1
|
Pang S, Shen Y, Wang Y, Chu X, Ma L, Zhou Y. ROCK1 regulates glycolysis in pancreatic cancer via the c-MYC/PFKFB3 pathway. Biochim Biophys Acta Gen Subj 2024; 1868:130669. [PMID: 38996990 DOI: 10.1016/j.bbagen.2024.130669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Dysregulation of Rho-associated coiled coil-containing protein kinases (ROCKs) is involved in the metastasis and progression of various malignant tumors. However, how one of the isomers, ROCK1, regulates glycolysis in tumor cells is incompletely understood. Here, we attempted to elucidate how ROCK1 influences pancreatic cancer (PC) progression by regulating glycolytic activity. METHODS The biological function of ROCK1 was analyzed in vitro by establishing a silenced cell model. Coimmunoprecipitation confirmed the direct binding between ROCK1 and c-MYC, and a luciferase reporter assay revealed the binding of c-MYC to the promoter of the PFKFB3 gene. These results were verified in animal experiments. RESULTS ROCK1 was highly expressed in PC tissues and enriched in the cytoplasm, and its high expression was associated with a poor prognosis. Silencing ROCK1 inhibited the proliferation and migration of PC cells and promoted their apoptosis. Mechanistically, ROCK1 directly interacted with c-MYC, promoted its phosphorylation (Ser 62) and suppressed its degradation, thereby increasing the transcription of the key glycolysis regulatory factor PFKFB3, enhancing glycolytic activity and promoting PC growth. Silencing ROCK1 increased gemcitabine (GEM) sensitivity in vivo and in vitro. CONCLUSIONS ROCK1 promotes glycolytic activity in PC cells and promotes PC tumor growth through the c-MYC/PFKFB3 signaling pathway. ROCK1 knockdown can inhibit PC tumor growth in vivo and increase the GEM sensitivity of PC tumors, providing a crucial clinical therapeutic strategy for PC.
Collapse
Affiliation(s)
- Shuyang Pang
- School of Life Science and Technology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, Jiangsu 211198, PR China
| | - Yuting Shen
- School of Life Science and Technology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, Jiangsu 211198, PR China
| | - Yanan Wang
- School of Life Science and Technology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, Jiangsu 211198, PR China
| | - Xuanning Chu
- School of Life Science and Technology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, Jiangsu 211198, PR China
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, Jiangsu 211198, PR China
| | - Yiran Zhou
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai 200025, China.
| |
Collapse
|
2
|
Pasquier N, Jaulin F, Peglion F. Inverted apicobasal polarity in health and disease. J Cell Sci 2024; 137:jcs261659. [PMID: 38465512 PMCID: PMC10984280 DOI: 10.1242/jcs.261659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Apicobasal epithelial polarity controls the functional properties of most organs. Thus, there has been extensive research on the molecular intricacies governing the establishment and maintenance of cell polarity. Whereas loss of apicobasal polarity is a well-documented phenomenon associated with multiple diseases, less is known regarding another type of apicobasal polarity alteration - the inversion of polarity. In this Review, we provide a unifying definition of inverted polarity and discuss multiple scenarios in mammalian systems and human health and disease in which apical and basolateral membrane domains are interchanged. This includes mammalian embryo implantation, monogenic diseases and dissemination of cancer cell clusters. For each example, the functional consequences of polarity inversion are assessed, revealing shared outcomes, including modifications in immune surveillance, altered drug sensitivity and changes in adhesions to neighboring cells. Finally, we highlight the molecular alterations associated with inverted apicobasal polarity and provide a molecular framework to connect these changes with the core cell polarity machinery and to explain roles of polarity inversion in health and disease. Based on the current state of the field, failure to respond to extracellular matrix (ECM) cues, increased cellular contractility and membrane trafficking defects are likely to account for most cases of inverted apicobasal polarity.
Collapse
Affiliation(s)
- Nicolas Pasquier
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
- Cell Adhesion and Cancer lab, University of Turku, FI-20520 Turku, Finland
| | - Fanny Jaulin
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
| | - Florent Peglion
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
| |
Collapse
|
3
|
Coppo R, Kondo J, Onuma K, Inoue M. Tracking the growth fate of single cells and isolating slow-growing cells in human colorectal cancer organoids. STAR Protoc 2023; 4:102395. [PMID: 37384521 PMCID: PMC10511865 DOI: 10.1016/j.xpro.2023.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Patient-derived tumor organoids are three-dimensionally cultured cancer cells that enable a suitable platform for studying heterogeneity and plasticity of cancer. We present a protocol for tracking the growth fate of single cells and isolating slow-growing cells in human colorectal cancer organoids. We describe steps for organoid preparation and culturing using the cancer-tissue-originating spheroid method, maintaining cell-cell contact throughout. We then detail a single-cell-derived spheroid-forming and growth assay, confirming single-cell plating, monitoring growth over time, and isolating slow-growing cells. For complete details on the use and execution of this protocol, please refer to Coppo et al.1.
Collapse
Affiliation(s)
- Roberto Coppo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Jumpei Kondo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kunishige Onuma
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
4
|
Sagnak Yilmaz Z, Sarioglu S. Molecular Pathology of Micropapillary Carcinomas: Is Characteristic Morphology Related to Molecular Mechanisms? Appl Immunohistochem Mol Morphol 2023; 31:267-277. [PMID: 37036419 DOI: 10.1097/pai.0000000000001123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023]
Abstract
Micropapillary carcinoma is an entity defined histologically in many organs. It is associated with lymph node metastasis and poor prognosis. The main mechanism for its histopathologic appearance is reverse polarization. Although the studies on this subject are limited, carcinomas with micropapillary morphology observed in different organs are examined by immunohistochemical and molecular methods. Differences are shown in these tumors compared with conventional carcinomas regarding the rate of somatic mutations, mRNA and miRNA expressions, and protein expression levels. TP53 , PIK3CA , TERT , KRAS , EGFR , MYC , FGFR1 , BRAF , AKT1 , HER2/ERBB2 , CCND1 , and APC mutations, which genes frequently detected in solid tumors, have also been detected in invasive micropapillary carcinoma (IMPC) in various organs. 6q chromosome loss, DNAH9 , FOXO3 , SEC. 63 , and FMN2 gene mutations associated with cell polarity or cell structure and skeleton have also been detected in IMPCs. Among the proteins that affect cell polarity, RAC1, placoglobin, as well as CLDNs, LIN7A, ZEB1, CLDN1, DLG1, CDH1 (E-cadherin), OCLN, AFDN/AF6, ZEB1, SNAI2, ITGA1 (integrin alpha 1), ITGB1 (integrin beta 1), RHOA, Jagged-1 (JAG1) mRNAs differentially express between IMPC and conventional carcinomas. Prediction of prognosis and targeted therapy may benefit from the understanding of molecular mechanisms of micropapillary morphology. This review describes the molecular pathologic mechanisms underlying the micropapillary changes of cancers in various organs in a cell polarity-related dimension.
Collapse
Affiliation(s)
- Zeynep Sagnak Yilmaz
- Department of Molecular Pathology, Dokuz Eylül University Graduate School of Health Sciences
- Pathology Department, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Sulen Sarioglu
- Department of Molecular Pathology, Dokuz Eylül University Graduate School of Health Sciences
- Pathology Department, Dokuz Eylül University Faculty of Medicine, Izmir
| |
Collapse
|
5
|
Coppo R, Kondo J, Iida K, Okada M, Onuma K, Tanaka Y, Kamada M, Ohue M, Kawada K, Obama K, Inoue M. Distinct but interchangeable subpopulations of colorectal cancer cells with different growth fates and drug sensitivity. iScience 2023; 26:105962. [PMID: 36718360 PMCID: PMC9883198 DOI: 10.1016/j.isci.2023.105962] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Dynamic changes in cell properties lead to intratumor heterogeneity; however, the mechanisms of nongenetic cellular plasticity remain elusive. When the fate of each cell from colorectal cancer organoids was tracked through a clonogenic growth assay, the cells showed a wide range of growth ability even within the clonal organoids, consisting of distinct subpopulations; the cells generating large spheroids and the cells generating small spheroids. The cells from the small spheroids generated only small spheroids (S-pattern), while the cells from the large spheroids generated both small and large spheroids (D-pattern), both of which were tumorigenic. Transition from the S-pattern to the D-pattern occurred by various extrinsic triggers, in which Notch signaling and Musashi-1 played a key role. The S-pattern spheroids were resistant to chemotherapy and transited to the D-pattern upon drug treatment through Notch signaling. As the transition is linked to the drug resistance, it can be a therapeutic target.
Collapse
Affiliation(s)
- Roberto Coppo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jumpei Kondo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keita Iida
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kunishige Onuma
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihisa Tanaka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan,RIKEN Center for Computational Science, HPC- and AI-driven Drug Development Platform Division, Biomedical Computational Intelligence Unit, Hyogo, Japan
| | - Mayumi Kamada
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Ohue
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan,Corresponding author
| |
Collapse
|
6
|
Onuma K, Inoue M. Abnormality of Apico-Basal Polarity in Adenocarcinoma. Cancer Sci 2022; 113:3657-3663. [PMID: 36047965 PMCID: PMC9633284 DOI: 10.1111/cas.15549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/17/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Apico–basal polarity is a fundamental property of the epithelium that functions as a barrier, holds cells together, and determines the directions of absorption and secretion. Apico–basal polarity is regulated by extracellular matrix‐integrin binding and downstream signaling pathways, including focal adhesion kinase, rouse‐sarcoma oncogene (SRC), and RHO/RHO‐associated kinase (ROCK). Loss of epithelial cell polarity plays a critical role in the progression of cancer cells. However, in differentiated carcinomas, polarity is not completely lost but dysregulated. Recent progress with a three‐dimensional culture of primary cancer cells allowed for studies of the mechanism underlying the abnormality of polarity in differentiated cancers, including flexible switching of polarity status in response to the microenvironment. Invasive micropapillary carcinoma (MPC) is one of the histopathological phenotypes of adenocarcinoma, which is characterized by inverted polarity. Aberrant activation of RHO–ROCK signaling plays a critical role in the MPC phenotype. Establishing in vitro models will contribute to future drug targeting of the abnormal polarity status in cancer.
Collapse
Affiliation(s)
- Kunishige Onuma
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Kawata M, Kondo J, Onuma K, Ito Y, Yokoi T, Hamanishi J, Mandai M, Kimura T, Inoue M. Polarity switching of ovarian cancer cell clusters via SRC family kinase is involved in the peritoneal dissemination. Cancer Sci 2022; 113:3437-3448. [PMID: 35848881 PMCID: PMC9530866 DOI: 10.1111/cas.15493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Peritoneal dissemination is a predominant pattern of metastasis in patients with advanced ovarian cancer. Despite recent progress in the management strategy, peritoneal dissemination remains a determinant of poor ovarian cancer prognosis. Using various histological types of patient‐derived ovarian cancer organoids, the roles of the apicobasal polarity of ovarian cancer cell clusters in peritoneal dissemination were studied. First, it was found that both ovarian cancer tissues and ovarian organoids showed apicobasal polarity, where zonula occludens‐1 (ZO‐1) and integrin beta 4 (ITGB4) served as markers for apical and basal sides, respectively. The organoids in suspension culture, as a model of cancer cell cluster floating in ascites, showed apical‐out/basal‐in polarity status, while once embedded in extracellular matrix (ECM), the organoids switched their polarity to apical‐in/basal‐out. This polarity switch was accompanied by the SRC kinase family (SFK) phosphorylation and was inhibited by SFK inhibitors. SFK inhibitors abrogated the adherence of the organoids onto the ECM‐coated plastic surface. When the organoids were seeded on a mesothelial cell layer, they cleared and invaded mesothelial cells. In vivo, dasatinib, an SFK inhibitor, suppressed peritoneal dissemination of ovarian cancer organoids in immunodeficient mice. These results suggest SFK‐mediated polarity switching is involved in peritoneal metastasis. Polarity switching would be a potential therapeutic target for suppressing peritoneal dissemination in ovarian cancer.
Collapse
Affiliation(s)
- Mayuko Kawata
- Department of Clinical Bioresource Research and Development, Kyoto University Graduate School of Medicine.,Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine
| | - Jumpei Kondo
- Department of Clinical Bioresource Research and Development, Kyoto University Graduate School of Medicine.,Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine.,Department of Molecular Biochemistry and Clinical Investigation, Division of Health Science, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita City, Osaka, Japan
| | - Kunishige Onuma
- Department of Clinical Bioresource Research and Development, Kyoto University Graduate School of Medicine
| | - Yu Ito
- Department of Clinical Bioresource Research and Development, Kyoto University Graduate School of Medicine.,Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine
| | - Takeshi Yokoi
- Department of Obstetrics and Gynecology, Kaizuka, City Hospital
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine
| | - Masahiro Inoue
- Department of Clinical Bioresource Research and Development, Kyoto University Graduate School of Medicine
| |
Collapse
|
8
|
Charles Campbell F. Untangling the complexities of micropapillary cancer †. J Pathol 2021; 255:343-345. [PMID: 34564856 DOI: 10.1002/path.5809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022]
Abstract
Distinct morphological subtypes of colorectal cancer (CRC) confer a bleak clinical outlook. In a recent issue of The Journal of Pathology, Onuma et al investigated morphological evolution of a highly fatal CRC subtype known as micropapillary cancer (MPC). This study enhances understanding of MPC biology including essential regulatory signals, cellular and multicellular phenotypes, as well as cancer behaviour. Iterative modelling in three-dimensional (3D) patient-derived CRC tissue-originated spheroids (CTOSs) revealed spatiotemporal oscillations of Rho-ROCK hyperactivity underlying reversal of membrane polarity and suppression of lumen formation during development of multicellular MPC morphology. Corroborative studies in CTOSs, xenografts, and archival human CRCs confirm human disease relevance. Although cancer morphology has previously been considered irreversible, targeted inhibition of Rho-ROCK activity restored membrane polarity, lumenized multicellular assembly, and suppressed MPC morphology in 3D CTOS cultures and xenografts. Collectively, the study identifies molecular, biophysical, and multicellular mechanisms implicated in morphological evolution of micropapillary CRC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
|