonan Wang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Qi Wang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Weizhen Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shufa Zheng
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China.
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Yu Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China.
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
3
|
Wang Z, Xie N, Liang X, Shu Q, Hong Y, Shi H, Wang J, Fan D, Liu N, Xu F. Gut mechanoimmunology: Shaping immune response through physical cues. Phys Life Rev 2024; 50:13-26. [PMID: 38821019 DOI: 10.1016/j.plrev.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
The gut immune system embodies a complex interplay between the gut mucosal barrier, the host's immune cells, and gut microbiota. These components exist within a dynamic environment characterized by a variety of physical cues, e.g., compression, tension, shear stress, stiffness, and viscoelasticity. The physical cues can be modified under specific pathological conditions. Given their dynamic nature, comprehending the specific effects of these physical cues on the gut immune system is critical for pathological and therapeutic studies of intestinal immune-related diseases. This review aims to discuss how physical cues influence gut immunology by affecting the gut mucosal barrier, host immune cells, and gut microbiota, defining this concept as gut mechanoimmunology. This review seeks to highlight that an enhanced understanding of gut mechanoimmunology carries therapeutic implications, not only for intestinal diseases but also for extraintestinal diseases.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Ning Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Xiru Liang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Qiuai Shu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Yijie Hong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Na Liu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Boos D, Chuang TD, Abbasi A, Luzzi A, Khorram O. The immune landscape of uterine fibroids as determined by mass cytometry. F&S SCIENCE 2024; 5:272-282. [PMID: 38925276 PMCID: PMC11404535 DOI: 10.1016/j.xfss.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE To study the differences in immune cell profiles in uterine fibroids (Fibs) and matched myometrium (Myo). DESIGN Observational study. SETTING Laboratory study. PATIENT(S) The study included tissue that was collected from 10 pairs of Fib and matched Myo from women, not on hormonal medications, undergoing hysterectomy and myomectomy. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Differences in immune cell and cytokine composition between Fib and matched Myo. RESULT(S) The mass cytometry analysis indicated that Fibs had a significantly higher number of natural killer (NK) cells, total macrophages, M2 macrophages, and conventional dendritic cells when compared with matched Myo from the same patient. In contrast, Fibs had significantly fewer CD3 and CD4 T cells when compared with Myo. The mass cytometry analysis results did not show any significant difference in the number of resting mast cells. Immunoflurorescent and immunohistochemical imaging confirmed the cytometry by time of flight results, showing a significantly higher number of NK cells, tryptase-positive mast cells indicative of mast cell activation, total macrophages, and M2 cells in Fibs and a significantly lower number of CD3 and CD4 T cells. The cytokine assay revealed significantly increased levels of human interferon α2, interleukin (IL)-1α, and platelet-derived growth factor AA and significantly lower levels of macrophage colony-stimulating factor and IL-1 receptor antagonist in Fib. CONCLUSION(S) Our results show significant differences in immune cell populations and cytokine levels between Fib and Myo. These differences could account for the increased inflammation in fib and a potential mechanism by which these tumors evade the immune system. These findings provide a foundation for further studies exploring the role of immune cells in Fib development.
Collapse
Affiliation(s)
- Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Tsai-Der Chuang
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Asghar Abbasi
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Anna Luzzi
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Omid Khorram
- The Lundquist Institute for Biomedical Innovation, Torrance, California; Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, California.
| |
Collapse
|
5
|
Xiao B, Dai Z, Li Z, Xu D, Yin H, Yang F, Sun N. Single-cell transcriptomic profiling unveils insights into ovarian fibrosis in obese mice. Biol Direct 2024; 19:52. [PMID: 38956667 PMCID: PMC11218254 DOI: 10.1186/s13062-024-00496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Adiposity profoundly impacts reproductive health in both humans and animals. However, the precise subpopulations contributing to infertility under obese conditions remain elusive. RESULTS In this study, we established an obese mouse model through an eighteen-week high-fat diet regimen in adult female mice. Employing single-cell RNA sequencing (scRNA-seq), we constructed a comprehensive single-cell atlas of ovarian tissues from these mice to scrutinize the impact of obesity on the ovarian microenvironment. ScRNA-seq revealed notable alterations in the microenvironment of ovarian tissues in obese mice. Granulosa cells, stromal cells, T cells, and macrophages exhibited functional imbalances compared to the control group. We observed heightened interaction strength in the SPP1-CD44 pairing within lgfbp7+ granulosa cell subtypes and Il1bhigh monocyte subtypes in the ovarian tissues of obese mice. Moreover, the interaction strength between Il1bhigh monocyte subtypes and Pdgfrb+ stromal cell subtypes in the form of TNF - TNFrsf1α interaction was also enhanced subsequently to obesity, potentially contributing to ovarian fibrosis pathogenesis. CONCLUSIONS We propose a model wherein granulosa cells secrete SPP1 to activate monocytes, subsequently triggering TNF-α secretion by monocytes, thereby activating stromal cells and ultimately leading to the development of ovarian fibrosis. Intervening in this process may represent a promising avenue for improving clinical outcomes in fertility treatments for obese women.
Collapse
Affiliation(s)
- Bang Xiao
- Department of Medical Genetics, Naval Medical University, 800 Xiang yin Road, Shanghai, 200433, China
| | - Zhihui Dai
- Department of Medical Genetics, Naval Medical University, 800 Xiang yin Road, Shanghai, 200433, China
| | - Zhixuan Li
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 51 Fu cheng Road, Beijing, 100853, China
| | - Dabing Xu
- Department of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, 415 Feng yang Road, Shanghai, 200003, China
| | - Haozan Yin
- Department of Medical Genetics, Naval Medical University, 800 Xiang yin Road, Shanghai, 200433, China
| | - Fu Yang
- Department of Medical Genetics, Naval Medical University, 800 Xiang yin Road, Shanghai, 200433, China.
- Department of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, 415 Feng yang Road, Shanghai, 200003, China.
| | - Ningxia Sun
- Department of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, 415 Feng yang Road, Shanghai, 200003, China.
| |
Collapse
|
6
|
Dahdah N, Tercero-Alcázar C, Malagón MM, Garcia-Roves PM, Guzmán-Ruiz R. Interrelation of adipose tissue macrophages and fibrosis in obesity. Biochem Pharmacol 2024; 225:116324. [PMID: 38815633 DOI: 10.1016/j.bcp.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Obesity is characterized by adipose tissue expansion, extracellular matrix remodelling and unresolved inflammation that contribute to insulin resistance and fibrosis. Adipose tissue macrophages represent the most abundant class of immune cells in adipose tissue inflammation and could be key mediators of adipocyte dysfunction and fibrosis in obesity. Although macrophage activation states are classically defined by the M1/M2 polarization nomenclature, novel studies have revealed a more complex range of macrophage phenotypes in response to external condition or the surrounding microenvironment. Here, we discuss the plasticity of adipose tissue macrophages (ATMs) in response to their microenvironment in obesity, with special focus on macrophage infiltration and polarization, and their contribution to adipose tissue fibrosis. A better understanding of the role of ATMs as regulators of adipose tissue remodelling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Norma Dahdah
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Carmen Tercero-Alcázar
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María M Malagón
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Pablo Miguel Garcia-Roves
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Rocío Guzmán-Ruiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain.
| |
Collapse
|
7
|
Chen Y, Wang T, Liang F, Han J, Lou Z, Yu Y, Li J, Zhan T, Gu Y, Dong L, Jiang B, Zhang W, Wu M, Lu Y. Nicotinamide phosphoribosyltransferase prompts bleomycin-induced pulmonary fibrosis by driving macrophage M2 polarization in mice. Theranostics 2024; 14:2794-2815. [PMID: 38773984 PMCID: PMC11103509 DOI: 10.7150/thno.94482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is an irreversible, fatal interstitial lung disease lacking specific therapeutics. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD) salvage biosynthesis pathway and a cytokine, has been previously reported as a biomarker for lung diseases; however, the role of NAMPT in pulmonary fibrosis has not been elucidated. Methods: We identified the NAMPT level changes in pulmonary fibrosis by analyzing public RNA-Seq databases, verified in collected clinical samples and mice pulmonary fibrosis model by Western blotting, qRT-PCR, ELISA and Immunohistochemical staining. We investigated the role and mechanism of NAMPT in lung fibrosis by using pharmacological inhibition on NAMPT and Nampt transgenic mice. In vivo macrophage depletion by clodronate liposomes and reinfusion of IL-4-induced M2 bone marrow-derived macrophages (BMDMs) from wild-type mice, combined with in vitro cell experiments, were performed to further validate the mechanism underlying NAMPT involving lung fibrosis. Results: We found that NAMPT increased in the lungs of patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis. NAMPT inhibitor FK866 alleviated BLM-induced pulmonary fibrosis in mice and significantly reduced NAMPT levels in bronchoalveolar lavage fluid (BALF). The lung single-cell RNA sequencing showed that NAMPT expression in monocytes/macrophages of IPF patients was much higher than in other lung cells. Knocking out NAMPT in mouse monocytes/macrophages (Namptfl/fl;Cx3cr1CreER) significantly alleviated BLM-induced pulmonary fibrosis in mice, decreased NAMPT levels in BALF, reduced the infiltration of M2 macrophages in the lungs and improved mice survival. Depleting monocytes/macrophages in Namptfl/fl;Cx3cr1CreER mice by clodronate liposomes and subsequent pulmonary reinfusion of IL-4-induced M2 BMDMs from wild-type mice, reversed the protective effect of monocyte/macrophage NAMPT-deletion on lung fibrosis. In vitro experiments confirmed that the mechanism of NAMPT engaged in pulmonary fibrosis is related to the released NAMPT by macrophages promoting M2 polarization in a non-enzyme-dependent manner by activating the STAT6 signal pathway. Conclusions: NAMPT prompts bleomycin-induced pulmonary fibrosis by driving macrophage M2 polarization in mice. Targeting the NAMPT of monocytes/macrophages is a promising strategy for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yaling Chen
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Tong Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fuxiang Liang
- Department of Thoracic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jia Han
- Department of Thoracic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhiling Lou
- Department of Thoracic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yifan Yu
- Department of Thoracic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jinsheng Li
- Department of Thoracic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Tianwei Zhan
- Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Yuqing Gu
- Department of Pharmacology, School of Pharmacy, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lingjun Dong
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Clinical Pharmacology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Weiping Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ming Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yunbi Lu
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
8
|
Zhou Y, Zhu F, Zhou Y, Li X, Zhao S, Zhang Y, Zhu Y, Li H, Cao Y, Zhang C. The value of low-intensity pulsed ultrasound in reducing ovarian injury caused by chemotherapy in mice. Reprod Biol Endocrinol 2024; 22:51. [PMID: 38671458 PMCID: PMC11046824 DOI: 10.1186/s12958-024-01216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Ovarian damage and follicle loss are major side effects of chemotherapy in young female patients with cancer. However, effective strategies to prevent these injuries are still lacking. The purpose of this study was to verify low-intensity pulsed ultrasound (LIPUS) can reduce ovarian injury caused by chemotherapy and to explore its underlying mechanisms in mice model. METHODS The mice were randomly divided into the Control group, Cisplatin group, and Cisplatin + LIPUS group. The Cisplatin group and Cisplatin + LIPUS group were intraperitoneally injected with cisplatin every other day for a total of 10 injections, and the Control group was injected with saline. On the second day of each injection, the Cisplatin + LIPUS group received irradiation, whereas the other two groups received sham irradiation. We used a variety of biotechnologies to detect the differences in follicle count, granulosa cell apoptosis, fibrosis, transcriptome level, oxidative damage, and inflammation in differently treated mice. RESULT LIPUS was able to reduce primordial follicle pool depletion induced by cisplatin and inhibit the apoptosis of granulosa cells. Transcriptomic results confirmed that LIPUS can reduce ovarian tissue injury. We demonstrated that LIPUS can relieve ovarian fibrosis by inhibiting TGF-β1/Smads pathway. Meanwhile, it can reduce the oxidative damage and reduced the mRNA levels of proinflammatory cytokines caused by chemotherapy. CONCLUSION LIPUS can reduce the toxic effects of chemotherapy drugs on ovaries, inhibit ovarian fibrosis, reduce the inflammatory response, and redcue the oxidative damage, reduce follicle depletion and to maintain the number of follicle pools.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Ultrasound, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China
| | - Fengyu Zhu
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China
| | - Yuanyuan Zhou
- Department of Ultrasound, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China
| | - Xuqing Li
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China
| | - Shuhan Zhao
- Department of Ultrasound, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China
| | - Yiqing Zhang
- Department of Ultrasound, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China
| | - Ying Zhu
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China
| | - Hongyan Li
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China.
| | - Chaoxue Zhang
- Department of Ultrasound, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China.
| |
Collapse
|
9
|
Burgess JK, Weiss DJ, Westergren-Thorsson G, Wigen J, Dean CH, Mumby S, Bush A, Adcock IM. Extracellular Matrix as a Driver of Chronic Lung Diseases. Am J Respir Cell Mol Biol 2024; 70:239-246. [PMID: 38190723 DOI: 10.1165/rcmb.2023-0176ps] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
The extracellular matrix (ECM) is not just a three-dimensional scaffold that provides stable support for all cells in the lungs, but also an important component of chronic fibrotic airway, vascular, and interstitial diseases. It is a bioactive entity that is dynamically modulated during tissue homeostasis and disease, that controls structural and immune cell functions and drug responses, and that can release fragments that have biological activity and that can be used to monitor disease activity. There is a growing recognition of the importance of considering ECM changes in chronic airway, vascular, and interstitial diseases, including 1) compositional changes, 2) structural and organizational changes, and 3) mechanical changes and how these affect disease pathogenesis. As altered ECM biology is an important component of many lung diseases, disease models must incorporate this factor to fully recapitulate disease-driver pathways and to study potential novel therapeutic interventions. Although novel models are evolving that capture some or all of the elements of the altered ECM microenvironment in lung diseases, opportunities exist to more fully understand cell-ECM interactions that will help devise future therapeutic targets to restore function in chronic lung diseases. In this perspective article, we review evolving knowledge about the ECM's role in homeostasis and disease in the lung.
Collapse
Affiliation(s)
- Janette K Burgess
- Department of Pathology and Medical Biology
- Groningen Research Institute for Asthma and COPD, and
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, Burlington, Vermont
| | | | - Jenny Wigen
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Charlotte H Dean
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
- Centre for Pediatrics and Child Health, Imperial College and Royal Brompton Hospital, London, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| |
Collapse
|
10
|
Li S, Hu G, Kuang L, Zhou T, Jiang H, Pang F, Li J, Chen X, Bao J, Li W, Li C, Li M, Wang L, Zhang D, Zhang J, Yang Z, Jin H. Unraveling the mechanism of ethyl acetate extract from Prismatomeris connata Y. Z. Ruan root in treating pulmonary fibrosis: insights from bioinformatics, network pharmacology, and experimental validation. Front Immunol 2024; 14:1330055. [PMID: 38259493 PMCID: PMC10801734 DOI: 10.3389/fimmu.2023.1330055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Pulmonary fibrosis is a terminal lung disease characterized by fibroblast proliferation, extracellular matrix accumulation, inflammatory damage, and tissue structure destruction. The pathogenesis of this disease, particularly idiopathic pulmonary fibrosis (IPF), remains unknown. Macrophages play major roles in organ fibrosis diseases, including pulmonary fibrosis. The phenotype and polarization of macrophages are closely associated with pulmonary fibrosis. A new direction in research on anti-pulmonary fibrosis is focused on developing drugs that maintain the stability of the pulmonary microenvironment. Methods We obtained gene sequencing data and clinical information for patients with IPF from the GEO datasets GSE110147, GSE15197, GSE24988, GSE31934, GSE32537, GSE35145, GSE53845, GSE49072, GSE70864, and GSE90010. We performed GO, KEGG enrichment analysis and GSEA analysis, and conducted weighted gene co-expression network analysis. In addition, we performed proteomic analysis of mouse lung tissue. To verify the results of bioinformatics analysis and proteomic analysis, mice were induced by intratracheal instillation of bleomycin (BLM), and gavaged for 14 days after modeling. Respiratory function of mice in different groups was measured. Lung tissues were retained for histopathological examination, Western Blot and real-time quantitative PCR, etc. In addition, lipopolysaccharide, interferon-γ and interleukin-4 were used to induce RAW264.7 cells for 12h in vitro to establish macrophage inflammation and polarization model. At the same time, HG2 intervention was given. The phenotype transformation and cytokine secretion of macrophages were investigated by Western Blot, RT-qPCR and flow cytometry, etc. Results Through bioinformatics analysis and experiments involving bleomycin-induced pulmonary fibrosis in mice, we confirmed the importance of macrophage polarization in IPF. The analysis revealed that macrophage polarization in IPF involves a change in the phenotypic spectrum. Furthermore, experiments demonstrated high expression of M2-type macrophage-associated biomarkers and inducible nitric oxide synthase, thus indicating an imbalance in M1/M2 polarization of pulmonary macrophages in mice with pulmonary fibrosis. Discussion Our investigation revealed that the ethyl acetate extract (HG2) obtained from the roots of Prismatomeris connata Y. Z. Ruan exhibits therapeutic efficacy against bleomycin-induced pulmonary fibrosis. HG2 modulates macrophage polarization, alterations in the TGF-β/Smad pathway, and downstream protein expression in the context of pulmonary fibrosis. On the basis of our findings, we believe that HG2 has potential as a novel traditional Chinese medicine component for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Sizheng Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guang Hu
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Lian Kuang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Zhou
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Pang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyi Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jie Bao
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- R&D Department, Beijing Union-Genius Pharmaceutical Technology Development Co. Ltd., Beijing, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- R&D Department, Beijing Union-Genius Pharmaceutical Technology Development Co. Ltd., Beijing, China
| | - Chuangjun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Menglin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lulu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dongming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zengyan Yang
- Section of Science & Technology, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- R&D Department, Beijing Union-Genius Pharmaceutical Technology Development Co. Ltd., Beijing, China
| |
Collapse
|
11
|
Nie Y, Li J, Zhai X, Wang Z, Wang J, Wu Y, Zhao P, Yan G. Elamipretide(SS-31) Attenuates Idiopathic Pulmonary Fibrosis by Inhibiting the Nrf2-Dependent NLRP3 Inflammasome in Macrophages. Antioxidants (Basel) 2023; 12:2022. [PMID: 38136142 PMCID: PMC10740969 DOI: 10.3390/antiox12122022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fatal lung disease with a limited therapeutic strategy. Mitochondrial oxidative stress in macrophages is directly linked to IPF. Elamipretide(SS-31) is a mitochondrion-targeted peptide that has been shown to be safe and beneficial for multiple diseases. However, whether SS-31 alleviates IPF is unclear. In the present study, we used a bleomycin (BLM)-induced mouse model followed by SS-31 injection every other day to investigate its role in IPF and explore the possible mechanism. Our results showed that SS-31 treatment significantly suppressed BLM-induced pulmonary fibrosis and inflammation, with improved histological change, and decreased extracellular matrix deposition and inflammatory cytokines release. Impressively, the expression percentage of IL-1β and IL-18 was downregulated to lower than half with SS-31 treatment. Mechanistically, SS-31 inhibited IL-33- or lipopolysaccharide(LPS)/IL-4-induced production of IL-1β and IL-18 in macrophages by suppressing NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome activation. Nuclear factor erythroid 2-related factor 2(Nrf2) was dramatically upregulated along with improved mitochondrial function after SS-31 treatment in activated macrophages and BLM-induced mice. Conversely, there was no significant change after SS-31 treatment in Nrf2-/- mice and macrophages. These findings indicated that SS-31 protected against pulmonary fibrosis and inflammation by inhibiting the Nrf2-mediated NLRP3 inflammasome in macrophages. Our data provide initial evidence for the therapeutic efficacy of SS-31 in IPF.
Collapse
Affiliation(s)
- Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.N.); (J.L.); (Z.W.); (J.W.); (Y.W.)
| | - Jiao Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.N.); (J.L.); (Z.W.); (J.W.); (Y.W.)
| | - Xiaorun Zhai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.N.); (J.L.); (Z.W.); (J.W.); (Y.W.)
| | - Zhixu Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.N.); (J.L.); (Z.W.); (J.W.); (Y.W.)
| | - Junpeng Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.N.); (J.L.); (Z.W.); (J.W.); (Y.W.)
| | - Yaxian Wu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.N.); (J.L.); (Z.W.); (J.W.); (Y.W.)
| | - Peng Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.N.); (J.L.); (Z.W.); (J.W.); (Y.W.)
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361000, China
| |
Collapse
|
12
|
Tang M, Zhao M, Shi Y. New insight into the role of macrophages in ovarian function and ovarian aging. Front Endocrinol (Lausanne) 2023; 14:1282658. [PMID: 38027176 PMCID: PMC10662485 DOI: 10.3389/fendo.2023.1282658] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophages (MΦs) are the most abundant leukocytes in mammalian ovaries that have heterogeneity and plasticity. A body of evidence has indicated that these cells are important in maintaining ovarian homeostasis and they play critical roles in ovarian physiological events, such as folliculogenesis, ovulation, corpus luteum formation and regression. As females age, ovarian tissue microenvironment is typified by chronic inflammation with exacerbated ovarian fibrosis. In response to specific danger signals within aged ovaries, macrophages polarize into different M1 or M2 phenotypes, and specialize in unique functions to participate in the ovarian aging process. In this review, we will focus on the physiologic roles of MΦs in normal ovarian functions. Furthermore, we will discuss the roles of MΦs in the process of ovarian senescence, as well as the novel techniques applied in this field.
Collapse
Affiliation(s)
- Maoxing Tang
- Department of Reproductive Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Manzhi Zhao
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuhua Shi
- Department of Reproductive Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Long H, Lichtnekert J, Andrassy J, Schraml BU, Romagnani P, Anders HJ. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes account for organ injury, regeneration or atrophy. Front Immunol 2023; 14:1194988. [PMID: 37868987 PMCID: PMC10587486 DOI: 10.3389/fimmu.2023.1194988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Mononuclear phagocytes (MP), i.e., monocytes, macrophages, and dendritic cells (DCs), are essential for immune homeostasis via their capacities to clear pathogens, pathogen components, and non-infectious particles. However, tissue injury-related changes in local microenvironments activate resident and infiltrating MP towards pro-inflammatory phenotypes that contribute to inflammation by secreting additional inflammatory mediators. Efficient control of injurious factors leads to a switch of MP phenotype, which changes the microenvironment towards the resolution of inflammation. In the same way, MP endorses adaptive structural responses leading to either compensatory hypertrophy of surviving cells, tissue regeneration from local tissue progenitor cells, or tissue fibrosis and atrophy. Under certain circumstances, MP contribute to the reversal of tissue fibrosis by clearance of the extracellular matrix. Here we give an update on the tissue microenvironment-related factors that, upon tissue injury, instruct resident and infiltrating MP how to support host defense and recover tissue function and integrity. We propose that MP are not intrinsically active drivers of organ injury and dysfunction but dynamic amplifiers (and biomarkers) of specific tissue microenvironments that vary across spatial and temporal contexts. Therefore, MP receptors are frequently redundant and suboptimal targets for specific therapeutic interventions compared to molecular targets upstream in adaptive humoral or cellular stress response pathways that influence tissue milieus at a contextual level.
Collapse
Affiliation(s)
- Hao Long
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Julia Lichtnekert
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Joachim Andrassy
- Department of General, Visceral and Transplant Surgery, University Hospital of Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Barbara U. Schraml
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-University (LMU), Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Paola Romagnani
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Firenze, Nephrology and Dialysis Unit, Meyer Children’s Hospital, Firenze, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| |
Collapse
|
14
|
Li R, Feng D, Han S, Zhai X, Yu X, Fu Y, Jin F. Macrophages and fibroblasts in foreign body reactions: How mechanical cues drive cell functions? Mater Today Bio 2023; 22:100783. [PMID: 37701130 PMCID: PMC10494263 DOI: 10.1016/j.mtbio.2023.100783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Biomaterials, when implanted in the human body, can induce a series of cell- and cytokine-related reactions termed foreign body reactions (FBRs). In the progression of FBRs, macrophages regulate inflammation and healing by polarizing to either a pro-inflammatory or pro-healing phenotype and recruit fibroblasts by secreting cytokines. Stimulated by the biomaterials, fibrotic capsule is formed eventually. The implant, along with its newly formed capsule, introduces various mechanical cues that influence cellular functions. Mechanosensing proteins, such as integrins or ion channels, transduce extracellular mechanical signals into cytoplasm biochemical signals in response to mechanical stimuli. Consequently, the morphology, migration mode, function, and polarization state of the cells are affected. Modulated by different intracellular signaling pathways and their crosstalk, the expression of fibrotic genes increases with fibroblast activation and fibroblast to myofibroblast transition under stiff or force stimuli. However, summarized in most current studies, the outcomes of macrophage polarization in the effect of different mechanical cues are inconsistent. The underlying mechanisms should be investigated with more advanced technology and considering more interfering aspects. Further research is needed to determine how to modulate the progression of fibrotic capsule formation in FBR artificially.
Collapse
Affiliation(s)
- Rihan Li
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Dongdong Feng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Siyuan Han
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Xiaoyue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110000, China
| | - Xinmiao Yu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Yuanyuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110000, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| |
Collapse
|
15
|
Wilson HM. Modulation of macrophages by biophysical cues in health and beyond. DISCOVERY IMMUNOLOGY 2023; 2:kyad013. [PMID: 38567062 PMCID: PMC10917218 DOI: 10.1093/discim/kyad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 08/09/2023] [Indexed: 04/04/2024]
Abstract
Macrophages play a key role in tissue development and homeostasis, innate immune defence against microbes or tumours, and restoring homeostasis through tissue regeneration following infection or injury. The ability to adopt such diverse functions is due to their heterogeneous nature, which is driven largely by their developmental origin and their response to signals they encounter from the microenvironment. The most well-characterized signals driving macrophage phenotype and function are biochemical and metabolic. However, the way macrophages sense and respond to their extracellular biophysical environment is becoming increasingly recognized in the field of mechano-immunology. These biophysical cues can be signals from tissue components, such as the composition and charge of extracellular matrix or topography, elasticity, and stiffness of the tissue surrounding cells; and mechanical forces such as shear stress or stretch. Macrophages are important in determining whether a disease resolves or becomes chronic. Ageing and diseases such as cancer or fibrotic disorders are associated with significant changes in the tissue biophysical environment, and this provides signals that integrate with those from biochemical and metabolic stimuli to ultimately dictate the overall function of macrophages. This review provides a brief overview of macrophage polarization, followed by a selection of commonly recognized physiological and applied biophysical stimuli impacting macrophage activity, and the potential signalling mechanisms driving downstream responses. The effects of biophysical cues on macrophages' function in homeostasis and disease and the associated clinical implications are also highlighted.
Collapse
Affiliation(s)
- Heather M Wilson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
16
|
Wisman M, Nizamoglu M, Noordhoek JA, Timens W, Burgess JK, Heijink IH. Dysregulated cross-talk between alveolar epithelial cells and stromal cells in idiopathic pulmonary fibrosis reduces epithelial regenerative capacity. Front Med (Lausanne) 2023; 10:1182368. [PMID: 37621459 PMCID: PMC10446880 DOI: 10.3389/fmed.2023.1182368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
In idiopathic pulmonary fibrosis (IPF) constant epithelial micro-injury and aberrant interactions within the stromal micro-environment lead to abnormal alveolar repair and fibrosis. We hypothesized that alveolar epithelial regenerative responses in IPF are impaired due to disturbed crosstalk between epithelial cells and their stromal niche. We established organoid cultures from unfractionated suspensions and isolated EpCAM+ cells from distal lung tissue of patients with and without IPF. We observed significantly more organoids being formed from unfractionated suspensions compared to isolated EpCAM+ cell cultures, indicating the presence of supportive cells in the unfractionated suspensions. Importantly, lower organoid numbers were observed in unfractionated cultures from IPF lungs compared to non-IPF lungs. This difference was not found when comparing organoid formation from isolated EpCAM+ cells alone between IPF and non-IPF groups, suggesting that crosstalk between the supportive population and epithelial cells is impaired in lungs from IPF patients. Additionally, organoids grown from IPF lung-derived cells were larger in size compared to those from non-IPF lungs in both unfractionated and EpCAM+ cultures, indicating an intrinsic abnormality in epithelial progenitors from IPF lungs. Together, our observations suggest that dysregulated crosstalk between alveolar progenitor cells and the stromal niche affects the regenerative capacity, potentially contributing to alveolar impairment in IPF.
Collapse
Affiliation(s)
- Marissa Wisman
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Jacobien A. Noordhoek
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, Netherlands
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| |
Collapse
|
17
|
Altrieth AL, O’Keefe KJ, Gellatly VA, Tavarez JR, Feminella SM, Moskwa NL, Cordi CV, Turrieta JC, Nelson DA, Larsen M. Identifying fibrogenic cells following salivary gland obstructive injury. Front Cell Dev Biol 2023; 11:1190386. [PMID: 37287453 PMCID: PMC10242138 DOI: 10.3389/fcell.2023.1190386] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
Fibrosis results from excess extracellular matrix accumulation, which alters normal tissue architecture and impedes function. In the salivary gland, fibrosis can be induced by irradiation treatment for cancer therapy, Sjögren's Disease, and other causes; however, it is unclear which stromal cells and signals participate in injury responses and disease progression. As hedgehog signaling has been implicated in fibrosis of the salivary gland and other organs, we examined contributions of the hedgehog effector, Gli1, to fibrotic responses in salivary glands. To experimentally induce a fibrotic response in female murine submandibular salivary glands, we performed ductal ligation surgery. We detected a progressive fibrotic response where both extracellular matrix accumulation and actively remodeled collagen significantly increased at 14 days post-ligation. Macrophages, which participate in extracellular matrix remodeling, and Gli1+ and PDGFRα+ stromal cells, which may deposit extracellular matrix, both increased with injury. Using single-cell RNA-sequencing, Gli1 + cells were not found in discrete clusters at embryonic day 16 but were found in clusters expressing the stromal genes Pdgfra and/or Pdgfrb. In adult mice, Gli1+ cells were similarly heterogeneous but more cells co-expressed PDGFRα and PDGFRβ. Using Gli1-CreERT2; ROSA26tdTomato lineage-tracing mice, we found that Gli1-derived cells expand with ductal ligation injury. Although some of the Gli1 lineage-traced tdTomato+ cells expressed vimentin and PDGFRβ following injury, there was no increase in the classic myofibroblast marker, smooth muscle alpha-actin. Additionally, there was little change in extracellular matrix area, remodeled collagen area, PDGFRα, PDGFRβ, endothelial cells, neurons, or macrophages in Gli1 null salivary glands following injury when compared with controls, suggesting that Gli1 signaling and Gli1+ cells have only a minor contribution to mechanical injury-induced fibrotic changes in the salivary gland. We used scRNA-seq to examine cell populations that expand with ligation and/or showed increased expression of matrisome genes. Some Pdgfra + /Pdgfrb + stromal cell subpopulations expanded in response to ligation, with two stromal cell subpopulations showing increased expression of Col1a1 and a greater diversity of matrisome genes, consistent with these cells being fibrogenic. However, only a few cells in these subpopulations expressed Gli1, consistent with a minor contribution of these cells to extracellular matrix production. Defining the signaling pathways driving fibrotic responses in stromal cell sub-types could reveal future therapeutic targets.
Collapse
Affiliation(s)
- Amber L. Altrieth
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Kevin J. O’Keefe
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Victoria A. Gellatly
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Joey R. Tavarez
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Sage M. Feminella
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Nicholas L. Moskwa
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Carmalena V. Cordi
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Judy C. Turrieta
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
18
|
Zhang Q, Ye J, Zhang Z, Hu Y, Wang X, Jiang W, Guo X, Chen L, Cheng S, Li J, Zhang L. Aristolocholic acid I promotes renal tubular epithelial fibrosis by upregulating matrix metalloproteinase-9 expression via activating the C3a/C3aR axis of macrophages. Toxicol Lett 2023; 381:27-35. [PMID: 37084829 DOI: 10.1016/j.toxlet.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Aristolochic acid I (AAI) can cause nephrotoxicity and is characterized by interstitial fibrosis. The C3a/C3aR axis of macrophages and matrix metalloproteinase-9 (MMP-9) play important roles in fibrosis, but whether they are involved in AAI-induced renal interstitial fibrosis and are related remains to be elucidated. In this study, we investigated whether C3a/C3aR axis of macrophages promotes renal interstitial fibrosis by regulating MMP-9 in aristolochic acid nephropathy (AAN). Intraperitoneal injection of AAI for 28 days successfully induced AAN in C57bl/6 mice. The content of C3a in the kidney of AAN mice was increased, and there was a significant distribution of macrophages in the renal tubules. The same results were observed in the in vitro experiment. We also explored the role and mechanism of macrophages after AAI administration in the epithelial-mesenchymal transformation (EMT) of renal tubular epithelial cells (RTECs) and found that AAI could activate the C3a/C3aR axis of macrophages to upregulate p65 expression in macrophages. p65 upregulated MMP-9 expression in macrophages not only directly but also by promoting the secretion if interleukin-6 by macrophages and then activating STAT3 in RTECs. The upregulation of MMP-9 expression could promote the EMT of RTECs. Taken together, our study demonstrated that the AAI-activated the C3a/C3aR axis of macrophages, which induced MMP-9 production, was one of the causes of renal interstitial fibrosis. Therefore, targeting the C3a/C3aR axis of macrophages is an effective therapeutic strategy for the prevention and treatment of renal interstitial fibrosis in AAN.
Collapse
Affiliation(s)
- Qi Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Ye
- School of Life Science, Nanjing University, Nanjing 210023, China
| | - Zhaofeng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongkang Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xian Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenjuan Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinlong Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Langqun Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Siyu Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jinling Pharmaceutical Co., Ltd., Nanjing, 210009, China.
| | - Liang Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
19
|
Bitzer S, Harati MD, Kasmi KCE, Schloesser D, Sauer J, Olbrich H, Schuler M, Gantner F, Heilker R. Application of human iPSC-derived macrophages in a miniaturized high-content-imaging-based efferocytosis assay. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023:S2472-5552(23)00030-8. [PMID: 37072070 DOI: 10.1016/j.slasd.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
Macrophages play a pivotal role in drug discovery due to their key regulatory functions in health and disease. Overcoming the limited availability and donor variability of human monocyte-derived macrophages (MDMs), human induced pluripotent stem cell (iPSC)-derived macrophages (IDMs) could provide a promising tool for both disease modeling and drug discovery. To access large numbers of model cells for medium- to high-throughput application purposes, an upscaled protocol was established for differentiation of iPSCs into progenitor cells and subsequent maturation into functional macrophages. These IDM cells resembled MDMs both with respect to surface marker expression and phago- as well as efferocytotic function. A statistically robust high-content-imaging assay was developed to quantify the efferocytosis rate of IDMs and MDMs allowing for measurements both in the 384- and 1536-well microplate format. Validating the applicability of the assay, inhibitors of spleen tyrosine kinase (Syk) were shown to modulate efferocytosis in IDMs and MDMs with comparable pharmacology. The miniaturized cellular assay with the upscaled provision of macrophages opens new routes to pharmaceutical drug discovery in the context of efferocytosis-modulating substances.
Collapse
Affiliation(s)
- Sarah Bitzer
- Departments of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Mozhgan Dehghan Harati
- Departments of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Karim C El Kasmi
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Daniela Schloesser
- Departments of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Julia Sauer
- Departments of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Heiko Olbrich
- Departments of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Michael Schuler
- Departments of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Florian Gantner
- Department of Translational Medicine and Clinical Pharmacology, C. H. Boehringer Sohn AG & Co. KG, 88397 Biberach an der Riss, Germany
| | - Ralf Heilker
- Departments of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany.
| |
Collapse
|
20
|
Vasse GF, Russo S, Barcaru A, Oun AAA, Dolga AM, van Rijn P, Kwiatkowski M, Govorukhina N, Bischoff R, Melgert BN. Collagen type I alters the proteomic signature of macrophages in a collagen morphology-dependent manner. Sci Rep 2023; 13:5670. [PMID: 37024614 PMCID: PMC10079972 DOI: 10.1038/s41598-023-32715-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease that causes scarring and loss of lung function. Macrophages play a key role in fibrosis, but their responses to altered morphological and mechanical properties of the extracellular matrix in fibrosis is relatively unexplored. Our previous work showed functional changes in murine fetal liver-derived alveolar macrophages on fibrous or globular collagen morphologies. In this study, we applied differential proteomics to further investigate molecular mechanisms underlying the observed functional changes. Macrophages cultured on uncoated, fibrous, or globular collagen-coated plastic were analyzed by liquid chromatography-mass spectrometry. The presence of collagen affected expression of 77 proteins, while 142 were differentially expressed between macrophages grown on fibrous or globular collagen. Biological process and pathway enrichment analysis revealed that culturing on any type of collagen induced higher expression of enzymes involved in glycolysis. However, this did not lead to a higher rate of glycolysis, probably because of a concomitant decrease in activity of these enzymes. Our data suggest that macrophages sense collagen morphologies and can respond with changes in expression and activity of metabolism-related proteins. These findings suggest intimate interactions between macrophages and their surroundings that may be important in repair or fibrosis of lung tissue.
Collapse
Affiliation(s)
- Gwenda F Vasse
- Biomedical Engineering Department-FB40, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, Groningen, The Netherlands.
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands.
| | - Sara Russo
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Andrei Barcaru
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Asmaa A A Oun
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Department of Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Patrick van Rijn
- Biomedical Engineering Department-FB40, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, Groningen, The Netherlands
| | - Marcel Kwiatkowski
- Functional Proteo-Metabolomics, Department of Biochemistry, University of Innsbruck, Innsbruck, Austria
| | - Natalia Govorukhina
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Barbro N Melgert
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Altrieth AL, O’Keefe KJ, Gellatly VA, Tavarez JR, Feminella SM, Moskwa NL, Cordi CV, Turrieta JC, Nelson DA, Larsen M. Identifying Fibrogenic Cells Following Salivary Gland Obstructive Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531751. [PMID: 36945483 PMCID: PMC10028956 DOI: 10.1101/2023.03.09.531751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Fibrosis results from excess extracellular matrix accumulation, which alters normal tissue architecture and impedes function. In the salivary gland, fibrosis can be induced by irradiation treatment for cancer therapy, Sjögren's Disease, and other causes; however, it is unclear which stromal cells and signals participate in injury responses and disease progression. As hedgehog signaling has been implicated in fibrosis of the salivary gland and other organs, we examined contributions of the hedgehog effector, Gli1, to fibrotic responses in salivary glands. To experimentally induce a fibrotic response in female murine submandibular salivary glands, we performed ductal ligation surgery. We detected a progressive fibrotic response where both extracellular matrix accumulation and actively remodeled collagen trended upwards at 7 days and significantly increased at 14 days post- ligation. Macrophages, which participate in extracellular matrix remodeling, Gli1 + and PDGFRα + stromal cells, which may deposit extracellular matrix, both increased with injury. Using single-cell RNA-sequencing, we found that a majority of Gli1 + cells at embryonic day 16 also express Pdgfra and/or Pdgfrb. However, in adult mice, only a small subset of Gli1 + cells express PDGFRα and/or PDGFRβ at the protein level. Using lineage-tracing mice, we found that Gli1-derived cells expand with ductal ligation injury. Although some of the Gli1 lineage-traced tdTomato + cells expressed vimentin and PDGFRβ following injury, there was no increase in the classic myofibroblast marker, smooth muscle alpha-actin. Additionally, there was little change in extracellular matrix area, remodeled collagen area, PDGFRα, PDGFRβ, endothelial cells, neurons, or macrophages in Gli1 null salivary glands following injury when compared with controls, suggesting that Gli1 signaling and Gli1 + cells have only a minor contribution to mechanical injury-induced fibrotic changes in the salivary gland. We used scRNA-seq to examine cell populations that expand with ligation and/or showed increased expression of matrisome genes. Pdgfra + /Pdgfrb + stromal cell subpopulations both expanded in response to ligation, showed increased expression and a greater diversity of matrisome genes expressed, consistent with these cells being fibrogenic. Defining the signaling pathways driving fibrotic responses in stromal cell sub-types could reveal future therapeutic targets.
Collapse
Affiliation(s)
- Amber L. Altrieth
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Kevin J. O’Keefe
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
- Current Location: Carl Zeiss Microscopy, LLC, White Plains, New York, USA
| | - Victoria A. Gellatly
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Joey R. Tavarez
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Sage M. Feminella
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Current Location: Albany Medical College, Albany, New York, USA
| | - Nicholas L. Moskwa
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
- Current Location: The Jackson Laboratory, Farmington, Connecticut, USA
| | - Carmalena V. Cordi
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Current Location: Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Judy C. Turrieta
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
22
|
Modulation of Macrophage Function by Bioactive Wound Dressings with an Emphasis on Extracellular Matrix-Based Scaffolds and Nanofibrous Composites. Pharmaceutics 2023; 15:pharmaceutics15030794. [PMID: 36986655 PMCID: PMC10053223 DOI: 10.3390/pharmaceutics15030794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Bioactive wound dressings that are capable of regulating the local wound microenvironment have attracted a very large interest in the field of regenerative medicine. Macrophages have many critical roles in normal wound healing, and the dysfunction of macrophages significantly contributes to impaired or non-healing skin wounds. Regulation of macrophage polarization towards an M2 phenotype provides a feasible strategy to enhance chronic wound healing, mainly by promoting the transition of chronic inflammation to the proliferation phase of wound healing, upregulating the level of anti-inflammatory cytokines around the wound area, and stimulating wound angiogenesis and re-epithelialization. Based on this, modulation of macrophage functions by the rational design of bioactive scaffolds has emerged as a promising way to accelerate delayed wound healing. This review outlines current strategies to regulate the response of macrophages using bioactive materials, with an emphasis on extracellular matrix-based scaffolds and nanofibrous composites.
Collapse
|
23
|
Zeng Y, Huang J, Guo R, Cao S, Yang H, Ouyang W. Identification and validation of metabolism-related hub genes in idiopathic pulmonary fibrosis. Front Genet 2023; 14:1058582. [PMID: 36923791 PMCID: PMC10010493 DOI: 10.3389/fgene.2023.1058582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is a fatal and irreversible interstitial lung disease. The specific mechanisms involved in the pathogenesis of IPF are not fully understood, while metabolic dysregulation has recently been demonstrated to contribute to IPF. This study aims to identify key metabolism-related genes involved in the progression of IPF, providing new insights into the pathogenesis of IPF. Methods: We downloaded four datasets (GSE32537, GSE110147, GSE150910, and GSE92592) from the Gene Expression Omnibus (GEO) database and identified differentially expressed metabolism-related genes (DEMRGs) in lung tissues of IPF by comprehensive analysis. Then, we performed GO, KEGG, and Reactome enrichment analyses of the DEMRGs. Subsequently, key DEMRGs were identified by machine-learning algorithms. Next, miRNAs regulating these key DEMRGs were predicted by integrating the GSE32538 (IPF miRNA dataset) and the miRWalk database. The Cytoscape software was used to visualize miRNA-mRNA regulatory networks. In addition, the relative levels of immune cells were assessed by the CIBERSORT algorithm, and the correlation of key DEMRGs with immune cells was calculated. Finally, the mRNA expression of the key DEMRGs was validated in two external independent datasets and an in vivo experiment. Results: A total of 101 DEMRGs (51 upregulated and 50 downregulated) were identified. Six key DEMRGs (ENPP3, ENTPD1, GPX3, PDE7B, PNMT, and POLR3H) were further identified using two machine-learning algorithms (LASSO and SVM-RFE). In the lung tissue of IPF patients, the expression levels of ENPP3, ENTPD1, and PDE7B were upregulated, and the expression levels of GPX3, PNMT, and POLR3H were downregulated. In addition, the miRNA-mRNA regulatory network of key DEMRGs was constructed. Then, the expression levels of key DEMRGs were validated in two independent external datasets (GSE53845 and GSE213001). Finally, we verified the key DEMRGs in the lung tissue of bleomycin-induced pulmonary fibrosis mice by qRT-PCR. Conclusion: Our study identified key metabolism-related genes that are differentially expressed in the lung tissue of IPF patients. Our study emphasizes the critical role of metabolic dysregulation in IPF, offers potential therapeutic targets, and provides new insights for future studies.
Collapse
Affiliation(s)
- Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jun Huang
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ren Guo
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, China
| | - Si Cao
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Heng Yang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Tan Z, Gong X, Li Y, Hung SW, Huang J, Wang CC, Chung JPW. Impacts of endometrioma on ovarian aging from basic science to clinical management. Front Endocrinol (Lausanne) 2023; 13:1073261. [PMID: 36686440 PMCID: PMC9848590 DOI: 10.3389/fendo.2022.1073261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Endometriosis is a common reproductive disorder characterized by the presence of endometrial implants outside of the uterus. It affects ~1 in 10 women of reproductive age. Endometriosis in the ovary, also known as endometrioma (OMA), is the most frequent implantation site and the leading cause of reproductive failure in affected women. Ovarian aging is one of the characteristic features of OMA, however its underlying mechanism yet to be determined. Accumulated evidence has shown that pelvic and local microenvironments in women with OMA are manifested, causing detrimental effects on ovarian development and functions. Whilst clinical associations of OMA with poor ovarian reserve, premature ovarian insufficiency, and early menopause have been reported. Moreover, surgical ablation, fenestration, and cystectomy of OMA can further damage the normal ovarian reservoir, and trigger hyperactivation of primordial follicles, subsequently resulting in the undesired deterioration of ovarian functions. Nevertheless, there is no effective treatment to delay or restore ovarian aging. This review comprehensively summarised the pathogenesis and study hypothesis of ovarian aging caused by OMA in order to propose potential therapeutic targets and interventions for future studies.
Collapse
Affiliation(s)
- Zhouyurong Tan
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xue Gong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yiran Li
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sze Wan Hung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jin Huang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jacqueline Pui Wah Chung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Chen Y, He H, Luo L, Liu K, Jiang M, Li S, Zhang X, Yang X, Liu Q. Studying pulmonary fibrosis due to microbial infection via automated microscopic image analysis. Front Microbiol 2023; 14:1176339. [PMID: 37032846 PMCID: PMC10076525 DOI: 10.3389/fmicb.2023.1176339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Pulmonary fibrosis is a consequential complication of microbial infections, which has notably been observed in SARS-CoV-2 infections in recent times. Macrophage polarization, specifically the M2-type, is a significant mechanism that induces pulmonary fibrosis, and its role in the development of Post- COVID-19 Pulmonary Fibrosis is worth investigating. While pathological examination is the gold standard for studying pulmonary fibrosis, manual review is subject to limitations. In light of this, we have constructed a novel method that utilizes artificial intelligence techniques to analyze fibro-pathological images. This method involves image registration, cropping, fibrosis degree classification, cell counting and calibration, and it has been utilized to analyze microscopic images of COVID-19 lung tissue. Methods Our approach combines the Transformer network with ResNet for fibrosis degree classification, leading to a significant improvement over the use of ResNet or Transformer individually. Furthermore, we employ semi-supervised learning which utilize both labeled and unlabeled data to enhance the ability of the classification network in analyzing complex samples. To facilitate cell counting, we applied the Trimap method to localize target cells. To further improve the accuracy of the counting results, we utilized an effective area calibration method that better reflects the positive density of target cells. Results The image analysis method developed in this paper allows for standardization, precision, and staging of pulmonary fibrosis. Analysis of microscopic images of COVID-19 lung tissue revealed a significant number of macrophage aggregates, among which the number of M2-type macrophages was proportional to the degree of fibrosis. Discussion The image analysis method provids a more standardized approach and more accurate data for correlation studies on the degree of pulmonary fibrosis. This advancement can assist in the treatment and prevention of pulmonary fibrosis. And M2-type macrophage polarization is a critical mechanism that affects pulmonary fibrosis, and its specific molecular mechanism warrants further exploration.
Collapse
Affiliation(s)
- Yajie Chen
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
| | - Henghui He
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Licheng Luo
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
| | - Kangyi Liu
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
| | - Min Jiang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqi Li
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianqi Zhang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yang
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
- Xin Yang,
| | - Qian Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qian Liu,
| |
Collapse
|
26
|
Joglekar MM, Nizamoglu M, Fan Y, Nemani SSP, Weckmann M, Pouwels SD, Heijink IH, Melgert BN, Pillay J, Burgess JK. Highway to heal: Influence of altered extracellular matrix on infiltrating immune cells during acute and chronic lung diseases. Front Pharmacol 2022; 13:995051. [PMID: 36408219 PMCID: PMC9669433 DOI: 10.3389/fphar.2022.995051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/19/2022] [Indexed: 10/31/2023] Open
Abstract
Environmental insults including respiratory infections, in combination with genetic predisposition, may lead to lung diseases such as chronic obstructive pulmonary disease, lung fibrosis, asthma, and acute respiratory distress syndrome. Common characteristics of these diseases are infiltration and activation of inflammatory cells and abnormal extracellular matrix (ECM) turnover, leading to tissue damage and impairments in lung function. The ECM provides three-dimensional (3D) architectural support to the lung and crucial biochemical and biophysical cues to the cells, directing cellular processes. As immune cells travel to reach any site of injury, they encounter the composition and various mechanical features of the ECM. Emerging evidence demonstrates the crucial role played by the local environment in recruiting immune cells and their function in lung diseases. Moreover, recent developments in the field have elucidated considerable differences in responses of immune cells in two-dimensional versus 3D modeling systems. Examining the effect of individual parameters of the ECM to study their effect independently and collectively in a 3D microenvironment will help in better understanding disease pathobiology. In this article, we discuss the importance of investigating cellular migration and recent advances in this field. Moreover, we summarize changes in the ECM in lung diseases and the potential impacts on infiltrating immune cell migration in these diseases. There has been compelling progress in this field that encourages further developments, such as advanced in vitro 3D modeling using native ECM-based models, patient-derived materials, and bioprinting. We conclude with an overview of these state-of-the-art methodologies, followed by a discussion on developing novel and innovative models and the practical challenges envisaged in implementing and utilizing these systems.
Collapse
Affiliation(s)
- Mugdha M. Joglekar
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - YiWen Fan
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Sai Sneha Priya Nemani
- Department of Paediatric Pneumology &Allergology, University Children’s Hospital, Schleswig-Holstein, Campus Lübeck, Germany
- Epigenetics of Chronic Lung Disease, Priority Research Area Chronic Lung Diseases; Leibniz Lung Research Center Borstel; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Markus Weckmann
- Department of Paediatric Pneumology &Allergology, University Children’s Hospital, Schleswig-Holstein, Campus Lübeck, Germany
- Epigenetics of Chronic Lung Disease, Priority Research Area Chronic Lung Diseases; Leibniz Lung Research Center Borstel; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Simon D. Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Barbro N. Melgert
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, Groningen, Netherlands
| | - Janesh Pillay
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Critical Care, Groningen, Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, Netherlands
| |
Collapse
|
27
|
Sari E, He C, Margaroli C. Plasticity towards Rigidity: A Macrophage Conundrum in Pulmonary Fibrosis. Int J Mol Sci 2022; 23:11443. [PMID: 36232756 PMCID: PMC9570276 DOI: 10.3390/ijms231911443] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, and ultimately fatal diffuse parenchymal lung disease. The molecular mechanisms of fibrosis in IPF patients are not fully understood and there is a lack of effective treatments. For decades, different types of drugs such as immunosuppressants and antioxidants have been tested, usually with unsuccessful results. Although two antifibrotic drugs (Nintedanib and Pirfenidone) are approved and used for the treatment of IPF, side effects are common, and they only slow down disease progression without improving patients' survival. Macrophages are central to lung homeostasis, wound healing, and injury. Depending on the stimulus in the microenvironment, macrophages may contribute to fibrosis, but also, they may play a role in the amelioration of fibrosis. In this review, we explore the role of macrophages in IPF in relation to the fibrotic processes, epithelial-mesenchymal transition (EMT), and their crosstalk with resident and recruited cells and we emphasized the importance of macrophages in finding new treatments.
Collapse
Affiliation(s)
- Ezgi Sari
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Camilla Margaroli
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
28
|
Zhao X, Chen J, Sun H, Zhang Y, Zou D. New insights into fibrosis from the ECM degradation perspective: the macrophage-MMP-ECM interaction. Cell Biosci 2022; 12:117. [PMID: 35897082 PMCID: PMC9327238 DOI: 10.1186/s13578-022-00856-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a pathological feature of a variety of chronic inflammatory diseases that can affect almost all organs, which can cause severe consequences and even lead to death. Fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM) due to disruption of the balance between ECM production and degradation. Although overabundance of ECM proteins has long been the focus of studies on fibrosis, another facet of the problem-impaired degradation of the ECM-is gaining increasing attention. Matrix metalloproteinase (MMP) and the tissue inhibitor of metalloproteinase (TIMP) system is the main molecular system contributing to ECM degradation, and macrophages are the major regulators of ECM. However, the relationship among macrophages, the MMP/TIMP system and the ECM is not fully understood in the context of fibrosis. Here, we discuss in detail the role played by the ECM in the development of fibrosis and highlight the macrophage-MMP-ECM interaction that is involved in fibrogenesis and may be a potential therapeutic target for fibrosis.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayin Chen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Umehara T, Winstanley YE, Andreas E, Morimoto A, Williams EJ, Smith KM, Carroll J, Febbraio MA, Shimada M, Russell DL, Robker RL. Female reproductive life span is extended by targeted removal of fibrotic collagen from the mouse ovary. SCIENCE ADVANCES 2022; 8:eabn4564. [PMID: 35714185 PMCID: PMC9205599 DOI: 10.1126/sciadv.abn4564] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The female ovary contains a finite number of oocytes, and their release at ovulation becomes sporadic and disordered with aging and with obesity, leading to loss of fertility. Understanding the molecular defects underpinning this pathology is essential as age of childbearing and obesity rates increase globally. We identify that fibrosis within the ovarian stromal compartment is an underlying mechanism responsible for impaired oocyte release, which is initiated by mitochondrial dysfunction leading to diminished bioenergetics, oxidative damage, inflammation, and collagen deposition. Furthermore, antifibrosis drugs (pirfenidone and BGP-15) eliminate fibrotic collagen and restore ovulation in reproductively old and obese mice, in association with dampened M2 macrophage polarization and up-regulated MMP13 protease. This is the first evidence that ovarian fibrosis is reversible and indicates that drugs targeting mitochondrial metabolism may be a viable therapeutic strategy for women with metabolic disorders or advancing age to maintain ovarian function and extend fertility.
Collapse
Affiliation(s)
- Takashi Umehara
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yasmyn E. Winstanley
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Eryk Andreas
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Atsushi Morimoto
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Elisha J. Williams
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Kirsten M. Smith
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - John Carroll
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mark A. Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Darryl L. Russell
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Rebecca L. Robker
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Corresponding author.
| |
Collapse
|
30
|
Nizamoglu M, de Hilster RHJ, Zhao F, Sharma PK, Borghuis T, Harmsen MC, Burgess JK. An in vitro model of fibrosis using crosslinked native extracellular matrix-derived hydrogels to modulate biomechanics without changing composition. Acta Biomater 2022; 147:50-62. [PMID: 35605955 DOI: 10.1016/j.actbio.2022.05.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 01/02/2023]
Abstract
Extracellular matrix (ECM) is a dynamic network of proteins, proteoglycans and glycosaminoglycans, providing structure to the tissue and biochemical and biomechanical instructions to the resident cells. In fibrosis, the composition and the organization of the ECM are altered, and these changes influence cellular behaviour. Biochemical (i. e. protein composition) and biomechanical changes in ECM take place simultaneously in vivo. Investigating these changes individually in vitro to examine their (patho)physiological effects has been difficult. In this study, we generated an in vitro model to reflect the altered mechanics of a fibrotic microenvironment through applying fibre crosslinking via ruthenium/sodium persulfate crosslinking on native lung ECM-derived hydrogels. Crosslinking of the hydrogels without changing the biochemical composition of the ECM resulted in increased stiffness and decreased viscoelastic stress relaxation. The altered stress relaxation behaviour was explained using a generalized Maxwell model. Fibre analysis of the hydrogels showed that crosslinked hydrogels had a higher percentage of matrix with a high density and a shorter average fibre length. Fibroblasts seeded on ruthenium-crosslinked lung ECM-derived hydrogels showed myofibroblastic differentiation with a loss of spindle-like morphology together with greater α-smooth muscle actin (α-SMA) expression, increased nuclear area and circularity without any decrease in the viability, compared with the fibroblasts seeded on the native lung-derived ECM hydrogels. In summary, ruthenium crosslinking of native ECM-derived hydrogels provides an exciting opportunity to alter the biomechanical properties of the ECM-derived hydrogels while maintaining the protein composition of the ECM to study the influence of mechanics during fibrotic lung diseases. STATEMENT OF SIGNIFICANCE: Fibrotic lung disease is characterized by changes in composition and excessive deposition of extracellular matrix (ECM). ECM fibre structure also changes due to crosslinking, which results in mechanical changes. Separating the changes in composition and mechanical properties has been difficult to date. In this study, we developed an in vitro model that allows alteration of the mechanical changes alone by applying fibre crosslinking in native lung ECM-derived hydrogels. Characterisations of the crosslinked hydrogels indicated the model mimicked mechanical properties of fibrotic lung tissue and reflected altered fibre organisation. This ECM-based fibrosis model provides a method to preserve the native protein composition while altering the mechanical properties providing an important tool, not only for lung but also other organ fibrosis.
Collapse
Affiliation(s)
- Mehmet Nizamoglu
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands
| | - Roderick H J de Hilster
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands.
| | - Fenghua Zhao
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, Department of Biomedical Engineering-FB40, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Prashant K Sharma
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, Department of Biomedical Engineering-FB40, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Theo Borghuis
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands
| | - Martin C Harmsen
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Janette K Burgess
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
31
|
Yang H, Sinha N, Rand U, Hauser H, Köster M, de Greef TFA, Tel J. A universal microfluidic approach for integrated analysis of temporal homocellular and heterocellular signaling and migration dynamics. Biosens Bioelectron 2022; 211:114353. [PMID: 35594624 DOI: 10.1016/j.bios.2022.114353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Abstract
Microfluidics offers precise and dynamic control of microenvironments for the study of temporal cellular responses. However, recent research focusing solely on either homocellular (single-cell, population) or heterocellular response may yield insufficient output, which possibly leads to partial comprehension about the underlying mechanisms of signaling events and corresponding cellular behaviors. Here, a universal microfluidic approach is developed for integrated analysis of temporal signaling and cell migration dynamics in multiple cellular contexts (single-cell, population and coculture). This approach allows to confine the desired number or mixture of specific cell sample types in a single device. Precise single cell seeding was achieved manually with bidirectional controllability. Coupled with time-lapse imaging, temporal cellular responses can be observed with single-cell resolution. Using NIH3T3 cells stably expressing signal transducer and activator of transcription 1/2 (STAT1/2) activity biosensors, temporal STAT1/2 activation and cell migration dynamics were explored in isolated single cells, populations and cocultures stimulated with temporal inputs, such as single-pulse and continuous signals of interferon γ (IFNγ) or lipopolysaccharide (LPS). We demonstrate distinct dynamic responses of fibroblasts in different cellular contexts. Our presented approach facilitates a multi-dimensional understanding of STAT signaling and corresponding migration behaviors.
Collapse
Affiliation(s)
- Haowen Yang
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands
| | - Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands
| | - Ulfert Rand
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Hansjörg Hauser
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Tom F A de Greef
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands; Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600MB, Eindhoven, the Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands.
| |
Collapse
|
32
|
Yang T, Wang J, Zhao J, Liu Y. Current and prospective applications of exosomal microRNAs in pulmonary fibrosis (Review). Int J Mol Med 2022; 49:37. [PMID: 35088880 PMCID: PMC8815412 DOI: 10.3892/ijmm.2022.5092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive, irreversible and life‑threatening lung disease. However, the pathogenesis and molecular mechanisms of this condition remain unclear. Extracellular vesicles (EVs) are structures derived from the plasma membrane, with a diameter ranging from 30 nm to 5 µm, that play an important role in cell‑to‑cell communications in lung disease, particularly between epithelial cells and the pulmonary microenvironment. In particular, exosomes are a type of EV that can deliver cargo molecules, including endogenous proteins, lipids and nucleic acids, such as microRNAs (miRNAs/miRs). These cargo molecules are encapsulated in lipid bilayers through target cell internalization, receptor‑ligand interactions or lipid membrane fusion. miRNAs are single‑stranded RNA molecules that regulate cell differentiation, proliferation and apoptosis by degrading target mRNAs or inhibiting translation to modulate gene expression. The aim of the present review was to discuss the current knowledge available on exosome biogenesis, composition and isolation methods. The role of miRNAs in the pathogenesis of PF was also reviewed. In addition, emerging diagnostic and therapeutic properties of exosomes and exosomal miRNAs in PF were described, in order to highlight the potential applications of exosomal miRNAs in PF.
Collapse
Affiliation(s)
- Tao Yang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
- The First Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jiaying Zhao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
33
|
Tang Z, Wei X, Li T, Wu H, Xiao X, Hao Y, Li S, Hou W, Shi L, Li X, Guo Z. Three-Dimensionally Printed Ti2448 With Low Stiffness Enhanced Angiogenesis and Osteogenesis by Regulating Macrophage Polarization via Piezo1/YAP Signaling Axis. Front Cell Dev Biol 2021; 9:750948. [PMID: 34869337 PMCID: PMC8634253 DOI: 10.3389/fcell.2021.750948] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
Previous studies have found that the novel low-elastic-modulus Ti2448 alloy can significantly reduce stress shielding and contribute to better bone repair than the conventional Ti6Al4V alloy. In this study, the promotion of osteogenesis and angiogenesis by three-dimensionally printed Ti2448 were also observed in vivo. However, these were not significant in a series of in vitro tests. The stiffness of materials has been reported to greatly affect the response of macrophages, and the immunological regulation mediated by macrophages directly determines the fate of bone implants. Therefore, we designed more experiments to explore the role of three-dimensionally printed Ti2448 in macrophage activation and related osteogenesis and angiogenesis. As expected, we found a significant increase in the number of M2 macrophages around Ti2448 implants, as well as better osteogenesis and angiogenesis in vivo. In vitro studies also showed that macrophages pre-treated with Ti2448 alloy significantly promoted angiogenesis and osteogenic differentiation through increased PDGF-BB and BMP-2 secretion, and the polarization of M2 macrophages was enhanced. We deduced that Ti2448 promotes angiogenesis and osteogenesis through Piezo1/YAP signaling axis-mediated macrophage polarization and related cytokine secretion. This research might provide insight into the biological properties of Ti2448 and provide a powerful theoretical supplement for the future application of three-dimensionally printed Ti2448 implants in orthopaedic surgery.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinghui Wei
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Hao Wu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin Xiao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yulin Hao
- Institute of Metal Research, Chinese Academy of Science, Shenyang, China
| | - Shujun Li
- Institute of Metal Research, Chinese Academy of Science, Shenyang, China
| | - Wentao Hou
- Institute of Metal Research, Chinese Academy of Science, Shenyang, China
| | - Lei Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaokang Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
34
|
Is the Macrophage Phenotype Determinant for Fibrosis Development? Biomedicines 2021; 9:biomedicines9121747. [PMID: 34944564 PMCID: PMC8698841 DOI: 10.3390/biomedicines9121747] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Fibrosis is a pathophysiological process of wound repair that leads to the deposit of connective tissue in the extracellular matrix. This complication is mainly associated with different pathologies affecting several organs such as lung, liver, heart, kidney, and intestine. In this fibrotic process, macrophages play an important role since they can modulate fibrosis due to their high plasticity, being able to adopt different phenotypes depending on the microenvironment in which they are found. In this review, we will try to discuss whether the macrophage phenotype exerts a pivotal role in the fibrosis development in the most important fibrotic scenarios.
Collapse
|
35
|
Kishore A, Petrek M. Roles of Macrophage Polarization and Macrophage-Derived miRNAs in Pulmonary Fibrosis. Front Immunol 2021; 12:678457. [PMID: 34489932 PMCID: PMC8417529 DOI: 10.3389/fimmu.2021.678457] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
This mini-review summarizes the current evidence for the role of macrophage activation and polarization in inflammation and immune response pertinent to interstitial lung disease, specifically pulmonary fibrosis. In the fibrosing lung, the production and function of inflammatory and fibrogenic mediators involved in the disease development have been reported to be regulated by the effects of polarized M1/M2 macrophage populations. The M1 and M2 macrophage phenotypes were suggested to correspond with the pro-inflammatory and pro-fibrogenic signatures, respectively. These responses towards tissue injury followed by the development and progression of lung fibrosis are further regulated by macrophage-derived microRNAs (miRNAs). Besides cellular miRNAs, extracellular exosomal-miRNAs derived from M2 macrophages have also been proposed to promote the progression of pulmonary fibrosis. In a future perspective, harnessing the noncoding miRNAs with a key role in the macrophage polarization is, therefore, suggested as a promising therapeutic strategy for this debilitating disease.
Collapse
Affiliation(s)
- Amit Kishore
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia.,Accuscript Consultancy, Ludhiana, India
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia.,Departments of Experimental Medicine, and Immunology, University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|
36
|
Herrington CS, Poulsom R, Koeppen H, Coates PJ. Recent Advances in Pathology: the 2021 Annual Review Issue of The Journal of Pathology. J Pathol 2021; 254:303-306. [PMID: 34097314 DOI: 10.1002/path.5687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/10/2022]
Abstract
The 2021 Annual Review Issue of The Journal of Pathology contains 14 invited reviews on current research areas of particular importance in pathology. The subjects included here reflect the broad range of interests covered by the journal, including both basic and applied research fields but always with the aim of improving our understanding of human disease. This year, our reviews encompass the huge impact of the COVID-19 pandemic, the development and application of biomarkers for immune checkpoint inhibitors, recent advances in multiplexing antigen/nucleic acid detection in situ, the use of genomics to aid drug discovery, organoid methodologies in research, the microbiome in cancer, the role of macrophage-stroma interactions in fibrosis, and TGF-β as a driver of fibrosis in multiple pathologies. Other reviews revisit the p53 field and its lack of clinical impact to date, dissect the genetics of mitochondrial diseases, summarise the cells of origin and genetics of sarcomagenesis, provide new data on the role of TRIM28 in tumour predisposition, review our current understanding of cancer stem cell niches, and the function and regulation of p63. The reviews are authored by experts in their field from academia and industry, and provide comprehensive updates of the chosen areas, in which there has been considerable recent progress. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- C Simon Herrington
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Richard Poulsom
- The Pathological Society of Great Britain and Ireland, London, UK
| | | | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|