1
|
Santana NCM, de Sena ACVP, Rocha PADS, de Arruda JAA, Torres-Pereira CC, Abreu LG, Fournier BPJ, Warnakulasuriya S, Silva TA. Oral cancer and oral potentially malignant disorders in patients with Fanconi anemia - A systematic review. Oral Oncol 2024; 150:106699. [PMID: 38309198 DOI: 10.1016/j.oraloncology.2024.106699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
The purpose of the present study was to perform a systematic review focusing on oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMD) in Fanconi anemia (FA) individuals. Electronic searches were undertaken in five databases supplemented by manual scrutiny and gray literature. Case reports and/or cases series were included. The searches yielded 55 studies describing 112 cases of OSCC (n = 107) and/or OPMD (n = 5) in FA individuals. The mean age at diagnosis of OSCC/OPMD was 27.1 (±9.6) years, and females (51.8 %) were slightly more affected. Ulcer (n = 37) or mass (n = 25) were described as clinical presentations for OSCC and OPMD. White lesions (n = 4) were the most common manifestation in OPMD. Tongue (47.2 %) was the most frequent location. Sixty-one (54.5 %) individuals underwent HSCT. Surgical resection (n = 75) was the main treatment adopted. The estimated rate of OPMD malignant transformation was 1.8 % and recurrences following OSCC excision occurred in 26.8 % of individuals. Overall, at 60 months of follow-up, the probability of survival fell to 25.5 % and at 64 months the probability of recurrence increased to 63.2 %. The present data support the need for strict surveillance of patients with FA, even in the absence of OPMD, for early OSCC detection and reduction of mortality.
Collapse
Affiliation(s)
- Nayara Conceição Marcos Santana
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | | - Paula Alves da Silva Rocha
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - José Alcides Almeida de Arruda
- Department of Oral Diagnosis and Pathology, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Cassius Carvalho Torres-Pereira
- Department of Stomatology, School of Dentistry, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; Multiprofessional Residency Program in Oncology and Hematology, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | - Lucas Guimarães Abreu
- Department of Child and Adolescent Oral Health, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Benjamin P J Fournier
- Department of Oral Biology, Université de Paris, Dental Faculty, France; Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of Molecular Oral Pathophysiology, France; AP-HP, Reference Center for Dental Rare Diseases, Rothschild Hospital (ORARES), Paris, France.
| | - Saman Warnakulasuriya
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, UK; WHO Collaborating Centre for Oral Cancer, London, UK.
| | - Tarcília Aparecida Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Department of Oral Biology, Université de Paris, Dental Faculty, France; Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of Molecular Oral Pathophysiology, France.
| |
Collapse
|
2
|
Chang L, Zhang L, An W, Wan Y, Cai Y, Lan Y, Zhang A, Liu L, Ruan M, Liu X, Guo Y, Yang W, Chen X, Chen Y, Wang S, Zou Y, Yuan W, Zhu X. Phenotypic and genotypic correlation evaluation of 148 pediatric patients with Fanconi anemia in a Chinese rare disease cohort. Clin Chim Acta 2023; 539:41-49. [PMID: 36463940 DOI: 10.1016/j.cca.2022.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Fanconi anemia (FA) is a rare autosomal recessive, X-linked or autosomal dominant disease. Few large-scale FA investigations of rare disease cohorts have been conducted in China. METHODS We enrolled 148 patients diagnosed with FA according to evidence from the clinical phenotype, family history, and a set of laboratory tests. Next, the clinical manifestations and correlation between the genotype and phenotype of FA pediatric cases were investigated. RESULTS The most common FA subtype in our cohort was FA-A (51.4 %), followed by FA-D2 and FA-P. Finger (26 %) and skin (25 %) deformities were the most common malformations. Based on family history, blood system diseases (51 %) had the highest incidence rate, followed by digestive system tumours. A set of new or prognosis-related mutation sites was identified. For example, c.2941 T > G was a new most common missense mutation site for FANCA. FANCP gene mutation sites were mainly concentrated in exons 12/14/15. The mutations of FANCI/FANCD2 were mainly located at the α helix and β corners of the protein complex. FA-A/D1 patients with splicing or deletion mutations showed more severe disease than those with missense mutations. Chromosome 1/3/7/8 abnormalities were closely linked to the progression of FA to leukemia. CONCLUSION Our study investigated the clinical features and genotype/phenotype correlation of 148 Chinese pediatric FA patients, providing new insight into FA.
Collapse
Affiliation(s)
- Lixian Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenbin An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yang Wan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuli Cai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yang Lan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Aoli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lipeng Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Min Ruan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoming Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaojuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shuchun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yao Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| |
Collapse
|
3
|
Polyclonal evolution of Fanconi anemia to MDS and AML revealed at single cell resolution. Exp Hematol Oncol 2022; 11:64. [PMID: 36167633 PMCID: PMC9513989 DOI: 10.1186/s40164-022-00319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background Fanconi anemia (FA) is a rare disease of bone marrow failure. FA patients are prone to develop myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). However, the molecular clonal evolution of the progression from FA to MDS/AML remains elusive. Methods Herein, we performed a comprehensive genomic analysis using an FA patient (P1001) sample that transformed to MDS and subsequently AML, together with other three FA patient samples at the MDS stage. Results Our finding showed the existence of polyclonal pattern in these cases at MDS stage. The clonal evolution analysis of FA case (P1001) showed the mutations of UBASH3A, SF3B1, RUNX1 and ASXL1 gradually appeared at the later stage of MDS, while the IDH2 alteration become the dominant clone at the leukemia stage. Moreover, single-cell sequencing analyses further demonstrated a polyclonal pattern was present at either MDS or AML stages, whereas IDH2 mutated cell clones appeared only at the leukemia stage. Conclusions We thus propose a clonal evolution model from FA to MDS and AML for this patient. The results of our study on the clonal evolution and mutated genes of the progression of FA to AML are conducive to understanding the progression of the disease that still perplexes us. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00319-5.
Collapse
|
4
|
Altintas B, Giri N, McReynolds LJ, Best A, Alter BP. Genotype-phenotype and outcome associations in patients with Fanconi anemia: the National Cancer Institute cohort. Haematologica 2022; 108:69-82. [PMID: 35417938 PMCID: PMC9827153 DOI: 10.3324/haematol.2021.279981] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 02/04/2023] Open
Abstract
Fanconi anemia (FA) is caused by pathogenic variants in the FA/BRCA DNA repair pathway genes, and is characterized by congenital abnormalities, bone marrow failure (BMF) and increased cancer risk. We conducted a genotype-phenotype and outcomes study of 203 patients with FA in our cohort. We compared across the genes, FA/BRCA DNA repair pathways (upstream, ID complex and downstream), and type of pathogenic variants (hypomorphic or null). We explored differences between the patients evaluated in our clinic (clinic cohort) and those who provided data remotely (field cohort). Patients with variants in upstream complex pathway had less severe phenotype [lacked VACTERL-H (Vertebral, Anal, Cardiac, Trachea-esophageal fistula, Esophageal/duodenal atresia, Renal, Limb, Hydrocephalus) association and/or PHENOS (Pigmentation, small-Head, small-Eyes, Neurologic, Otologic, Short stature) features]. ID complex was associated with VACTERL-H. The clinic cohort had more PHENOS features than the field cohort. PHENOS was associated with increased risk of BMF, and VACTERL-H with hypothyroidism. The cumulative incidence of severe BMF was 70%, solid tumors (ST) 20% and leukemia 6.5% as the first event. Head and neck and gynecological cancers were the most common ST, with further increased risk after hematopoietic cell transplantation. Among patients with FANCA, variants in exons 27-30 were associated with higher frequency of ST. Overall median survival was 37 years; patients with leukemia or FANCD1/BRCA2 variants had poorest survival. Patients with variants in the upstream complex had better survival than ID or downstream complex (p=0.001 and 0.016, respectively). FA is phenotypically and genotypically heterogeneous; detailed characterization provides new insights towards understanding this complex syndrome and guiding clinical management.
Collapse
Affiliation(s)
- Burak Altintas
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute,N. Giri
| | - Lisa J. McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute
| | - Ana Best
- Biostatistics Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Blanche P. Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute
| |
Collapse
|
5
|
Homan CC, King-Smith SL, Lawrence DM, Arts P, Feng J, Andrews J, Armstrong M, Ha T, Dobbins J, Drazer MW, Yu K, Bödör C, Cantor A, Cazzola M, Degelman E, DiNardo CD, Duployez N, Favier R, Fröhling S, Fitzgibbon J, Klco JM, Krämer A, Kurokawa M, Lee J, Malcovati L, Morgan NV, Natsoulis G, Owen C, Patel KP, Preudhomme C, Raslova H, Rienhoff H, Ripperger T, Schulte R, Tawana K, Velloso E, Yan B, Liu P, Godley LA, Schreiber AW, Hahn CN, Scott HS, Brown AL. The RUNX1 database (RUNX1db): establishment of an expert curated RUNX1 registry and genomics database as a public resource for familial platelet disorder with myeloid malignancy. Haematologica 2021; 106:3004-3007. [PMID: 34233450 PMCID: PMC8561292 DOI: 10.3324/haematol.2021.278762] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/02/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Claire C Homan
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA
| | - Sarah L King-Smith
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA
| | - David M Lawrence
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia; Australian Cancer Research Foundation (ACRF) Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA
| | - Peer Arts
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA
| | - Jinghua Feng
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia; Australian Cancer Research Foundation (ACRF) Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA
| | - James Andrews
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA
| | - Mark Armstrong
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA
| | - Thuong Ha
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA
| | - Julia Dobbins
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA
| | - Michael W Drazer
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Kai Yu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of P athology and E xperimental Cancer R esearch, Semmelweis U niversity, B udapest, H ungary
| | - Alan Cantor
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia
| | - Erin Degelman
- Division of Hematology and Hematological Malignancies, Foothills Medical Centre, Calgary, AB
| | - Courtney D DiNardo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nicolas Duployez
- Laboratory of Hematology, Biology and Pathology Center, Centre Hospitalier Regional Universitaire de Lille, Lille, France; Jean-Pierre Aubert Research Center, INSERM, Universitaire de Lille, Lille
| | - Remi Favier
- Assistance Publique- Hôpitaux de Paris, Armand Trousseau children's Hospital, Paris
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jude Fitzgibbon
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London
| | - Jeffery M Klco
- St Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Dept. of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Joanne Lee
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham
| | | | - Carolyn Owen
- Division of Hematology and Hematological Malignancies, Foothills Medical Centre, Calgary, AB
| | - Keyur P Patel
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Claude Preudhomme
- Laboratory of Hematology, Biology and Pathology Center, Centre Hospitalier Regional Universitaire de Lille, Lille, France; Jean-Pierre Aubert Research Center, INSERM, Universitaire de Lille, Lille
| | - Hana Raslova
- Institut Gustave Roussy, Université Paris Sud, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif
| | | | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Rachael Schulte
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Monroe Carell Jr. Children's Hospital, Vanderbilt University Medical Center, Nashville, TN
| | - Kiran Tawana
- Department of Haematology, Addenbrooke's Hospital. Cambridge, CB2 0QQ
| | - Elvira Velloso
- Service of Hematology, Transfusion and Cell Therapy and Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31) HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil; Genetics Laboratory, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Benedict Yan
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System
| | - Paul Liu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lucy A Godley
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Andreas W Schreiber
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia; Australian Cancer Research Foundation (ACRF) Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia; School of Medicine, University of Adelaide, Adelaide, SA
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; School of Medicine, University of Adelaide, Adelaide, SA
| | - Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia; School of Medicine, University of Adelaide, Adelaide, SA.
| |
Collapse
|
6
|
Gutierrez-Rodrigues F, Sahoo SS, Wlodarski MW, Young NS. Somatic mosaicism in inherited bone marrow failure syndromes. Best Pract Res Clin Haematol 2021; 34:101279. [PMID: 34404533 DOI: 10.1016/j.beha.2021.101279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 12/20/2022]
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a heterogenous group of diseases caused by pathogenic germline variants in key pathways associated with haematopoiesis and genomic stability. Germline variants in IBMFS-related genes are known to reduce the fitness of hematopoietic stem and progenitor cells (HSPC), which has been hypothesized to drive clonal selection in these diseases. In many IBMFS, somatic mosaicism predominantly impacts cells by two distinct mechanisms, with contrasting effects. An acquired variation can improve cell fitness towards baseline levels, providing rescue of a deleterious phenotype. Alternatively, somatic mosaicism may result in a fitness advantage that results in malignant transformation. This review will describe these phenomena in IBMFS and delineate their relevance for diagnosis and clinical management. In addition, we will discuss which samples and methods can be used for detection of mosaicism according to clinical phenotype, type of mosaicism, and sample availability.
Collapse
Affiliation(s)
| | - Sushree S Sahoo
- Department of Hematology, St. Jude Children's Research Hospital, TN, USA
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, TN, USA; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
| |
Collapse
|
7
|
Fanconi anemia proteins participate in a break-induced-replication-like pathway to counter replication stress. Nat Struct Mol Biol 2021; 28:487-500. [PMID: 34117478 DOI: 10.1038/s41594-021-00602-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/30/2021] [Indexed: 11/08/2022]
Abstract
Fanconi anemia (FA) is a devastating hereditary disease characterized by bone marrow failure (BMF) and acute myeloid leukemia (AML). As FA-deficient cells are hypersensitive to DNA interstrand crosslinks (ICLs), ICLs are widely assumed to be the lesions responsible for FA symptoms. Here, we show that FA-mutated cells are hypersensitive to persistent replication stress and that FA proteins play a role in the break-induced-replication (BIR)-like pathway for fork restart. Both the BIR-like pathway and ICL repair share almost identical molecular mechanisms of 53BP1-BRCA1-controlled signaling response, SLX4- and FAN1-mediated fork cleavage and POLD3-dependent DNA synthesis, suggesting that the FA pathway is intrinsically one of the BIR-like pathways. Replication stress not only triggers BMF in FA-deficient mice, but also specifically induces monosomy 7, which is associated with progression to AML in patients with FA, in FA-deficient cells.
Collapse
|
8
|
Canonical and Noncanonical Roles of Fanconi Anemia Proteins: Implications in Cancer Predisposition. Cancers (Basel) 2020; 12:cancers12092684. [PMID: 32962238 PMCID: PMC7565043 DOI: 10.3390/cancers12092684] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Fanconi anemia (FA) is a genetic disorder that is characterized by bone marrow failure (BMF), developmental abnormalities, and predisposition to cancer. In this review, we present an overview of both canonical (regulation of interstrand cross-links repair, ICLs) and noncanonical roles of FA proteins. We divide noncanonical alternative functions in two types: nuclear (outside ICLs such as FA action in replication stress or DSB repair) and cytosolic (such as in mitochondrial quality control or selective autophagy). We further discuss the involvement of FA genes in the predisposition to develop different types of cancers and we examine current DNA damage response-targeted therapies. Finally, we promote an insightful perspective regarding the clinical implication of the cytosolic noncanonical roles of FA proteins in cancer predisposition, suggesting that these alternative roles could be of critical importance for disease progression. Abstract Fanconi anemia (FA) is a clinically and genetically heterogeneous disorder characterized by the variable presence of congenital somatic abnormalities, bone marrow failure (BMF), and a predisposition to develop cancer. Monoallelic germline mutations in at least five genes involved in the FA pathway are associated with the development of sporadic hematological and solid malignancies. The key function of the FA pathway is to orchestrate proteins involved in the repair of interstrand cross-links (ICLs), to prevent genomic instability and replication stress. Recently, many studies have highlighted the importance of FA genes in noncanonical pathways, such as mitochondria homeostasis, inflammation, and virophagy, which act, in some cases, independently of DNA repair processes. Thus, primary defects in DNA repair mechanisms of FA patients are typically exacerbated by an impairment of other cytoprotective pathways that contribute to the multifaceted clinical phenotype of this disease. In this review, we summarize recent advances in the understanding of the pathogenesis of FA, with a focus on the cytosolic noncanonical roles of FA genes, discussing how they may contribute to cancer development, thus suggesting opportunities to envisage novel therapeutic approaches.
Collapse
|
9
|
Transcription factor Oct1 protects against hematopoietic stress and promotes acute myeloid leukemia. Exp Hematol 2019; 76:38-48.e2. [PMID: 31295506 PMCID: PMC7670548 DOI: 10.1016/j.exphem.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
A better understanding of the development and progression of acute myelogenous leukemia (AML) is necessary to improve patient outcome. Here we define roles for the transcription factor Oct1/Pou2f1 in AML and normal hematopoiesis. Inappropriate reactivation of the CDX2 gene is widely observed in leukemia patients and in leukemia mouse models. We show that Oct1 associates with the CDX2 promoter in both normal and AML primary patient samples, but recruits the histone demethylase Jmjd1a/Kdm3a to remove the repressive H3K9me2 mark only in malignant specimens. The CpG DNA immediately adjacent to the Oct1 binding site within the CDX2 promoter exhibits variable DNA methylation in healthy control blood and bone marrow samples, but complete demethylation in AML samples. In MLL-AF9-driven mouse models, partial loss of Oct1 protects from myeloid leukemia. Complete Oct1 loss completely suppresses leukemia but results in lethality from bone marrow failure. Loss of Oct1 in normal hematopoietic transplants results in superficially normal long-term reconstitution; however, animals become acutely sensitive to 5-fluorouracil, indicating that Oct1 is dispensable for normal hematopoiesis but protects blood progenitor cells against external chemotoxic stress. These findings elucidate a novel and important role for Oct1 in AML.
Collapse
|
10
|
Associations of complementation group, ALDH2 genotype, and clonal abnormalities with hematological outcome in Japanese patients with Fanconi anemia. Ann Hematol 2018; 98:271-280. [PMID: 30368588 DOI: 10.1007/s00277-018-3517-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
Abstract
Fanconi anemia (FA) is a genetically and clinically heterogeneous disorder that predisposes patients to bone marrow failure (BMF), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). To study which genetic and phenotypic factors predict clinical outcomes for Japanese FA patients, we examined the FA genes, bone marrow karyotype, and aldehyde dehydrogenase-2 (ALDH2) genotype; variants of which are associated with accelerated progression of BMF in FA. In 88 patients, we found morphologic MDS/AML in 33 patients, including refractory cytopenia in 16, refractory anemia with excess blasts (RAEB) in 7, and AML in 10. The major mutated FA genes observed in this study were FANCA (n = 52) and FANCG (n = 23). The distribution of the ALDH2 variant alleles did not differ significantly between patients with mutations in FANCA and FANCG. However, patients with FANCG mutations had inferior BMF-free survival and received hematopoietic stem cell transplantation (HSCT) at a younger age than those with FANCA mutations. In FANCA, patients with the c.2546delC mutation (n = 24) related to poorer MDS/AML-free survival and a younger age at HSCT than those without this mutation. All patients with RAEB/AML had an abnormal karyotype and poorer prognosis after HSCT; specifically, the presence of a structurally complex karyotype with a monosomy (n = 6) was associated with dismal prognosis. In conclusion, the best practice for a clinician may be to integrate the morphological, cytogenetic, and genetic data to optimize HSCT timing in Japanese FA patients.
Collapse
|
11
|
Lovatel VL, de Souza DC, Alvarenga TF, Capela de Matos RR, Diniz C, Schramm MT, Llerena Júnior JC, Silva MLM, Abdelhay E, de Souza Fernandez T. An uncommon t(9;11)(p24;q22) with monoallelic loss of ATM and KMT2A genes in a child with myelodysplastic syndrome/acute myeloid leukemia who evolved from Fanconi anemia. Mol Cytogenet 2018; 11:40. [PMID: 30008805 PMCID: PMC6042331 DOI: 10.1186/s13039-018-0389-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/28/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Myelodysplastic syndrome (MDS) is rare in the pediatric age group and it may be associated with inheritable bone marrow failure (BMF) such as Fanconi anemia (FA). FA is a rare multi-system genetic disorder, characterized by congenital malformations and progressive BMF. Patients with FA usually present chromosomal aberrations when evolving to MDS or acute myeloid leukemia (AML). Thus, the cytogenetic studies in the bone marrow (BM) of these patients have an important role in the therapeutic decision, mainly in the indication for hematopoietic stem cell transplantation (HSCT). The most frequent chromosomal alterations in the BM of FA patients are gains of the chromosomal regions 1q and 3q, and partial or complete loss of chromosome 7. However, the significance and the predictive value of such clonal alterations, with respect to malignant progress, are not fully understood and data from molecular cytogenetic studies are very limited. CASE PRESENTATION A five-year-old boy presented recurrent infections and persistent anemia. The BM biopsy revealed hypocellularity. G-banding was performed on BM cells and showed a normal karyotype. The physical examination showed to be characteristic of FA, being the diagnosis confirmed by DEB test. Five years later, even with supportive treatment, the patient presented severe hypocellularity and BM evolution revealing megakaryocyte dysplasia, intense dyserythropoiesis, and 11% myeloblasts. G-banded analysis showed an abnormal karyotype involving a der(9)t(9;11)(p24;q?22). The FISH analysis showed the monoallelic loss of ATM and KMT2A genes. At this moment the diagnosis was MDS, refractory anemia with excess of blasts (RAEB). Allogeneic HSCT was indicated early in the diagnosis, but no donor was found. Decitabine treatment was initiated and well tolerated, although progression to AML occurred 3 months later. Chemotherapy induction was initiated, but there was no response. The patient died due to disease progression and infection complications. CONCLUSIONS Molecular cytogenetic analysis showed a yet unreported der(9)t(9;11)(p24;q?22),der(11)t(9;11)(p24;q?22) during the evolution from FA to MDS/AML. The FISH technique was important allowing the identification at the molecular level of the monoallelic deletion involving the KMT2A and ATM genes. Our results suggest that this chromosomal alteration conferred a poor prognosis, being associated with a rapid leukemic transformation and a poor treatment response.
Collapse
Affiliation(s)
- Viviane Lamim Lovatel
- Bone Marrow Transplatation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Post-Graduate Program in Oncology, National Cancer Institute José de Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Daiane Corrêa de Souza
- Bone Marrow Transplatation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Tatiana Fonseca Alvarenga
- Pathology Department of National Cancer Institute (INCA) and Post-Graduation Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Roberto R. Capela de Matos
- Bone Marrow Transplatation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Post-Graduate Program in Oncology, National Cancer Institute José de Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Claudia Diniz
- Bone Marrow Transplatation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | | | - Juan Clinton Llerena Júnior
- Medical Genetic Departament, Fernandes Figueira National Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ Brazil
| | - Maria Luiza Macedo Silva
- Bone Marrow Transplatation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Post-Graduate Program in Oncology, National Cancer Institute José de Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Eliana Abdelhay
- Bone Marrow Transplatation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Post-Graduate Program in Oncology, National Cancer Institute José de Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Teresa de Souza Fernandez
- Bone Marrow Transplatation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Post-Graduate Program in Oncology, National Cancer Institute José de Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Rare variants in Fanconi anemia genes are enriched in acute myeloid leukemia. Blood Cancer J 2018; 8:50. [PMID: 29891941 PMCID: PMC6002376 DOI: 10.1038/s41408-018-0090-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
|
13
|
Chisholm KM, Xu M, Davis B, Ogi A, Pacheco MC, Geddis AE, Tsuchiya KD, Rutledge JC. Evaluation of the Utility of Bone Marrow Morphology and Ancillary Studies in Pediatric Patients Under Surveillance for Myelodysplastic Syndrome. Am J Clin Pathol 2018; 149:499-513. [PMID: 29659673 DOI: 10.1093/ajcp/aqy007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To evaluate the utility of flow cytometry, karyotype, and a fluorescence in situ hybridization (FISH) panel in screening children for myelodysplastic syndrome (MDS). METHODS Bone marrow morphology, flow cytometry, karyotype, and FISH reports from 595 bone marrow specimens (246 patients) were analyzed. RESULTS By morphology, 8.7% of cases demonstrated at least unilineage dysplasia and/or increased blasts. Flow cytometry identified definitive abnormalities in 2.8% of cases, all of which had abnormal morphology. Of the 42 cases (7.2%) with acquired karyotypic abnormalities, 26 had no morphologic dysplasia. With a 98.2% concordance between karyotype and MDS FISH, FISH only identified two additional cases, both with low-level (<4%) abnormalities. Peripheral blood count evaluation only identified the absence of thrombocytopenia to correlate with an absence of abnormal ancillary tests. CONCLUSIONS The combination of morphologic evaluation and karyotype with judicious use of flow cytometry and MDS FISH is sufficient to detect abnormalities for these indications.
Collapse
Affiliation(s)
- Karen M Chisholm
- Department of Laboratories, Seattle, WA
- Department of Laboratory Medicine, University of Washington, Seattle
| | - Min Xu
- Department of Laboratories, Seattle, WA
- Department of Laboratory Medicine, University of Washington, Seattle
| | | | - Amy Ogi
- Department of Laboratories, Seattle, WA
| | - M Cristina Pacheco
- Department of Laboratories, Seattle, WA
- Department of Pathology, University of Washington, Seattle
| | - Amy E Geddis
- Laboratories Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington, Seattle
| | - Karen D Tsuchiya
- Department of Laboratories, Seattle, WA
- Department of Laboratory Medicine, University of Washington, Seattle
| | - Joe C Rutledge
- Department of Laboratories, Seattle, WA
- Department of Laboratory Medicine, University of Washington, Seattle
| |
Collapse
|
14
|
Lipton JM, Alter BP. Heritable cancer: Rounding up the not so usual suspects. Pediatr Blood Cancer 2017; 64:219-220. [PMID: 27718323 DOI: 10.1002/pbc.26190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Jeffrey M Lipton
- Division of Hematology/Oncology and Stem Cell Transplantation, Steven and Alexandra Cohen Children's Medical Center of New York, New Hyde Park, New York.,The Feinstein Institute for Medical Research, Manhasset, New York.,Hofstra Northwell School of Medicine, Hempstead, New York
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland
| |
Collapse
|
15
|
Babushok DV, Bessler M, Olson TS. Genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia in children and young adults. Leuk Lymphoma 2015; 57:520-36. [PMID: 26693794 DOI: 10.3109/10428194.2015.1115041] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myelodysplastic syndrome (MDS) is a clonal blood disorder characterized by ineffective hematopoiesis, cytopenias, dysplasia and an increased risk of acute myeloid leukemia (AML). With the growing availability of clinical genetic testing, there is an increasing appreciation that a number of genetic predisposition syndromes may underlie apparent de novo presentations of MDS/AML, particularly in children and young adults. Recent findings of clonal hematopoiesis in acquired aplastic anemia add another facet to our understanding of the mechanisms of MDS/AML predisposition. As more predisposition syndromes are recognized, it is becoming increasingly important for hematologists and oncologists to have familiarity with the common as well as emerging syndromes, and to have a systematic approach to diagnosis and screening of at risk patient populations. Here, we provide a practical algorithm for approaching a patient with a suspected MDS/AML predisposition, and provide an in-depth review of the established and emerging familial MDS/AML syndromes caused by mutations in the ANKRD26, CEBPA, DDX41, ETV6, GATA2, RUNX1, SRP72 genes. Finally, we discuss recent data on the role of somatic mutations in malignant transformation in acquired aplastic anemia, and review the practical aspects of MDS/AML management in patients and families with predisposition syndromes.
Collapse
Affiliation(s)
- Daria V Babushok
- a Division of Hematology-Oncology, Department of Medicine , Hospital of the University of Pennsylvania , Philadelphia , PA , USA ;,b Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics , Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Monica Bessler
- a Division of Hematology-Oncology, Department of Medicine , Hospital of the University of Pennsylvania , Philadelphia , PA , USA ;,b Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics , Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Timothy S Olson
- b Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics , Children's Hospital of Philadelphia , Philadelphia , PA , USA ;,c Blood and Marrow Transplant Program, Division of Oncology, Department of Pediatrics , Children's Hospital of Philadelphia and University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
16
|
Schneider M, Chandler K, Tischkowitz M, Meyer S. Fanconi anaemia: genetics, molecular biology, and cancer - implications for clinical management in children and adults. Clin Genet 2014; 88:13-24. [DOI: 10.1111/cge.12517] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 01/30/2023]
Affiliation(s)
- M. Schneider
- Stem Cell and Leukaemia Proteomics Laboratory; University of Manchester; Manchester UK
- Manchester Academic Health Science Centre; Manchester UK
| | - K. Chandler
- Manchester Academic Health Science Centre; Manchester UK
- Department of Genetic Medicine; University of Manchester, St Mary's Hospital; Manchester UK
| | - M. Tischkowitz
- Department of Medical Genetics; University of Cambridge, Addenbrooke's Hospital; Cambridge UK
| | - S. Meyer
- Stem Cell and Leukaemia Proteomics Laboratory; University of Manchester; Manchester UK
- Manchester Academic Health Science Centre; Manchester UK
- Department of Paediatric Haematology and Oncology; Royal Manchester Children's Hospital; Manchester UK
- Department of Paediatric and Adolescent Oncology; Young Oncology Unit, The Christie NHS Foundation Trust; Manchester UK
| |
Collapse
|
17
|
Rama H, Gupta D, Chatterjee T, Gupta S. Fanconi Anemia with MDS RAEB-2 Rapidly Progressing to AML in a 5-Year-Old Boy. Indian J Hematol Blood Transfus 2014; 30:379-82. [PMID: 25332625 DOI: 10.1007/s12288-014-0424-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022] Open
Abstract
Fanconi's Anemia is primarily an autosomal recessive genetic disorder characterized by congenital abnormalities, defective haematopoiesis leading to bone marrow failure and increased risk of development of Myelodysplastic syndrome, acute myeloid leukemia and solid tumours. Chromosomal instability can be demonstrated by breakage caused by alkylating agents and forms the basis of diagnosis. Our patient presented with structural deformities associated with features of bone marrow failure in form of pancytopenia. Bone marrow analysis and flow cytometry done on aspirate was suggestive of MDS. He subsequently progressed to frank acute myeloid leukemia and succumbed to the illness. The case is being reported for its rarity especially, Fanconi's Anemia associated with monosomal karyotype (one monosomy plus one more structural abnormality).
Collapse
Affiliation(s)
- H Rama
- Department of Pathology and Molecular Medicine, Army Hospital (Research & Referral), Dhaulakaun, New Delhi, 110010 India
| | - Devika Gupta
- Department of Pathology and Molecular Medicine, Army Hospital (Research & Referral), Dhaulakaun, New Delhi, 110010 India
| | - Tathagata Chatterjee
- Department of Pathology and Molecular Medicine, Army Hospital (Research & Referral), Dhaulakaun, New Delhi, 110010 India
| | - Srishti Gupta
- Department of Pathology and Molecular Medicine, Army Hospital (Research & Referral), Dhaulakaun, New Delhi, 110010 India
| |
Collapse
|
18
|
Kupfer GM. Fanconi anemia: a signal transduction and DNA repair pathway. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2013; 86:491-7. [PMID: 24348213 PMCID: PMC3848103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Fanconi anemia (FA) is a fascinating, rare genetic disorder marked by congenital defects, bone marrow failure, and cancer susceptibility. Research in recent years has led to the elucidation of FA as a DNA repair disorder and involved multiple pathways as well as having wide applicability to common cancers, including breast, ovarian, and head and neck. This review will describe the clinical aspects of FA as well as the current state of its molecular pathophysiology. In particular, work from the Kupfer laboratory will be described that demonstrates how the FA pathway interacts with multiple DNA repair pathways, including the mismatch repair system and signal transduction pathway of the DNA damage response.
Collapse
|
19
|
Abstract
Molecular pathogenesis may be elucidated for inherited bone marrow failure syndromes (IBMFS). The study and presentation of the details of their molecular biology and biochemistry is warranted for appropriate diagnosis and management of afflicted patients and to identify the physiology of the normal hematopoiesis and mechanisms of carcinogenesis. Several themes have emerged within each subsection of IBMFS, including the ribosomopathies, which include ribosome assembly and ribosomal RNA processing. The Fanconi anemia pathway has become interdigitated with the familial breast cancer syndromes. In this article, the diseases that account for most IBMFS diagnoses are analyzed.
Collapse
Affiliation(s)
- S Deborah Chirnomas
- Section of Pediatric Hematology-Oncology, LMP 2073, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | |
Collapse
|
20
|
Hussain S, Adil SN. Rare cytogenetic abnormalities in acute myeloid leukemia transformed from Fanconi anemia - a case report. BMC Res Notes 2013; 6:316. [PMID: 23937881 PMCID: PMC3751483 DOI: 10.1186/1756-0500-6-316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/22/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fanconi's anemia (FA) is an inherited bone marrow failure syndrome that carries a higher risk of transformation to acute myeloid leukemia (AML) when compared with general population. AML is the initial presentation in approximately one third of patients. CASE PRESENTATION A 17 year old male presented to the emergency room with history of high grade fever since two weeks. Examination revealed pallor, short stature and thumb polydactyly. There was no visceromegaly or lymphadenopathy. Complete blood count showed haemoglobin 3.4 gm/dl, MCV 100 fl and MCH 36 pg, white blood cell count 55.9 × 10 E9/L and platelet count 8 × 10E9/L. Peripheral blood smear revealed 26% blast cells. Bone marrow was hypercellular exhibiting infiltration with 21% blast cells. Auer rods were seen in few blast cells. These findings were consistent with acute myelomonocytic leukemia. These blasts cells expressed CD33, CD13, HLA-DR, CD117, CD34 antigens and cytoplasmic myeloperoxidase on immunophenotyping. Bone marrow cytogenetics revealed 46, XY, t (8:21) (q22; q22) [11] / 46, XY, add (2) (q37), t (8; 21) [4] / 46, XY [5]. Molecular studies showed positivity of FLT 3 D835 variant and negativity of NPM 1 and FLT3 ITD (internal tandem domain) mutation. Peripheral blood analysis for chromosomal breakage exhibited tri-radial and complex figures. He received induction chemotherapy with cytarabine and daunorubicin (3 + 7). Day 14 marrow revealed clearance of blast cells. CONCLUSION The recognition of specific cytogenetic abnormalities present in FA known to predispose to AML is crucial for early haematopoietic stem cell transplant (HSCT) before transformation to leukemia.
Collapse
|
21
|
Romick-Rosendale LE, Lui VWY, Grandis JR, Wells SI. The Fanconi anemia pathway: repairing the link between DNA damage and squamous cell carcinoma. Mutat Res 2013; 743-744:78-88. [PMID: 23333482 DOI: 10.1016/j.mrfmmm.2013.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is a rare inherited recessive disease caused by mutations in one of fifteen genes known to encode FA pathway components. In response to DNA damage, nuclear FA proteins associate into high molecular weight complexes through a cascade of post-translational modifications and physical interactions, followed by the repair of damaged DNA. Hematopoietic cells are particularly sensitive to the loss of these interactions, and bone marrow failure occurs almost universally in FA patients. FA as a disease is further characterized by cancer susceptibility, which highlights the importance of the FA pathway in tumor suppression, and will be the focus of this review. Acute myeloid leukemia is the most common cancer type, often subsequent to bone marrow failure. However, FA patients are also at an extreme risk of squamous cell carcinoma (SCC) of the head and neck and gynecological tract, with an even greater incidence in those individuals who have received a bone marrow transplant and recovered from hematopoietic disease. FA tumor suppression in hematopoietic versus epithelial compartments could be mechanistically similar or distinct. Definition of compartment specific FA activities is now critical to assess the effects of today's bone marrow failure treatments on tomorrow's solid tumor development. It is our hope that current therapies can then be optimized to decrease the risk of malignant transformation in both hematopoietic and epithelial cells. Here we review our current understanding of the mechanisms of action of the Fanconi anemia pathway as it contributes to stress responses, DNA repair and squamous cell carcinoma susceptibility.
Collapse
Affiliation(s)
- Lindsey E Romick-Rosendale
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Vivian W Y Lui
- Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer R Grandis
- Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Susanne I Wells
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
22
|
Dumitriu B, Young NS. Damage control and its costs: BM failure in Fanconi anemia stems from overactive p53/p21. Cell Stem Cell 2012; 11:7-8. [PMID: 22770237 DOI: 10.1016/j.stem.2012.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Despite having well-characterized disease-associated mutations, the mechanisms underlying the progressive bone marrow failure and cancer susceptibility of Fanconi anemia have been unclear. In this issue of Cell Stem Cell, Ceccaldi et al. identify an overactive p53/p21 stress response and cell cycle arrest as an underlying cause that starts during fetal development.
Collapse
Affiliation(s)
- Bogdan Dumitriu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | | |
Collapse
|