1
|
Yuan K, Tang Y, Ding Z, Peng L, Zeng J, Wu H, Yi Q. Mutant ATRX: pathogenesis of ATRX syndrome and cancer. Front Mol Biosci 2024; 11:1434398. [PMID: 39479502 PMCID: PMC11521912 DOI: 10.3389/fmolb.2024.1434398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
The transcriptional regulator ATRX, a genetic factor, is associated with a range of disabilities, including intellectual, hematopoietic, skeletal, facial, and urogenital disabilities. ATRX mutations substantially contribute to the pathogenesis of ATRX syndrome and are frequently detected in gliomas and many other cancers. These mutations disrupt the organization, subcellular localization, and transcriptional activity of ATRX, leading to chromosomal instability and affecting interactions with key regulatory proteins such as DAXX, EZH2, and TERRA. ATRX also functions as a transcriptional regulator involved in the pathogenesis of neuronal disorders and various diseases. In conclusion, ATRX is a central protein whose abnormalities lead to multiple diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Huaying Wu
- Key Laboratory of Model Animals and Stem Cell Biology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Qi Yi
- Key Laboratory of Model Animals and Stem Cell Biology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Cheng J, Ji D, Ma J, Zhang Q, Zhang W, Yang L. Proteomic analysis of serum small extracellular vesicles identifies diagnostic biomarkers for neuroblastoma. Front Oncol 2024; 14:1367159. [PMID: 39228987 PMCID: PMC11368728 DOI: 10.3389/fonc.2024.1367159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Background Neuroblastoma (NB) primarily arises in children who are <10 years of age, and originates from developing sympathetic nervous system, which results in tumors in adrenal glands and/or sympathetic ganglia. The diagnosis of NB involves a combination of laboratory and imaging tests, and biopsies. Small extracellular vesicles (sEVs) have gained attention as potential biomarkers for various types of tumors. Here, we performed proteomic analysis of serum sEVs and identified potential biomarkers for NB. Methods Label-free proteomics of serum sEVs were performed in the discovery phase. A bulk RNA-seq dataset of NB tissues was used to analyze the association between genes encoding sEVs proteins and prognosis. Potential biomarkers were validated via multiple reaction monitoring (MRM) or western blot analysis in the validation phase. A public single-cell RNA-seq (scRNA-seq) dataset was integrated to analyze the tissue origin of sEVs harboring biomarkers. Results A total of 104 differentially expressed proteins were identified in NB patients with label-free proteomics, and 26 potential biomarkers were validated with MRM analysis. Seven proteins BSG, HSP90AB1, SLC44A1, CHGA, ATP6V0A1, ITGAL and SELL showed the strong ability to distinguish NB patients from healthy controls and non-NB patients as well. Integrated analysis of scRNA-seq and sEVs proteomics revealed that these sEVs-derived biomarkers originated from different cell populations in tumor tissues. Conclusion sEVs-based biomarkers may aid the molecular diagnosis of NB, representing an innovative strategy to improve NB detection and management.
Collapse
Affiliation(s)
- Juan Cheng
- Department of Clinical Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dongrui Ji
- Wayen Biotechnologies (Shanghai), Inc., Shanghai, China
| | - Jing Ma
- Department of Pathology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qinghua Zhang
- Wayen Biotechnologies (Shanghai), Inc., Shanghai, China
| | - Wanglin Zhang
- Department of Orthopaedics, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Yang
- Department of Clinical Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Magnier O, Schiff I, Cristante J, Chabre O, Veloso M, Bosson JL, Defachelles AS, Cordero C, Cao CD, Thebaud E, Drui D, Berlanga P, Dumont B, Chastagner P, Tandonnet J, Gambart M, Jannier S, Pluchart C, Andry L, Laithier V, Klein S, Carausu L, Akbaraly T, Probert J, Habert-Dantigny R, Plantaz D. Adolescent- and adult-onset neuroblastic tumor: A retrospective multicenter observational study of patients diagnosed in France between 2000 and 2020. Pediatr Blood Cancer 2024; 71:e31074. [PMID: 38778452 DOI: 10.1002/pbc.31074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Adult- and adolescent-onset neuroblastomas are rare, with no established therapy. In addition, rare pheochromocytomas may harbor neuroblastic components. This study was designed to collect epidemiological, diagnostic and therapeutic data in order to better define the characteristics of malignant peripheral neuroblastic tumors (MPNT) and composite pheochromocytomas (CP) with MPNT. PROCEDURE Fifty-nine adults and adolescents (aged over 15 years) diagnosed with a peripheral or composite neuroblastic tumor, who were treated in one of 17 institutions between 2000 and 2020, were retrospectively studied. RESULTS Eighteen patients with neuroblastoma (NB) or ganglioneuroblastoma (GNB) had locoregional disease, and 28 patients had metastatic stage 4 NB. Among the 13 patients with CP, 12 had locoregional disease. Fifty-eight percent of the population were adolescents and young adults under 24 years of age. The probability of 5-year event-free survival (EFS) was 40% (confidence interval: 27%-53%). CONCLUSIONS Outcomes were better for patients with localized tumor than for patients with metastases. For patients with localized tumor, in terms of survival, surgical treatment was the best therapeutic option. Multimodal treatment with chemotherapy, surgery, radiotherapy, and immunotherapy-based maintenance allowed long-term survival for some patients. Adolescent- and adult-onset neuroblastoma appeared to have specific characteristics associated with poorer outcomes compared to pediatric neuroblastoma. Nevertheless, complete disease control improved survival. The presence of a neuroblastic component in pheochromocytoma should be considered when making therapeutic management decisions. The development of specific tools/resources (Tumor Referral Board, Registry, biology, and trials with new agents or strategies) may help to improve outcomes for patients.
Collapse
Affiliation(s)
- Orlane Magnier
- Cancer and Blood Diseases Department, Medical Oncology, Grenoble Alpes University Hospital, Grenoble, France
| | - Isabelle Schiff
- Pediatric Oncology and Hematology Department, Grenoble Alpes University, Grenoble, France
| | - Justine Cristante
- Endocrinology Department, Grenoble Alpes University, Grenoble, France
| | - Olivier Chabre
- Endocrinology Department, Grenoble Alpes University, Grenoble, France
| | - Melanie Veloso
- Public Health and Biostatistics, Grenoble Alpes University Hospital, Grenoble, France
| | - Jean-Luc Bosson
- Public Health and Biostatistics, Grenoble Alpes University Hospital, Grenoble, France
| | | | - Camille Cordero
- Pediatric Oncology Department, Curie Institute, Paris, France
| | - Christine Do Cao
- Department of Endocrinology, Diabetology, and Metabolism, Lille University Hospital, Lille, France
| | - Estelle Thebaud
- Pediatric Oncology Department, Nantes University Hospital, Nantes, France
| | - Delphine Drui
- Endocrinology Department, Nantes University Hospital, Nantes, France
| | - Pablo Berlanga
- Pediatric and AYA Oncology Department, Gustave Roussy Institute, Paris, France
| | | | - Philippe Chastagner
- Pediatric Oncology and Hematology Department, Nancy University Hospital, Nancy, France
| | - Julie Tandonnet
- Pediatric Oncology Department, Bordeaux University Hospital, Bordeaux, France
| | - Marion Gambart
- Pediatric Oncology and Hematology Department, Toulouse University Hospital, Toulouse, France
| | - Sarah Jannier
- Pediatric Oncology Department, Strasbourg University Hospital, Strasbourg, France
| | - Claire Pluchart
- Pediatric Oncology and Hematology Department, Reims University Hospital, Reims, France
| | - Leslie Andry
- Pediatric Oncology Department, Amiens University Hospital, Amiens, France
| | - Véronique Laithier
- Pediatric Oncology Department, Besançon University Hospital, Besançon, France
| | - Sébastien Klein
- Pediatric Oncology Department, Besançon University Hospital, Besançon, France
| | - Liana Carausu
- Pediatric Oncology and Hematology Department, Brest University Hospital, Brest, France
| | - Tasmine Akbaraly
- Pediatric Oncology Department, Montpellier University Hospital, Montpellier, France
| | - Jamie Probert
- Pediatric Oncology and Hematology Department, Rennes University Hospital, Rennes, France
| | - Raphaelle Habert-Dantigny
- Cancer and Blood Diseases Department, Medical Oncology, Palliative Care Unit, Grenoble Alpes University, Grenoble, France
| | - Dominique Plantaz
- Pediatric Oncology and Hematology Department, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
4
|
Żebrowska U, Balwierz W, Wechowski J, Wieczorek A. Survival Benefit of Myeloablative Therapy with Autologous Stem Cell Transplantation in High-Risk Neuroblastoma: A Systematic Literature Review. Target Oncol 2024; 19:143-159. [PMID: 38401028 DOI: 10.1007/s11523-024-01033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Multimodal treatment of newly diagnosed high-risk neuroblastoma (HRNB) includes induction chemotherapy, consolidation with myeloablative therapy (MAT) and autologous stem cell transplantation (ASCT), followed by anti-disialoganglioside 2 (GD2) immunotherapy, as recommended by the Children's Oncology Group (COG) and the Society of Paediatric Oncology European Neuroblastoma (SIOPEN). Some centres proposed an alternative approach with induction chemotherapy followed by anti-GD2 immunotherapy, without MAT+ASCT. OBJECTIVE The aim of this systematic literature review was to compare survival outcomes in patients with HRNB treated with or without MAT+ASCT and with or without subsequent anti-GD2 immunotherapy. PATIENTS AND METHODS The review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. MEDLINE via PubMed and EMBASE databases were systematically searched for randomised controlled trials (RCT) and observational comparative studies in patients with HRNB using search terms for 'neuroblastoma' and ('myeloablative therapy' OR 'stem cell transplantation'). Reporting of at least one survival outcome [event-free survival (EFS), progression-free survival, relapse-free survival and/or overall survival (OS)] was required for inclusion. Outcomes from RCTs were synthesized in meta-analysis, while meta-analysis of non-RCTs was not planned owing to expected heterogeneity. RESULTS Literature searches produced 2587 results with 41 publications reporting 34 comparative studies included in the review. Of these, 7 publications reported 4 RCTs, and 34 publications reported 30 non-RCT studies. Studies differed with respect to included populations, induction regimen, response to induction, additional treatments and transplantation procedures. Subsequent treatments of relapse were rarely reported and could not be compared. In the meta-analysis, EFS was in favour of MAT+ASCT over conventional chemotherapy or no further treatment [hazard ratio (HR) = 0.78, 95% confidence interval (CI) 0.67-0.91, p = 0.001] with a trend favouring MAT+ASCT for OS (HR = 0.86, 95% CI 0.73-1.00, p = 0.05). Tandem MAT+ASCT was found to improve EFS compared with the single procedure, with improvement in both EFS and OS in patients treated with anti-GD2 therapy. Non-RCT comparative studies were broadly consistent with evidence from the RCTs; however, not all reported survival benefits of MAT+ASCT (single or tandem). Limited comparative evidence on treatment without MAT+ASCT in patients treated with anti-GD2 immunotherapy suggests an increased risk of relapse. In relapsed patients, MAT+ASCT appears to improve OS, but evidence remains scarce. CONCLUSIONS Survival benefits in patients treated with MAT+ASCT confirm that the procedure should remain an integral part of multimodal therapy. In patients treated with anti-GD2 immunotherapy, limited evidence suggests that omitting MAT+ASCT is associated with an increased risk of relapse, and therefore, a change in clinical practice can currently not be recommended. Evidence suggests the use of tandem MAT+ASCT compared with the single procedure, with greater benefits observed in patients treated with anti-GD2 immunotherapy. Limited evidence also suggests improved survival following MAT+ASCT in relapsed patients, which needs to be viewed in light of emerging chemoimmunotherapy in this setting.
Collapse
Affiliation(s)
- Urszula Żebrowska
- Department of Paediatric Oncology and Haematology, University Children's Hospital of Krakow, 265 Wielicka str, 30-663, Krakow, Poland
| | - Walentyna Balwierz
- Department of Paediatric Oncology and Haematology, University Children's Hospital of Krakow, 265 Wielicka str, 30-663, Krakow, Poland
- Department of Paediatric Oncology and Haematology, Jagiellonian University Medical College, 265 Wielicka str, 30-663, Krakow, Poland
| | - Jarosław Wechowski
- EUSA Pharma, Breakspear Park, Breakspear Way, Hemel Hempstead, HP2 4TZ, UK
| | - Aleksandra Wieczorek
- Department of Paediatric Oncology and Haematology, University Children's Hospital of Krakow, 265 Wielicka str, 30-663, Krakow, Poland.
- Department of Paediatric Oncology and Haematology, Jagiellonian University Medical College, 265 Wielicka str, 30-663, Krakow, Poland.
| |
Collapse
|
5
|
Patel AG, Ashenberg O, Collins NB, Segerstolpe Å, Jiang S, Slyper M, Huang X, Caraccio C, Jin H, Sheppard H, Xu K, Chang TC, Orr BA, Shirinifard A, Chapple RH, Shen A, Clay MR, Tatevossian RG, Reilly C, Patel J, Lupo M, Cline C, Dionne D, Porter CBM, Waldman J, Bai Y, Zhu B, Barrera I, Murray E, Vigneau S, Napolitano S, Wakiro I, Wu J, Grimaldi G, Dellostritto L, Helvie K, Rotem A, Lako A, Cullen N, Pfaff KL, Karlström Å, Jané-Valbuena J, Todres E, Thorner A, Geeleher P, Rodig SJ, Zhou X, Stewart E, Johnson BE, Wu G, Chen F, Yu J, Goltsev Y, Nolan GP, Rozenblatt-Rosen O, Regev A, Dyer MA. A spatial cell atlas of neuroblastoma reveals developmental, epigenetic and spatial axis of tumor heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574538. [PMID: 38260392 PMCID: PMC10802404 DOI: 10.1101/2024.01.07.574538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neuroblastoma is a pediatric cancer arising from the developing sympathoadrenal lineage with complex inter- and intra-tumoral heterogeneity. To chart this complexity, we generated a comprehensive cell atlas of 55 neuroblastoma patient tumors, collected from two pediatric cancer institutions, spanning a range of clinical, genetic, and histologic features. Our atlas combines single-cell/nucleus RNA-seq (sc/scRNA-seq), bulk RNA-seq, whole exome sequencing, DNA methylation profiling, spatial transcriptomics, and two spatial proteomic methods. Sc/snRNA-seq revealed three malignant cell states with features of sympathoadrenal lineage development. All of the neuroblastomas had malignant cells that resembled sympathoblasts and the more differentiated adrenergic cells. A subset of tumors had malignant cells in a mesenchymal cell state with molecular features of Schwann cell precursors. DNA methylation profiles defined four groupings of patients, which differ in the degree of malignant cell heterogeneity and clinical outcomes. Using spatial proteomics, we found that neuroblastomas are spatially compartmentalized, with malignant tumor cells sequestered away from immune cells. Finally, we identify spatially restricted signaling patterns in immune cells from spatial transcriptomics. To facilitate the visualization and analysis of our atlas as a resource for further research in neuroblastoma, single cell, and spatial-omics, all data are shared through the Human Tumor Atlas Network Data Commons at www.humantumoratlas.org.
Collapse
Affiliation(s)
- Anand G Patel
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- These authors contributed equally
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- These authors contributed equally
| | - Natalie B Collins
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Åsa Segerstolpe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sizun Jiang
- Department of Pathology, Stanford University, Stanford, CA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xin Huang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chiara Caraccio
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ke Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard H Chapple
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amber Shen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael R Clay
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ruth G Tatevossian
- Cancer Biomarkers Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Colleen Reilly
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jaimin Patel
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marybeth Lupo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cynthia Cline
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Caroline B M Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Waldman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yunhao Bai
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Bokai Zhu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Evan Murray
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sébastien Vigneau
- Center for Cancer Genomics, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara Napolitano
- Center for Cancer Genomics, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Isaac Wakiro
- Center for Cancer Genomics, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jingyi Wu
- Center for Cancer Genomics, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Grace Grimaldi
- Center for Cancer Genomics, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laura Dellostritto
- Center for Cancer Genomics, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Karla Helvie
- Center for Cancer Genomics, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Asaf Rotem
- Center for Cancer Genomics, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ana Lako
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicole Cullen
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathleen L Pfaff
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Åsa Karlström
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Judit Jané-Valbuena
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ellen Todres
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aaron Thorner
- Center for Cancer Genomics, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paul Geeleher
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elizabeth Stewart
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bruce E Johnson
- Center for Cancer Genomics, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Fei Chen
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yury Goltsev
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Current address: Research and Early Development, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Current address: Research and Early Development, Genentech Inc., South San Francisco, CA, 94080, USA
- Lead contacts
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Lead contacts
| |
Collapse
|
6
|
Pang Y, Chen X, Ji T, Cheng M, Wang R, Zhang C, Liu M, Zhang J, Zhong C. The Chromatin Remodeler ATRX: Role and Mechanism in Biology and Cancer. Cancers (Basel) 2023; 15:cancers15082228. [PMID: 37190157 DOI: 10.3390/cancers15082228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The alpha-thalassemia mental retardation X-linked (ATRX) syndrome protein is a chromatin remodeling protein that primarily promotes the deposit of H3.3 histone variants in the telomere area. ATRX mutations not only cause ATRX syndrome but also influence development and promote cancer. The primary molecular characteristics of ATRX, including its molecular structures and normal and malignant biological roles, are reviewed in this article. We discuss the role of ATRX in its interactions with the histone variant H3.3, chromatin remodeling, DNA damage response, replication stress, and cancers, particularly gliomas, neuroblastomas, and pancreatic neuroendocrine tumors. ATRX is implicated in several important cellular processes and serves a crucial function in regulating gene expression and genomic integrity throughout embryogenesis. However, the nature of its involvement in the growth and development of cancer remains unknown. As mechanistic and molecular investigations on ATRX disclose its essential functions in cancer, customized therapies targeting ATRX will become accessible.
Collapse
Affiliation(s)
- Ying Pang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Xu Chen
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Tongjie Ji
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Meng Cheng
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Rui Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Chunyu Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Min Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Jing Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
- Institute for Advanced Study, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| |
Collapse
|
7
|
Goldsmith KC, Park JR, Kayser K, Malvar J, Chi YY, Groshen SG, Villablanca JG, Krytska K, Lai LM, Acharya PT, Goodarzian F, Pawel B, Shimada H, Ghazarian S, States L, Marshall L, Chesler L, Granger M, Desai AV, Mody R, Morgenstern DA, Shusterman S, Macy ME, Pinto N, Schleiermacher G, Vo K, Thurm HC, Chen J, Liyanage M, Peltz G, Matthay KK, Berko ER, Maris JM, Marachelian A, Mossé YP. Lorlatinib with or without chemotherapy in ALK-driven refractory/relapsed neuroblastoma: phase 1 trial results. Nat Med 2023; 29:1092-1102. [PMID: 37012551 DOI: 10.1038/s41591-023-02297-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023]
Abstract
Neuroblastomas harbor ALK aberrations clinically resistant to crizotinib yet sensitive pre-clinically to the third-generation ALK inhibitor lorlatinib. We conducted a first-in-child study evaluating lorlatinib with and without chemotherapy in children and adults with relapsed or refractory ALK-driven neuroblastoma. The trial is ongoing, and we report here on three cohorts that have met pre-specified primary endpoints: lorlatinib as a single agent in children (12 months to <18 years); lorlatinib as a single agent in adults (≥18 years); and lorlatinib in combination with topotecan/cyclophosphamide in children (<18 years). Primary endpoints were safety, pharmacokinetics and recommended phase 2 dose (RP2D). Secondary endpoints were response rate and 123I-metaiodobenzylguanidine (MIBG) response. Lorlatinib was evaluated at 45-115 mg/m2/dose in children and 100-150 mg in adults. Common adverse events (AEs) were hypertriglyceridemia (90%), hypercholesterolemia (79%) and weight gain (87%). Neurobehavioral AEs occurred mainly in adults and resolved with dose hold/reduction. The RP2D of lorlatinib with and without chemotherapy in children was 115 mg/m2. The single-agent adult RP2D was 150 mg. The single-agent response rate (complete/partial/minor) for <18 years was 30%; for ≥18 years, 67%; and for chemotherapy combination in <18 years, 63%; and 13 of 27 (48%) responders achieved MIBG complete responses, supporting lorlatinib's rapid translation into active phase 3 trials for patients with newly diagnosed high-risk, ALK-driven neuroblastoma. ClinicalTrials.gov registration: NCT03107988 .
Collapse
Affiliation(s)
- Kelly C Goldsmith
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Julie R Park
- Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Kimberly Kayser
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jemily Malvar
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yueh-Yun Chi
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Susan G Groshen
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Judith G Villablanca
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kateryna Krytska
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lillian M Lai
- Department of Radiology, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Patricia T Acharya
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Fariba Goodarzian
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Bruce Pawel
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Hiroyuki Shimada
- Department of Pathology and Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Susan Ghazarian
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Lisa States
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lynley Marshall
- The Royal Marsden Hospital, London, UK
- The Institute of Cancer Research, London, UK
| | - Louis Chesler
- The Royal Marsden Hospital, London, UK
- The Institute of Cancer Research, London, UK
| | | | - Ami V Desai
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation, University of Chicago, Chicago, IL, USA
| | - Rajen Mody
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Daniel A Morgenstern
- Division of Haematology and Oncology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Suzanne Shusterman
- Dana-Farber Cancer Institute, Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Margaret E Macy
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Navin Pinto
- Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Gudrun Schleiermacher
- RTOP (Recherche Translationelle en Oncologie Pédiatrique), INSERM U830, Research Center, PSL Research University, Institut Curie, Paris, France
- SIREDO Oncology Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institut Curie, Paris, France
| | - Kieuhoa Vo
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Holger C Thurm
- Global Product Development, Clinical Pharmacology, Pfizer Oncology, Pfizer, Inc., New York, NY, USA
| | - Joseph Chen
- Global Product Development, Clinical Pharmacology, Pfizer Oncology, Pfizer, Inc., New York, NY, USA
| | - Marlon Liyanage
- Global Product Development, Clinical Pharmacology, Pfizer Oncology, Pfizer, Inc., New York, NY, USA
| | - Gerson Peltz
- Global Product Development, Clinical Pharmacology, Pfizer Oncology, Pfizer, Inc., New York, NY, USA
| | - Katherine K Matthay
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Esther R Berko
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pediatric Hematology and Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Araz Marachelian
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yael P Mossé
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
An Unusual Case of Late Recurrence of MS Neuroblastoma in a Young Adult. J Pediatr Hematol Oncol 2023; 45:e124-e125. [PMID: 36598966 DOI: 10.1097/mph.0000000000002584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/28/2022] [Indexed: 01/05/2023]
Abstract
This case describes an unusual presentation of a young adult with a very late recurrence of stage MS neuroblastoma over 20 years after initial diagnosis. Tumor histology at relapse demonstrated ganglioneuromatous foci within her undifferentiated tumor. In combination with evidence of altered catecholamine metabolism, it proposes a case for dedifferentiation of unresected ganglioneuromatous lesions as the etiology of her recurrence of the disease. An additional, compelling component of the case is the overall positive treatment response of the patient with relapsed neuroblastoma despite the poor prognostic factors of late relapse and adult age.
Collapse
|
9
|
Adrenal Gland Primary Neuroblastoma in an Adult Patient: A Case Report and Literature Review. Medicina (B Aires) 2022; 59:medicina59010033. [PMID: 36676657 PMCID: PMC9860607 DOI: 10.3390/medicina59010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Neuroblastoma (NB) is an undifferentiated malignant tumor of the sympathetic ganglia, occurring in children under 5 years of age. However, it is a rare histology in adult patients, occurring once per every 10 million patients per year. We present the case of a 68-year-old male patient presented to our department for right lumbar pain, asthenia, loss of weight and altered general status. The contrast-enhanced abdominal computer tomography revealed bilateral adrenal tumoral masses of 149 mm and 82 mm on the right and left sides, respectively, with invasion of the surrounding organs. The patient underwent right 3D laparoscopic adrenalectomy and right radical nephrectomy. The pathological result concluded that the excised tumor was a neuroblastoma of the adrenal gland. The patient followed adjuvant oncological treatment; however, due to disease progression, he passed away 22 months after the surgery. To our knowledge, less than 100 cases of adrenal NB in adult patients have been published, the eldest case being diagnosed at 75 years of age; meanwhile, the largest reported tumor measured 200 mm, and was excised through open surgery. Minimally invasive techniques have been limited so far to smaller, organ-confined diseases, thus making the present case the largest adrenal NB removed entirely laparoscopically. Neuroblastoma in the adult population is a rare finding, with worse prognosis compared to pediatric patients. The available literature does not provide enough data for standardized, multimodal management, as the patients are treated following adapted pediatric protocols, thus reinforcing the need for international, multidisciplinary boards for rare tumors.
Collapse
|
10
|
Castle JT, Levy BE, Rodeberg DA. Abdominal Tumors. Surg Clin North Am 2022; 102:715-737. [DOI: 10.1016/j.suc.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Zhang S, Xiao B, Zhang Y, Zhou Z, Fu X, Zuo S. Retroperitoneal ganglioneuroblastoma with postoperative stress ulcer perforation in an adolescent: A case report and review of the literature. Oncol Lett 2022; 24:208. [PMID: 35720481 PMCID: PMC9178696 DOI: 10.3892/ol.2022.13329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Ganglioneuroblastoma (GNB) is a condition belonging to the neuroblastoma family. It is a transitional tumor consisting of a mixture of mature ganglioneuromas and malignant neuroblastomas. Its biological behavior is intermediate between benign and malignant, with a risk of recurrence and metastasis. It usually occurs in pediatric patients aged <10 years, particularly between the ages of 1 and 2 years, but may also occur in adolescents or adults. The present study reported on the clinical management of a case of postoperative stress ulcer with perforation in a 17-year-old female patient with retroperitoneal GNB and provided a review of the literature on retroperitoneal GNB in adolescents and adults.
Collapse
Affiliation(s)
- Shilong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Benli Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yewei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Zihan Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xiangyu Fu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shi Zuo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
12
|
Novel TENM3–ALK fusion is an alternate mechanism for ALK activation in neuroblastoma. Oncogene 2022; 41:2789-2797. [DOI: 10.1038/s41388-022-02301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 11/09/2022]
|
13
|
Li F, Zhang W, Hu H, Zhang Y, Li J, Huang D. Factors of Recurrence After Complete Response in Children with Neuroblastoma: A 16-Year Retrospective Study of 179 Cases. Cancer Manag Res 2022; 14:107-122. [PMID: 35023974 PMCID: PMC8747547 DOI: 10.2147/cmar.s343648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/23/2021] [Indexed: 01/06/2023] Open
Abstract
Background It is not clear which known adverse prognostic factors of neuroblastoma are closely associated with tumor recurrence after complete response. We analyzed the factors for post-remission recurrence in children with neuroblastoma through a retrospective study. Methods A total of 179 children with neuroblastoma who achieved initial complete response were included in this study. Kaplan–Meier method and multivariate Cox regression model were used to assess the factors that may have impact on tumor recurrence after complete response. Results The 5-year overall survival rates of the entire cohort (n = 179), recurrence group (n = 86) and non-recurrence group (n = 93) were 81.9%, 66.2%, and 98.7%, respectively. The 5-year recurrence-free survival (RFS) rates of the entire cohort and the high-risk cohort were 47.3% and 31.2%, respectively. RFSs were significantly reduced in children with age ≥18 months, INSS stage 4, unfavorable histology, bone marrow metastasis, osseous metastasis, serum NSE level ≥100 ng/mL, and serum LDH level ≥1400 U/L (P < 0.05). The independent risk factors for post-remission recurrence in the entire cohort were age ≥18 months, unfavorable histology, and serum LDH level ≥1400 U/L (P < 0.05). In the high-risk cohort, the independent risk factor for recurrence was serum LDH ≥1400 U/L (P < 0.05). Based on a new recurrence risk stratification, the 5-year RFSs of the children were 93.5%, 66.4%, and 22.5% in the low-risk, intermediate-risk, and high-risk groups, respectively. The area under the ROC curve of the new stratification was 0.773 (95% CI: 0.704−0.842). Conclusion Age ≥18 months, unfavorable histology, and serum LDH level ≥1400 U/L are independent risk factors for post-remission recurrence in children with neuroblastoma. A newly established recurrence risk stratification has diagnostic advantages in predicting risk of recurrence, which is especially suitable for low- and middle-income countries or regions.
Collapse
Affiliation(s)
- Fan Li
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Weiling Zhang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Huimin Hu
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Yi Zhang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Jing Li
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Dongsheng Huang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| |
Collapse
|
14
|
Role of Energy Metabolism in the Progression of Neuroblastoma. Int J Mol Sci 2021; 22:ijms222111421. [PMID: 34768850 PMCID: PMC8583976 DOI: 10.3390/ijms222111421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Neuroblastoma is a common childhood cancer possessing a significant risk of death. This solid tumor manifests variable clinical behaviors ranging from spontaneous regression to widespread metastatic disease. The lack of promising treatments calls for new research approaches which can enhance the understanding of the molecular background of neuroblastoma. The high proliferation of malignant neuroblastoma cells requires efficient energy metabolism. Thus, we focus our attention on energy pathways and their role in neuroblastoma tumorigenesis. Recent studies suggest that neuroblastoma-driven extracellular vesicles stimulate tumorigenesis inside the recipient cells. Furthermore, proteomic studies have demonstrated extracellular vesicles (EVs) to cargo metabolic enzymes needed to build up a fully operative energy metabolism network. The majority of EV-derived enzymes comes from glycolysis, while other metabolic enzymes have a fatty acid β-oxidation and tricarboxylic acid cycle origin. The previously mentioned glycolysis has been shown to play a primary role in neuroblastoma energy metabolism. Therefore, another way to modify the energy metabolism in neuroblastoma is linked with genetic alterations resulting in the decreased activity of some tricarboxylic acid cycle enzymes and enhanced glycolysis. This metabolic shift enables malignant cells to cope with increasing metabolic stress, nutrition breakdown and an upregulated proliferation ratio.
Collapse
|
15
|
Dhali A, Ray S, Dhali GK, Ghosh R, Sarkar A. Duodenal Ganglioneuroma: A Rare Tumor Causing Upper Gastrointestinal Bleed. Surg J (N Y) 2021; 7:e255-e258. [PMID: 34541318 PMCID: PMC8440055 DOI: 10.1055/s-0041-1735644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
Neuroblastic tumors (NTs) include neuroblastoma, ganglioneuroblastoma, and ganglioneuroma (GN). They are very rare in adults. The Surveillance, Epidemiology, and End Results identified 144 patients ≥20 years old at diagnosis (6.1%) from 1973 to 2002. GNs account for 14% of all localized NT. Since 1957, a total of four cases of GN of the duodenum have been reported. We report a novel case of GN of the periampullary region in the duodenum in a 41-year-old man presenting with chronic upper gastrointestinal bleed. Given the rarity of GNs in this age group and the nonspecificity of radiological features, this diagnosis is often missed until histopathology is done. This may negatively affect the prognosis of an otherwise well-prognosticated disease.
Collapse
Affiliation(s)
- Arkadeep Dhali
- Department of GI Surgery, School of Digestive and Liver Diseases, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Sukanta Ray
- Department of GI Surgery, School of Digestive and Liver Diseases, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Gopal Krishna Dhali
- Department of Gastroenterology, School of Digestive and Liver Diseases, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Ranajoy Ghosh
- Department of GI Pathology, School of Digestive and Liver Diseases, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Avik Sarkar
- Department of GI Radiology, School of Digestive and Liver Diseases, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| |
Collapse
|
16
|
MacKenzie D, Watters AK, To JT, Young MW, Muratori J, Wilkoff MH, Abraham RG, Plummer MM, Zhang D. ALT Positivity in Human Cancers: Prevalence and Clinical Insights. Cancers (Basel) 2021; 13:2384. [PMID: 34069193 PMCID: PMC8156225 DOI: 10.3390/cancers13102384] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023] Open
Abstract
Many exciting advances in cancer-related telomere biology have been made in the past decade. Of these recent advances, great progress has also been made with respect to the Alternative Lengthening of Telomeres (ALT) pathway. Along with a better understanding of the molecular mechanism of this unique telomere maintenance pathway, many studies have also evaluated ALT activity in various cancer subtypes. We first briefly review and assess a variety of commonly used ALT biomarkers. Then, we provide both an update on ALT-positive (ALT+) tumor prevalence as well as a systematic clinical assessment of the presently studied ALT+ malignancies. Additionally, we discuss the pathogenetic alterations in ALT+ cancers, for example, the mutation status of ATRX and DAXX, and their correlations with the activation of the ALT pathway. Finally, we highlight important ALT+ clinical associations within each cancer subtype and subdivisions within, as well as their prognoses. We hope this alternative perspective will allow scientists, clinicians, and drug developers to have greater insight into the ALT cancers so that together, we may develop more efficacious treatments and improved management strategies to meet the urgent needs of cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria M. Plummer
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (D.M.J.); (A.K.W.); (J.T.T.); (M.W.Y.); (J.M.); (M.H.W.); (R.G.A.)
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (D.M.J.); (A.K.W.); (J.T.T.); (M.W.Y.); (J.M.); (M.H.W.); (R.G.A.)
| |
Collapse
|
17
|
Ono R, Ueno H, Yoshida K, Takahashi S, Yoshihara H, Nozaki T, Suzuki K, Nakazawa A, Saiki R, Seki M, Takita J, Ogawa S, Manabe A, Hasegawa D. Clonal evidence for the development of neuroblastoma with extensive copy-neutral loss of heterozygosity arising in a mature teratoma. Cancer Sci 2021; 112:2921-2927. [PMID: 33934450 PMCID: PMC8253283 DOI: 10.1111/cas.14931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/27/2022] Open
Abstract
Mature teratomas are usually benign tumors that rarely undergo malignant transformation. We report an advanced neuroblastoma arising in a mature teratoma of the ovary. Whole-exome sequencing identified extensive copy-neutral loss of heterozygosity (LOH) in both neuroblastoma and teratoma elements, suggesting that the neuroblastoma evolved from the teratoma. In addition, several truncating germline heterozygous variants in tumor suppressor genes, including RBL2 and FBXW12, became homozygous as a result of LOH. Collectively, we speculate that extensive LOH in teratoma cells may force heterozygous germline variants to become homozygous, which, in turn, may contribute to the development of neuroblastoma with the acquisition of additional chromosomal changes.
Collapse
Affiliation(s)
- Rintaro Ono
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Hiroo Ueno
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoko Takahashi
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan.,Department of Pediatrics, Japanese Red Cross Narita Hospital, Chiba, Japan
| | - Hiroki Yoshihara
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Taiki Nozaki
- Department of Diagnostic Radiology, St. Luke's International Hospital, Tokyo, Japan
| | - Koyu Suzuki
- Department of Pathology, St. Luke's International Hospital, Tokyo, Japan
| | - Atsuko Nakazawa
- Department of Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masafumi Seki
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Manabe
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan.,Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| |
Collapse
|
18
|
Chae SY, Nam D, Hyeon DY, Hong A, Lee TD, Kim S, Im D, Hong J, Kang C, Lee JW, Hwang D, Lee SW, Kim HI. DNA repair and cholesterol-mediated drug efflux induce dose-dependent chemoresistance in nutrient-deprived neuroblastoma cells. iScience 2021; 24:102325. [PMID: 33889821 PMCID: PMC8050388 DOI: 10.1016/j.isci.2021.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Neuroblastoma is a solid, heterogeneous pediatric tumor. Chemotherapy is widely used to treat neuroblastoma. However, dose-dependent responses and chemoresistance mechanisms of neuroblastoma cells to anticancer drugs remain challenging. Here, we investigated the dose-dependent effects of topotecan on human neuroblastoma cells (SK-N-SH, SH-SY5Y, and SK-N-BE) under various nutrient supply conditions. Serum-starved human neuroblastoma cells showed reduced toxicity. Their survival rate increased upon treatment with a high concentration (1 μM) of topotecan. Quantitative profiling of global and phosphoproteome identified 12,959 proteins and 48,812 phosphosites, respectively, from SK-N-SH cells. Network analysis revealed that topotecan upregulated DNA repair and cholesterol-mediated topotecan efflux, resulting in topotecan resistance. Results of DNA damage assay, cell cycle, and quantitative analyses of membrane cholesterol supported the validity of these resistance factors and their applicability to all neuroblastoma cells. Our results provide a model for high dose-dependent chemoresistance in neuroblastoma cells that could enable a patient-dependent chemotherapy screening strategy.
Collapse
Affiliation(s)
- Soo Yeon Chae
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Dowoon Nam
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Do Young Hyeon
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Areum Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Timothy Dain Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sujin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Dongjoon Im
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Jiwon Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Chaewon Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Won Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Hugh I. Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
19
|
Aijaz Z, Durrani HM, Iftikhar P, Khenhrani RR, FaisalUddin M. Metastatic Spread of Neuroblastoma to the Left Atrium Mimicking Atrial Myxoma: A Rare Occurrence in an Adolescent. Cureus 2021; 13:e12799. [PMID: 33628668 PMCID: PMC7893675 DOI: 10.7759/cureus.12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Neuroblastoma is the most common childhood malignancy arising from the sympathetic neuroblast cells. The most common sites of origin are the adrenal glands and paravertebral regions. However, the involvement of the heart is a rare occurrence in adolescents. Here, we report a case of a 12-year-old male child who was misdiagnosed as a case of cardiac myxoma on initial presentation. Following surgical resection and histological examination, neuroblastoma was revealed. This case report highlights the differential diagnosis for the cardiac mass in an adolescent with an unknown primary origin and also the importance of tissue histopathology for the diagnosis and management of neuroblastoma.
Collapse
Affiliation(s)
- Zobia Aijaz
- Internal Medicine, Dow University of Health and Sciences, Karachi, PAK
| | - Hafiza M Durrani
- Pediatrics, Dr. Ruth Pfau Civil Hospital Karachi/Dow University of Health and Sciences, Karachi, PAK
| | | | - Raja Ram Khenhrani
- Internal Medicine, Liaquat University of Medical and Health Sciences, Karachi, PAK
| | | |
Collapse
|
20
|
Yan P, Qi F, Bian L, Xu Y, Zhou J, Hu J, Ren L, Li M, Tang W. Comparison of Incidence and Outcomes of Neuroblastoma in Children, Adolescents, and Adults in the United States: A Surveillance, Epidemiology, and End Results (SEER) Program Population Study. Med Sci Monit 2020; 26:e927218. [PMID: 33249420 PMCID: PMC7711874 DOI: 10.12659/msm.927218] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background This United States (U.S.) population study aimed to compare the incidence of neuroblastoma and outcomes in children, adolescents, and adults using the Surveillance, Epidemiology, and End Results (SEER) program database. Material/Methods Patients with neuroblastoma were identified in the SEER database from 1975 to 2013. According to the age at diagnosis, patients were divided into “Children” (≤14 years old) and “Adolescents/Adults” group (>14 years old). Then, comparisons in basic characteristics, incidence rates (IRs) and long-term survival outcomes between patients in 2 groups were made. Results A total of 4280 patients were identified, including 3998 children and 282 adolescent/adult patients. Adolescent/adult patients were more likely to have localized diseases than children and to be diagnosed with ganglioneuroblastoma (all P<0.05). The IR of neuroblastoma presented with upward and downward trends in children and adolescent/adult populations, respectively. Adolescents/adults had worse overall survival (OS) than children despite the earlier tumor stage. Lastly, multivariate Cox proportional hazards analyses showed that tumor stage, histology, sequence of primary malignancy, primary site, the administration of surgery, and treatment era were prognostic factors for children, and sequence of primary malignancy, primary site, undergoing surgery, and treatment era were tightly related to OS in adolescent/adult patients. Conclusions Analysis of the SEER program database between 1975 to 2013 showed that in the U.S., the incidence of neuroblastoma in children increased, but the incidence decreased in adolescents and adults. There was a trend for improved overall survival in all age groups despite the increased stage at presentation in children.
Collapse
Affiliation(s)
- Ping Yan
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Feng Qi
- Department of Urologic Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Lanzheng Bian
- Department of Nursing, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yajuan Xu
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Jing Zhou
- Department of Nursing, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Jiajie Hu
- Department of Nursing, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Lei Ren
- Department of Nursing, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Mei Li
- Department of Nursing, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Weibin Tang
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
21
|
Cook A, Bernstein E. A strike against indolent neuroblastoma. EBioMedicine 2020; 60:103000. [PMID: 32977162 PMCID: PMC7516059 DOI: 10.1016/j.ebiom.2020.103000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 11/03/2022] Open
|
22
|
Olsen HE, Campbell K, Bagatell R, DuBois SG. Trends in conditional survival and predictors of late death in neuroblastoma. Pediatr Blood Cancer 2020; 67:e28329. [PMID: 32735385 DOI: 10.1002/pbc.28329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 11/11/2022]
Abstract
PURPOSE Significant advances in the treatment of neuroblastoma have been made in the past several decades. There are scant data examining how these improvements have changed over time and differentially affected conditional survival among high-risk and non-high-risk patient groups. METHODS We conducted a retrospective cohort study using the Surveillance, Epidemiology, and End Results database. We analyzed clinical characteristics and survival outcomes for 4717 neuroblastoma patients. Kaplan-Meier methods were used to estimate overall survival (OS) and conditional overall survival (COS) with estimates compared between groups using log-rank tests. RESULTS Five-year OS was 41.46% (95% CI 38.77-44.13) for the high-risk group and 91.13% (95% CI 89.49-92.53) for the non-high-risk group. Both groups saw significant improvements in OS by decade (P < .001). Five-year COS among 1-year survivors was 52.69% (CI 49.54-55.73) for the high-risk group and 96.75% (95% CI 95.57-97.62) for the non-high-risk group. One-year survivors in the high-risk group showed a statistically significant improvement in COS over time. No difference in COS was observed among 5-year high-risk survivors. In the high-risk and non-high-risk groups, 82% and 32% of late deaths were attributable to cancer, respectively. Statistically significant adverse prognostic factors for late death were age ≥ 1 year at diagnosis, metastatic disease, and nonthoracic primary site (P = .001). CONCLUSIONS Improvements in COS over time have largely benefited high-risk patients, though they are still at higher risk for late death due to cancer when compared to non-high-risk patients. Age, stage, and primary site, but not treatment decade, influence outcomes among 5-year survivors.
Collapse
Affiliation(s)
| | - Kevin Campbell
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Rochelle Bagatell
- Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Suzuki T. [Research on Analysis of Final Diagnosis and Prognostic Factors, and Development of New Therapeutic Drugs for Malignant Tumors (Especially Malignant Pediatric Tumors)]. YAKUGAKU ZASSHI 2020; 140:229-271. [PMID: 32009046 DOI: 10.1248/yakushi.19-00178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Outcomes of treatment for malignant pediatric tumors including leukemia are improving by conventional multimodal treatment with strong chemotherapy, surgical resection, radiotherapy, and bone marrow transplantation. However, patients with advanced neuroblastoma, metastatic Ewing's sarcoma family of tumor (ESFT), and metastatic osteosarcoma continue to have an extremely poor prognosis. Therefore novel therapeutic strategies are urgently needed to improve their survival. Apoptotic cell death is a key mechanism for normal cellular homeostasis. Intact apoptotic mechanisms are pivotal for embryonic development, tissue remodeling, immune regulation, and tumor regression. Genetic aberrations disrupting programmed cell death often underpin tumorigenesis and drug resistance. Moreover, it has been suggested that apoptosis or cell differentiation proceeds to spontaneous regression in early stage neuroblastoma. Therefore apoptosis or cell differentiation is a critical event in this cancer. We extracted many compounds from natural plants (Angelica keiskei, Alpinia officiarum, Lycaria puchury-major, Brassica rapa) or synthesized cyclophane pyridine, indirubin derivatives, vitamin K3 derivatives, burchellin derivatives, and GANT61, and examined their effects on apoptosis, cell differentiation, and cell cycle in neuroblastoma and ESFT cell lines compared with normal cells. Some compounds were very effective against these tumor cells. These results suggest that they may be applicable as an efficacious and safe drug for the treatment of malignant pediatric tumors.
Collapse
Affiliation(s)
- Takashi Suzuki
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University
| |
Collapse
|
24
|
Lasorsa VA, Cimmino F, Ognibene M, Mazzocco K, Erminio G, Morini M, Conte M, Iolascon A, Pezzolo A, Capasso M. 19p loss is significantly enriched in older age neuroblastoma patients and correlates with poor prognosis. NPJ Genom Med 2020; 5:18. [PMID: 32337068 PMCID: PMC7160145 DOI: 10.1038/s41525-020-0125-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
Genomic aberrations of neuroblastoma occurring in late childhood and adolescence are still understudied. Publicly available DNA copy number profiles of 556 tumors (discovery set) and of 208 tumors obtained by array-CGH assay (validation set) were used to test if 19p loss is significantly over-represented in children and adolescents with neuroblastoma. The 19p loss occurrence was separately tested within different age groups in the discovery and validation set and the resulting P values were combined by meta-analysis and corrected by Bonferroni's method. In both sets, 19p loss was associated with older age at diagnosis. Particularly, the lowest age group significantly associated with 19p loss (discovery set: 20%; validation set: 35%) was 6 years. The 19p loss correlated with inferior overall survival in patients over 6 years of age. Relevant tumor suppressor genes (KEAP1, DNM2, SMARCA4, SLC44A2 and CDKN2D) and microRNAs (miR-181c, miR-27a, and mirR-199a-1) are located in the genomic region involved in 19p loss. Downregulation of DNM2, SLC44A2 and CDKN2D was associated with poor patient outcome and older age. Among the recurrent NB chromosomal aberrations, only 1q gain was enriched in patients older than 6, and its presence was mutually exclusive with respect to 19p loss. Our data demonstrate that 19p loss is a genomic biomarker of NB diagnosed in older children that can predict clinical outcome.
Collapse
Affiliation(s)
- Vito Alessandro Lasorsa
- 1Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy.,2CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Flora Cimmino
- 1Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy.,2CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Marzia Ognibene
- 3Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Katia Mazzocco
- 4UOC Anatomia Patologica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Erminio
- 5Epidemiologia e Biostatistica IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Martina Morini
- 6Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Massimo Conte
- 7UOC Oncologia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Achille Iolascon
- 1Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy.,2CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Annalisa Pezzolo
- 3Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Mario Capasso
- 1Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy.,2CEINGE Biotecnologie Avanzate, Napoli, Italy.,IRCSS SDN, Napoli, Italy
| |
Collapse
|
25
|
Zeineldin M, Federico S, Chen X, Fan Y, Xu B, Stewart E, Zhou X, Jeon J, Griffiths L, Nguyen R, Norrie J, Easton J, Mulder H, Yergeau D, Liu Y, Wu J, Van Ryn C, Naranjo A, Hogarty MD, Kamiński MM, Valentine M, Pruett-Miller SM, Pappo A, Zhang J, Clay MR, Bahrami A, Vogel P, Lee S, Shelat A, Sarthy JF, Meers MP, George RE, Mardis ER, Wilson RK, Henikoff S, Downing JR, Dyer MA. MYCN amplification and ATRX mutations are incompatible in neuroblastoma. Nat Commun 2020; 11:913. [PMID: 32060267 PMCID: PMC7021759 DOI: 10.1038/s41467-020-14682-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 01/23/2020] [Indexed: 12/31/2022] Open
Abstract
Aggressive cancers often have activating mutations in growth-controlling oncogenes and inactivating mutations in tumor-suppressor genes. In neuroblastoma, amplification of the MYCN oncogene and inactivation of the ATRX tumor-suppressor gene correlate with high-risk disease and poor prognosis. Here we show that ATRX mutations and MYCN amplification are mutually exclusive across all ages and stages in neuroblastoma. Using human cell lines and mouse models, we found that elevated MYCN expression and ATRX mutations are incompatible. Elevated MYCN levels promote metabolic reprogramming, mitochondrial dysfunction, reactive-oxygen species generation, and DNA-replicative stress. The combination of replicative stress caused by defects in the ATRX-histone chaperone complex, and that induced by MYCN-mediated metabolic reprogramming, leads to synthetic lethality. Therefore, ATRX and MYCN represent an unusual example, where inactivation of a tumor-suppressor gene and activation of an oncogene are incompatible. This synthetic lethality may eventually be exploited to improve outcomes for patients with high-risk neuroblastoma.
Collapse
Affiliation(s)
- Maged Zeineldin
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sara Federico
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Children's Research Hospital-Washington University Pediatric Cancer Genome Project, St. Louis, MO, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Elizabeth Stewart
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jongrye Jeon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Lyra Griffiths
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Rosa Nguyen
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jackie Norrie
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Donald Yergeau
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jianrong Wu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Collin Van Ryn
- Children's Oncology Group Statistics and Data Center, Department of Biostatistics, University of Florida, Gainesville, FlL, 32607, USA
| | - Arlene Naranjo
- Children's Oncology Group Statistics and Data Center, Department of Biostatistics, University of Florida, Gainesville, FlL, 32607, USA
| | - Michael D Hogarty
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Marcin M Kamiński
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Marc Valentine
- Cytogenetics Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Alberto Pappo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael R Clay
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Seungjae Lee
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anang Shelat
- Department of Chemical Biology and Therapeutics St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jay F Sarthy
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Michael P Meers
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Rani E George
- Department of Hematology/Oncology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Elaine R Mardis
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Richard K Wilson
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Steven Henikoff
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- St. Jude Children's Research Hospital-Washington University Pediatric Cancer Genome Project, St. Louis, MO, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
26
|
Chen S, Tang W, Yang R, Hu X, Li Z. Pediatric Patients with Adrenal Neuroblastoma: A SEER Analysis, 2004–2013. Am Surg 2020. [DOI: 10.1177/000313482008600232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adrenal neuroblastoma (NB) is a relatively common malignancy in children. The Surveillance, Epidemiology, and End Results database was used to present demographic data and a survival analysis with the aim of making tumor management better. The Surveillance, Epidemiology, and End Results database was used to search pediatric patients (age £16 years) with NB from 2004 to 2013. The Kaplan-Meier method was used to calculate the overall survival. And, we used Cox regression analysis to determine hazard ratios for prognostic variables. Independent prognostic factors were selected into the nomogram to predict individual's three-, five-, and seven-year overall survival. The study included a total of 1870 pediatric patients with NB in our cohort. Overall, three-, five-, and seven-year survival rates for adrenal NB were 0.777, 0.701, and 0.665, respectively, whereas the rates for nonadrenal NB were 0.891, 0.859, and 0.832, respectively. The multivariate analysis identified age >1 year, no complete resection (CR)/CR, radiation, and regional/distant metastasis as independent predictors of mortality for adrenal NB. Concordance index of the nomogram was 0.665 (95% confidence interval, 0.627–0.703). Pediatric patients with adrenal NB have significantly worse survival than those with nonadrenal NB. Adrenal NB with age <1 year, treated with surgery, no radiation, and localized tumor leads to a better survival. There was no survival difference for patients to receive CR and no CR.
Collapse
Affiliation(s)
- Shengxiang Chen
- From the Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenfeng Tang
- From the Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Randong Yang
- From the Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoxiao Hu
- From the Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongrong Li
- From the Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Sekiguchi N, Noguchi T, Fukushima T, Kobayashi T, Ozawa T, Sato Y, Takeda T, Yoshida K, Koizumi T. Posterior mediastinal ganglioneuroblastoma in an adolescent: A case report and review. Thorac Cancer 2019; 11:451-455. [PMID: 31837198 PMCID: PMC6996985 DOI: 10.1111/1759-7714.13277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/23/2019] [Accepted: 11/23/2019] [Indexed: 11/29/2022] Open
Abstract
Ganglioneuroblastoma is an uncommon malignant tumor of the sympathetic nervous system, which is considered a disease of children with the majority of cases in patients less than four years old and it rarely occurs in adults. We encountered a very unusual case of a posterior mediastinal ganglioneuroblastoma that developed in a 17-year-old male adolescent who underwent successful excision of the mediastinal mass and remained stable postoperatively. However, he developed lumbago one year after the surgery. Radiographic findings revealed osteolytic lesions in the lumbar vertebra and histological analysis confirmed bone metastasis of ganglioneuroblastoma. Here, we report the clinical course and present a review of the literature regarding adolescent and adult onset mediastinal ganglioneuroblastoma.
Collapse
Affiliation(s)
- Nodoka Sekiguchi
- Department of Comprehensive Cancer Therapy, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takuro Noguchi
- Department of Comprehensive Cancer Therapy, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toshirou Fukushima
- Department of Comprehensive Cancer Therapy, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takashi Kobayashi
- Department of Comprehensive Cancer Therapy, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takesumi Ozawa
- Department of Comprehensive Cancer Therapy, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshinori Sato
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tetsu Takeda
- Division of Thoracic Surgery, Suwa Red Cross Hospital, Suwa, Japan
| | - Kazuo Yoshida
- Division of Thoracic Surgery, Suwa Red Cross Hospital, Suwa, Japan
| | - Tomonobu Koizumi
- Department of Comprehensive Cancer Therapy, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
28
|
Qadeer ZA, Valle-Garcia D, Hasson D, Sun Z, Cook A, Nguyen C, Soriano A, Ma A, Griffiths LM, Zeineldin M, Filipescu D, Jubierre L, Chowdhury A, Deevy O, Chen X, Finkelstein DB, Bahrami A, Stewart E, Federico S, Gallego S, Dekio F, Fowkes M, Meni D, Maris JM, Weiss WA, Roberts SS, Cheung NKV, Jin J, Segura MF, Dyer MA, Bernstein E. ATRX In-Frame Fusion Neuroblastoma Is Sensitive to EZH2 Inhibition via Modulation of Neuronal Gene Signatures. Cancer Cell 2019; 36:512-527.e9. [PMID: 31631027 PMCID: PMC6851493 DOI: 10.1016/j.ccell.2019.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 08/07/2019] [Accepted: 09/04/2019] [Indexed: 01/22/2023]
Abstract
ATRX alterations occur at high frequency in neuroblastoma of adolescents and young adults. Particularly intriguing are the large N-terminal deletions of ATRX (Alpha Thalassemia/Mental Retardation, X-linked) that generate in-frame fusion (IFF) proteins devoid of key chromatin interaction domains, while retaining the SWI/SNF-like helicase region. We demonstrate that ATRX IFF proteins are redistributed from H3K9me3-enriched chromatin to promoters of active genes and identify REST as an ATRX IFF target whose activation promotes silencing of neuronal differentiation genes. We further show that ATRX IFF cells display sensitivity to EZH2 inhibitors, due to derepression of neurogenesis genes, including a subset of REST targets. Taken together, we demonstrate that ATRX structural alterations are not loss-of-function and put forward EZH2 inhibitors as a potential therapy for ATRX IFF neuroblastoma.
Collapse
Affiliation(s)
- Zulekha A Qadeer
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Departments of Neurology, Neurosurgery, and Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Valle-Garcia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhen Sun
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - April Cook
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christie Nguyen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aroa Soriano
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain
| | - Anqi Ma
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lyra M Griffiths
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maged Zeineldin
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luz Jubierre
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain
| | - Asif Chowdhury
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Orla Deevy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David B Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sara Federico
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Soledad Gallego
- Pediatric Oncology and Hematology Department, University Hospital Vall d'Hebron, Barcelona 08035, Spain
| | - Fumiko Dekio
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary Fowkes
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Meni
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John M Maris
- Center for Childhood Cancer Research at the Children's Hospital of Philadelphia, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William A Weiss
- Departments of Neurology, Neurosurgery, and Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jian Jin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miguel F Segura
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
29
|
Neuroblastoma in Adolescents and Children Older than 10 Years: Unusual Clinicopathologic and Biologic Features. J Pediatr Hematol Oncol 2019; 41:586-595. [PMID: 30973487 DOI: 10.1097/mph.0000000000001485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neuroblastoma (NB) in children older than 10 years is rare. We reviewed our archives for patients with NB aged 10 to 18 years and summarized their clinicopathologic/genetic records. Of 96 patients, 4 patients were identified in this age group. Four tumors were abdominal; 1 patient had 2 tumors at diagnosis, one of which was presacral. Tumor sizes ranged from 3 to 20 cm. All tumors were high risk at clinical stages 3 and 4, with metastasis to bone marrow and other areas. Four tumors were poorly differentiated with unfavorable histology and one patient with bilateral adrenal disease had an intermixed ganglioneuroblastoma on one side. Another tumor exhibited pheochromocytoma-like morphology. MYCN amplification was present in bone marrow metastasis in one case. Complex chromosomal gains and 19p deletions were common. Exome sequencing revealed ALK variants in 2 cases and previously unreported MAGI2, RUNX1, and MLL mutations. All patients received standard chemotherapy and 2 patients received ALK-targeted trial therapy. Three patients died of disease, ranging 18 to 23 months after diagnosis. One patient has active disease and is receiving trial therapy. In conclusion, NB in children older than 10 years may exhibit unusual clinicopathologic and genetic features with large tumors, bilateral adrenal disease, rare morphologic features, complex DNA microarray findings and novel mutations. Patients often have grim prognoses despite genomic profiling-guided targeted therapy.
Collapse
|
30
|
Naranjo A, Irwin MS, Hogarty MD, Cohn SL, Park JR, London WB. Statistical Framework in Support of a Revised Children's Oncology Group Neuroblastoma Risk Classification System. JCO Clin Cancer Inform 2019; 2:1-15. [PMID: 30652588 DOI: 10.1200/cci.17.00140] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE The International Neuroblastoma Risk Group (INRG) Staging System (INRGSS) was developed through international consensus to provide a presurgical staging system that uses clinical and imaging data at diagnosis. A revised Children's Oncology Group (COG) neuroblastoma (NB) risk classification system is needed to incorporate the INRGSS and within the context of modern therapy. Herein, we provide statistical support for the clinical validity of a revised COG risk classification system. PATIENTS AND METHODS Nine factors were tested for potential statistical and clinical significance in 4,569 patients diagnosed with NB who were enrolled in the COG biology/banking study ANBL00B1 (2006-2016). Recursive partitioning was performed to create a survival-tree regression (STR) analysis of event-free survival (EFS), generating a split by selecting the strongest prognostic factor among those that were statistically significant. The least absolute shrinkage and selection operator (LASSO) was applied to obtain the most parsimonious model for EFS. COG patients were risk classified using STR, LASSO, and per the 2009 INRG classification (generated using an STR analysis of INRG data). Results were descriptively compared among the three classification approaches. RESULTS The 3-year EFS and overall survival (± SE) were 72.9% ± 0.9% and 84.5% ± 0.7%, respectively (N = 4,569). In each approach, the most statistically and clinically significant factors were diagnostic category (eg, NB, ganglioneuroblastoma), INRGSS, MYCN status, International Neuroblastoma Pathology Classification, ploidy, and 1p/11q status. The results of the STR analysis were more concordant with those of the INRG classification system than with LASSO, although both methods showed moderate agreement with the INRG system. CONCLUSION These analyses provide a framework to develop a new COG risk classification incorporating the INRGSS. There is statistical evidence to support the clinical validity of each of the three classifications: STR, LASSO, and INRG.
Collapse
Affiliation(s)
- Arlene Naranjo
- Arlene Naranjo, University of Florida, Gainesville, FL; Meredith S. Irwin, Hospital for Sick Children, Toronto, ON, Canada; Michael D. Hogarty, University of Pennsylvania, Philadelphia, PA; Susan L. Cohn, The University of Chicago, Chicago, IL; Julie R. Park, University of Washington, Seattle, WA; and Wendy B. London, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA
| | - Meredith S Irwin
- Arlene Naranjo, University of Florida, Gainesville, FL; Meredith S. Irwin, Hospital for Sick Children, Toronto, ON, Canada; Michael D. Hogarty, University of Pennsylvania, Philadelphia, PA; Susan L. Cohn, The University of Chicago, Chicago, IL; Julie R. Park, University of Washington, Seattle, WA; and Wendy B. London, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA
| | - Michael D Hogarty
- Arlene Naranjo, University of Florida, Gainesville, FL; Meredith S. Irwin, Hospital for Sick Children, Toronto, ON, Canada; Michael D. Hogarty, University of Pennsylvania, Philadelphia, PA; Susan L. Cohn, The University of Chicago, Chicago, IL; Julie R. Park, University of Washington, Seattle, WA; and Wendy B. London, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA
| | - Susan L Cohn
- Arlene Naranjo, University of Florida, Gainesville, FL; Meredith S. Irwin, Hospital for Sick Children, Toronto, ON, Canada; Michael D. Hogarty, University of Pennsylvania, Philadelphia, PA; Susan L. Cohn, The University of Chicago, Chicago, IL; Julie R. Park, University of Washington, Seattle, WA; and Wendy B. London, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA
| | - Julie R Park
- Arlene Naranjo, University of Florida, Gainesville, FL; Meredith S. Irwin, Hospital for Sick Children, Toronto, ON, Canada; Michael D. Hogarty, University of Pennsylvania, Philadelphia, PA; Susan L. Cohn, The University of Chicago, Chicago, IL; Julie R. Park, University of Washington, Seattle, WA; and Wendy B. London, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA
| | - Wendy B London
- Arlene Naranjo, University of Florida, Gainesville, FL; Meredith S. Irwin, Hospital for Sick Children, Toronto, ON, Canada; Michael D. Hogarty, University of Pennsylvania, Philadelphia, PA; Susan L. Cohn, The University of Chicago, Chicago, IL; Julie R. Park, University of Washington, Seattle, WA; and Wendy B. London, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA
| |
Collapse
|
31
|
Abstract
Neuroblastoma (NB) is a common and deadly malignancy mostly observed in children. Evolution of therapeutic options for NB led to the addition of immunotherapeutic modalities to the previously recruited chemotherapeutic options. Molecular studies of the NB cells resulted in the discovery of many tumor-associated genes and antigens such as MYCN gene and GD2. MYCN gene and GD2 surface antigen are two of the most practical discoveries regarding immunotherapy of neuroblastoma. The GD2 antigen has been targeted in many animal and human studies including Phase III clinical trials. Even though these antigens have changed the face of pediatric neuroblastoma, they do not take as much credit in immunotherapy of adult-onset neuroblastoma. Monoclonal antibodies have been designed to detect this antigen on the surface of NB tumor cells. Despite bettering the outcomes for NB patients, current therapies still fail in many cases. Studies are underway to discover more specific tumor-associated antigens and more effective treatment options. In the current narrative, immunotherapy of NB - from emerging of this therapeutic backbone in NB to the latest discoveries regarding this malignancy - has been reviewed.
Collapse
Affiliation(s)
- Parnian Jabbari
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Sara Hanaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| |
Collapse
|
32
|
Ramsingh J, Casey H, Watson C. Adult neuroblastoma: a rare diagnosis of an adrenal mass. BMJ Case Rep 2019; 12:12/4/e228730. [PMID: 30975781 DOI: 10.1136/bcr-2018-228730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A 22-year-old woman presented to her local district hospital with left-sided abdominal pain. She denied any urinary or gastrointestinal symptoms. She had a CT scan of her abdomen which showed a probable 8×5×8 cm left-sided adrenal mass. Functional tests for hormone excess were negative. She was referred to a tertiary referral centre and given the size of the adrenal mass; she consented for laparoscopic left adrenalectomy. During the operation, the mass was grossly adherent to the celiac axis, left renal pedicle and DJ flexure. A small nodule posterior to the renal vein was also identified. The operation was completed laparoscopically and she made an uneventful recovery. The specimen was reported as a poorly differentiated neuroblastoma. She had a postoperative MIBG scan which was negative for residual or metastatic disease. She was commenced on platinum-based chemotherapy with a plan for further radiological follow-up.
Collapse
Affiliation(s)
- Jason Ramsingh
- Department of General Surgery, Queen Elizabeth University Hospital Campus, Glasgow, UK
| | - Helen Casey
- Department of General Surgery, Queen Elizabeth University Hospital Campus, Glasgow, UK
| | - Carol Watson
- Department of General Surgery, Queen Elizabeth University Hospital Campus, Glasgow, UK
| |
Collapse
|
33
|
Herd F, Basta NO, McNally RJQ, Tweddle DA. A systematic review of re-induction chemotherapy for children with relapsed high-risk neuroblastoma. Eur J Cancer 2019; 111:50-58. [PMID: 30822684 PMCID: PMC6458963 DOI: 10.1016/j.ejca.2018.12.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/28/2018] [Accepted: 12/28/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Despite aggressive multimodal therapy, >50% of children with high-risk neuroblastoma (HRNB) relapse. Survival after relapse is rare, and no consensus currently exists on the most effective therapy. OBJECTIVE To conduct a systematic review of the literature on effectiveness of re-induction chemotherapy in children with relapsed HRNB. METHODS Database searches were performed to identify studies looking at response to 1st line chemotherapy for children >12 months at diagnosis with first relapse of HRNB. Studies not reporting separate outcomes for HRNB patients or of refractory patients only were excluded. Two independent reviewers extracted the data and assessed study quality using a modified Newcastle-Ottawa tool. RESULTS Nine studies were identified fitting the inclusion criteria. All except one were single arm cohorts, and two were retrospective database reviews from single centres. One was a multicentre randomised controlled trial. All used a version of the validated International Neuroblastoma Response Criteria with 8 recording best ever response and 1 at a specified time, and 5 had central review. The proportion of relapsed patients varied from 24 to 100% with 30-93% receiving upfront myeloablative therapy. The response rate varied from 6 to 64%; however, because of heterogeneity, studies were not directly comparable, and no single treatment emerged as the most effective re-induction therapy. CONCLUSIONS To date, there is no clear superior re-induction therapy for 1st relapse of HRNB. Randomised controlled trials with separate arms for relapsed versus refractory disease are needed to determine optimal re-induction chemotherapy to act as a backbone for testing newer targeted agents.
Collapse
Affiliation(s)
- Fiona Herd
- Department of Paediatric Oncology, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle, NE1 4LP, UK
| | - Nermine O Basta
- Institute of Health & Society, Newcastle University, Sir James Spence Institute, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, United Kingdom
| | - Richard J Q McNally
- Institute of Health & Society, Newcastle University, Sir James Spence Institute, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, United Kingdom
| | - Deborah A Tweddle
- Department of Paediatric Oncology, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle, NE1 4LP, UK; Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Level 6 Herschel Building, Brewery Lane, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
34
|
The presence of Y674/Y675 phosphorylated NTRK1 via TP53 repression of PTPN6 expression as a potential prognostic marker in neuroblastoma. Hum Pathol 2018; 86:182-192. [PMID: 30594749 DOI: 10.1016/j.humpath.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/18/2023]
Abstract
The tumor suppressor TP53 promotes nerve growth factor receptor (NTRK1) -Y674/Y675 phosphorylation (NTRK1-pY674/pY675) via repression of the NTRK1 phosphatase PTPN6 in a ligand-independent manner, resulting in suppression of breast cancer cell proliferation. Moreover, NTRK1-pY674/pY675 together with low levels of PTPN6 and TP53 expression is associated with favorable disease-free survival of breast cancer patients. We determined whether in neuroblastoma this protein expression pattern impacts relapse-free survival (RFS). NTRK1-pY674/pY675, PTPN6, and TP53 expression was assessed in 98 neuroblastoma samples by immunohistochemistry. Association between expression levels and RFS was investigated by multivariate and Kaplan-Meier analysis. Mutant or wild-type TP53 was identified by sequencing tumor DNA. Tumors expressing NTRK1-pY674/pY675 and low or undetectable levels of PTPN6 and TP53 were significantly associated with 5-year RFS (P = .014) when the dataset was stratified by MYCN amplification, segmental chromosomal abnormalities and histology. Similar results were observed with tumors expressing wild-type TP53, NTRK1-pY674/pY675 and low or undetectable levels of PTPN6. Kaplan-Meier analysis demonstrated a significant correlation (P = .004), with a 50% probability of RFS (median survival 4.73 years) when present compared with 19.51% (median survival 11.63 months) when absent. Similar results were seen with non-amplified MYCN or unfavorable/undifferentiating samples and tumors from patients aged 18 months or less. Importantly, NTRK1-pY674/pY675 is an independent predictor of improved RFS. These results strongly suggest that NTRK1-pY674/pY675 together with wild-type TP53 and undetectable or low levels of PTPN6 expression is a potential biomarker of improved RFS of neuroblastoma patients. The predictive value of NTRK1-pY674/pY675 together with wild-type TP53 and low PTPN6 expression could contribute to neuroblastoma patient prognosis.
Collapse
|
35
|
Williams AP, Garner EF, Waters AM, Stafman LL, Aye JM, Markert H, Stewart JE, Beierle EA. Investigation of PP2A and Its Endogenous Inhibitors in Neuroblastoma Cell Survival and Tumor Growth. Transl Oncol 2018; 12:84-95. [PMID: 30286326 PMCID: PMC6169101 DOI: 10.1016/j.tranon.2018.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
High-risk neuroblastoma continues to carry a poor prognosis. Nearly 50% of these tumors relapse following extensive treatment regimens. Protein phosphatase 2A (PP2A), a tumor suppressor, has been shown to be downregulated in many human cancers via multiple mechanisms including upregulation of its endogenous inhibitors, I2PP2A or CIP2A. We hypothesized that inhibition of the endogenous PP2A inhibitors or activation of PP2A would decrease tumorigenicity in human neuroblastoma cells. Four human neuroblastoma cell lines were utilized. Expression of PP2A and its endogenous inhibitors I2PP2A and CIP2A was confirmed by immunoblotting. PP2A activation was measured via phosphatase activation assay. Multiple parallel methods including siRNA inhibition of the endogenous PP2A inhibitors and pharmacologic activation of PP2A were utilized. Cell viability, proliferation, migration, and invasion assays were performed. In vivo studies were utilized to determine the effects of PP2A activation on neuroblastoma tumor growth. Inhibition of the endogenous inhibitors of PP2A or pharmacologic activation of PP2A with the PP2A activator FTY720 led to decreased neuroblastoma cell viability, proliferation, migration, and invasion. Treatment of mice bearing SK-N-AS or SK-N-BE(2) neuroblastoma tumors with FTY720 resulted in a significant decrease in tumor growth compared to vehicle-treated animals. In conclusion, activation of PP2A may provide a novel therapeutic target for neuroblastoma.
Collapse
Affiliation(s)
- Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Evan F Garner
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Alicia M Waters
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Laura L Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Jamie M Aye
- Division of Hematology and Oncology Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL
| | - Hooper Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL.
| |
Collapse
|
36
|
Fletcher JI, Ziegler DS, Trahair TN, Marshall GM, Haber M, Norris MD. Too many targets, not enough patients: rethinking neuroblastoma clinical trials. Nat Rev Cancer 2018; 18:389-400. [PMID: 29632319 DOI: 10.1038/s41568-018-0003-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuroblastoma is a rare solid tumour of infancy and early childhood with a disproportionate contribution to paediatric cancer mortality and morbidity. Combination chemotherapy, radiation therapy and immunotherapy remains the standard approach to treat high-risk disease, with few recurrent, actionable genetic aberrations identified at diagnosis. However, recent studies indicate that actionable aberrations are far more common in relapsed neuroblastoma, possibly as a result of clonal expansion. In addition, although the major validated disease driver, MYCN, is not currently directly targetable, multiple promising approaches to target MYCN indirectly are in development. We propose that clinical trial design needs to be rethought in order to meet the challenge of providing rigorous, evidence-based assessment of these new approaches within a fairly small patient population and that experimental therapies need to be assessed at diagnosis in very-high-risk patients rather than in relapsed and refractory patients.
Collapse
Affiliation(s)
- Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - David S Ziegler
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
37
|
Suzuki M, Kushner BH, Kramer K, Basu EM, Roberts SS, Hammond WJ, LaQuaglia MP, Wolden SL, Cheung NKV, Modak S. Treatment and outcome of adult-onset neuroblastoma. Int J Cancer 2018; 143:1249-1258. [PMID: 29574715 DOI: 10.1002/ijc.31399] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/08/2018] [Accepted: 02/27/2018] [Indexed: 12/15/2022]
Abstract
Adult-onset neuroblastoma is rare and little is known about its biology and clinical course. There is no established therapy for adult-onset neuroblastoma. Anti-GD2 immunotherapy is now standard therapy in children with high-risk neuroblastoma; however, its use has not been reported in adults. Forty-four adults (18-71 years old) diagnosed with neuroblastoma between 1979 and 2015 were treated at Memorial Sloan Kettering Cancer Center. Five, 1, 5 and 33 patients had INSS stage 1, 2, 3 and 4 diseases, respectively. Genetic abnormalities included somatic ATRX (58%) and ALK mutations (42%) but not MYCN-amplification. In the 11 patients with locoregional disease, 10-year progression-free (PFS) and overall survival (OS) was 35.4 ± 16.1% and 61.4 ± 15.3%, respectively. Among 33 adults with stage 4 neuroblastoma, 7 (21%) achieved complete response (CR) after induction chemotherapy and/or surgery. Seven patients with primary refractory neuroblastoma (all with osteomedullary but no soft tissue disease) received anti-GD2 antibodies, mouse or humanized 3F8. Antibody-related adverse events were similar to those in children, response rate being 71.4%. In patients with stage 4 disease at diagnosis, 5-year PFS was 9.7± 5.3% and most patients who were alive with disease at 5 years died of neuroblastoma over the next 5 years, 10-year OS being only 19.0 ± 8.2%. Patients who achieved CR after induction had superior PFS and OS (p = 0.006, p = 0.031, respectively). Adult-onset neuroblastoma appeared to have different biology from pediatric or adolescent NB, and poorer outcome. Complete disease control appeared to improve long-term survival. Anti-GD2 immunotherapy was well tolerated and might be beneficial.
Collapse
Affiliation(s)
- Maya Suzuki
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brian H Kushner
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ellen M Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William J Hammond
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Suzanne L Wolden
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
38
|
Sharma R, Mer J, Lion A, Vik TA. Clinical Presentation, Evaluation, and Management of Neuroblastoma. Pediatr Rev 2018; 39:194-203. [PMID: 29610427 DOI: 10.1542/pir.2017-0087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Alex Lion
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN
| | - Terry A Vik
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
39
|
Rosswog C, Schmidt R, Oberthuer A, Juraeva D, Brors B, Engesser A, Kahlert Y, Volland R, Bartenhagen C, Simon T, Berthold F, Hero B, Faldum A, Fischer M. Molecular Classification Substitutes for the Prognostic Variables Stage, Age, and MYCN Status in Neuroblastoma Risk Assessment. Neoplasia 2017; 19:982-990. [PMID: 29091799 PMCID: PMC5678736 DOI: 10.1016/j.neo.2017.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND: Current risk stratification systems for neuroblastoma patients consider clinical, histopathological, and genetic variables, and additional prognostic markers have been proposed in recent years. We here sought to select highly informative covariates in a multistep strategy based on consecutive Cox regression models, resulting in a risk score that integrates hazard ratios of prognostic variables. METHODS: A cohort of 695 neuroblastoma patients was divided into a discovery set (n = 75) for multigene predictor generation, a training set (n = 411) for risk score development, and a validation set (n = 209). Relevant prognostic variables were identified by stepwise multivariable L1-penalized least absolute shrinkage and selection operator (LASSO) Cox regression, followed by backward selection in multivariable Cox regression, and then integrated into a novel risk score. RESULTS: The variables stage, age, MYCN status, and two multigene predictors, NB-th24 and NB-th44, were selected as independent prognostic markers by LASSO Cox regression analysis. Following backward selection, only the multigene predictors were retained in the final model. Integration of these classifiers in a risk scoring system distinguished three patient subgroups that differed substantially in their outcome. The scoring system discriminated patients with diverging outcome in the validation cohort (5-year event-free survival, 84.9 ± 3.4 vs 63.6 ± 14.5 vs 31.0 ± 5.4; P < .001), and its prognostic value was validated by multivariable analysis. CONCLUSION: We here propose a translational strategy for developing risk assessment systems based on hazard ratios of relevant prognostic variables. Our final neuroblastoma risk score comprised two multigene predictors only, supporting the notion that molecular properties of the tumor cells strongly impact clinical courses of neuroblastoma patients.
Collapse
Affiliation(s)
- Carolina Rosswog
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Rene Schmidt
- Institute of Biostatistics and Clinical Research, University of Muenster, Schmeddingstrasse 56, 48149 Münster, Germany
| | - André Oberthuer
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Dilafruz Juraeva
- Department of Applied Bioinformatics, German Cancer Research Center, Berliner Strasse 41, 69120 Heidelberg, Germany
| | - Benedikt Brors
- Department of Applied Bioinformatics, German Cancer Research Center, Berliner Strasse 41, 69120 Heidelberg, Germany
| | - Anne Engesser
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Yvonne Kahlert
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Ruth Volland
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Christoph Bartenhagen
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Frank Berthold
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Barbara Hero
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Andreas Faldum
- Institute of Biostatistics and Clinical Research, University of Muenster, Schmeddingstrasse 56, 48149 Münster, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany.
| |
Collapse
|
40
|
Pezzolo A, Sementa AR, Lerone M, Morini M, Ognibene M, Defferrari R, Mazzocco K, Conte M, Gigliotti AR, Garaventa A, Pistoia V, Varesio L. Constitutional 3p26.3 terminal microdeletion in an adolescent with neuroblastoma. Cancer Biol Ther 2017; 18:285-289. [PMID: 28402723 DOI: 10.1080/15384047.2017.1312231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is a common and often lethal cancer of early childhood that accounts for 10% of pediatric cancer mortality. Incidence peaks in infancy and then rapidly declines, with less than 5% of cases diagnosed in children and adolescents ≥ 10 y. There is increasing evidence that NB has unique biology and an chronic disease course in older children and adolescents, but ultimately dismal survival. METHODS We describe a rare constitutional 3p26.3 terminal microdeletion which occurred in an adolescent with NB, with apparently normal phenotype without neurocognitive defects. We evaluated the association of expression of genes involved in the microdeletion with NB patient outcomes using R2 platform. We screened NB patient's tumor cells for CHL1 protein expression using immunofluorescence. RESULTS Constitutional and tumor DNA were tested by array-comparative genomic hybridization and single nucleotide-polymorphism-array analyses. Peripheral blood mononuclear cells from the patient showed a 2.54 Mb sub-microscopic constitutional terminal 3p deletion that extended to band p26.3. The microdeletion 3p disrupted the CNTN4 gene and the neighboring CNTN6 and CHL1 genes were hemizygously deleted, each of these genes encode neuronal cell adhesion molecules. Low expression of CNTN6 and CNTN4 genes did not stratify NB patients, whereas low CHL1 expression characterized 417 NB patients having worse overall survival. CHL1 protein expression on tumor cells from the patient was weaker than positive control. CONCLUSION This is the first report of a constitutional 3p26.3 deletion in a NB patient. Since larger deletions of 3p, indicative of the presence of one or more tumor suppressor genes in this region, occur frequently in neuroblastoma, our results pave the way to the identification of one putative NB suppressor genes mapping in 3p26.3.
Collapse
Affiliation(s)
- Annalisa Pezzolo
- a Laboratorio di Oncologia , Istituto Giannina Gaslini , Genova , Italy
| | - Angela Rita Sementa
- b Laboratorio di Anatomia Patologica , Istituto Giannina Gaslini , Genova , Italy
| | - Margherita Lerone
- c Laboratorio di Genetica Molecolare , Istituto Giannina Gaslini , Genova , Italy
| | - Martina Morini
- d Laboratorio di Biologia Molecolare , Istituto Giannina Gaslini , Genova , Italy
| | - Marzia Ognibene
- a Laboratorio di Oncologia , Istituto Giannina Gaslini , Genova , Italy
| | - Raffaella Defferrari
- b Laboratorio di Anatomia Patologica , Istituto Giannina Gaslini , Genova , Italy
| | - Katia Mazzocco
- b Laboratorio di Anatomia Patologica , Istituto Giannina Gaslini , Genova , Italy
| | - Massimo Conte
- e Dipartimento di Emato-Oncologia , Istituto Giannina Gaslini , Genova , Italy
| | - Anna Rita Gigliotti
- e Dipartimento di Emato-Oncologia , Istituto Giannina Gaslini , Genova , Italy
| | - Alberto Garaventa
- e Dipartimento di Emato-Oncologia , Istituto Giannina Gaslini , Genova , Italy
| | - Vito Pistoia
- f Area Immunologica Ospedale Pediatrico Bambino Gesù , Roma
| | - Luigi Varesio
- d Laboratorio di Biologia Molecolare , Istituto Giannina Gaslini , Genova , Italy
| |
Collapse
|
41
|
Ahmed AA, Zhang L, Reddivalla N, Hetherington M. Neuroblastoma in children: Update on clinicopathologic and genetic prognostic factors. Pediatr Hematol Oncol 2017; 34:165-185. [PMID: 28662353 DOI: 10.1080/08880018.2017.1330375] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood accounting for 8-10% of all childhood malignancies. The tumor is characterized by a spectrum of histopathologic features and a heterogeneous clinical phenotype. Modern multimodality therapy results in variable clinical response ranging from cure in localized tumors to limited response in aggressive metastatic disease. Accurate clinical staging and risk assessment based on clinical, surgical, biologic and pathologic criteria are of pivotal importance in assigning prognosis and planning effective treatment approaches. Numerous studies have analyzed the presence of several clinicopathologic and biologic factors in association with the patient's prognosis and outcome. Although patient's age, tumor stage, histopathologic classification, and MYCN amplification are the most commonly validated prognostic markers, several new gene mutations have been identified in sporadic and familial neuroblastoma cases that show association with an adverse outcome. Novel molecular studies have also added data on chromosomal segmental aberrations in MYCN nonamplified tumors. In this review, we provide an updated summary of the clinical, serologic and genetic prognostic indicators in neuroblastoma including classic factors that have consistently played a role in risk stratification of patients as well as newly discovered biomarkers that may show a potential significance in patients' management.
Collapse
Affiliation(s)
- Atif A Ahmed
- a Department of Pathology and Laboratory Medicine , Children's Mercy Hospital/University of Missouri , Kansas City , Missouri , USA
| | - Lei Zhang
- a Department of Pathology and Laboratory Medicine , Children's Mercy Hospital/University of Missouri , Kansas City , Missouri , USA
| | - Naresh Reddivalla
- b Department of Hematology-Oncology , Children's Mercy Hospital/University of Missouri , Kansas City , Missouri , USA
| | - Maxine Hetherington
- b Department of Hematology-Oncology , Children's Mercy Hospital/University of Missouri , Kansas City , Missouri , USA
| |
Collapse
|
42
|
Whittle SB, Smith V, Doherty E, Zhao S, McCarty S, Zage PE. Overview and recent advances in the treatment of neuroblastoma. Expert Rev Anticancer Ther 2017; 17:369-386. [PMID: 28142287 DOI: 10.1080/14737140.2017.1285230] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Children with neuroblastoma have widely divergent outcomes, ranging from cure in >90% of patients with low risk disease to <50% for those with high risk disease. Recent research has shed light on the biology of neuroblastoma, allowing for more accurate risk stratification and treatment reduction in many cases, although newer treatment strategies for children with high-risk and relapsed neuroblastoma are needed to improve outcomes. Areas covered: Neuroblastoma epidemiology, diagnosis, risk stratification, and recent advances in treatment of both newly diagnosed and relapsed neuroblastoma. Expert commentary: The identification of newer tumor targets and of novel cell-mediated immunotherapy agents may lead to novel therapeutic approaches, and clinical trials for regimens designed to target individual genetic aberrations in tumors are underway. A combination of therapeutic modalities will likely be required to improve survival and cure rates for patients with high-risk neuroblastoma.
Collapse
Affiliation(s)
- Sarah B Whittle
- a Department of Pediatrics, Section of Hematology-Oncology , Texas Children's Cancer and Hematology Centers, Baylor College of Medicine , Houston , TX , USA
| | - Valeria Smith
- a Department of Pediatrics, Section of Hematology-Oncology , Texas Children's Cancer and Hematology Centers, Baylor College of Medicine , Houston , TX , USA
| | - Erin Doherty
- a Department of Pediatrics, Section of Hematology-Oncology , Texas Children's Cancer and Hematology Centers, Baylor College of Medicine , Houston , TX , USA
| | - Sibo Zhao
- a Department of Pediatrics, Section of Hematology-Oncology , Texas Children's Cancer and Hematology Centers, Baylor College of Medicine , Houston , TX , USA
| | - Scott McCarty
- b Department of Pediatrics, Division of Hematology-Oncology , University of California San Diego, La Jolla, CA and Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital , San Diego , CA , USA
| | - Peter E Zage
- b Department of Pediatrics, Division of Hematology-Oncology , University of California San Diego, La Jolla, CA and Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital , San Diego , CA , USA
| |
Collapse
|
43
|
Esposito MR, Aveic S, Seydel A, Tonini GP. Neuroblastoma treatment in the post-genomic era. J Biomed Sci 2017; 24:14. [PMID: 28178969 PMCID: PMC5299732 DOI: 10.1186/s12929-017-0319-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is an embryonic malignancy of early childhood originating from neural crest cells and showing heterogeneous biological, morphological, genetic and clinical characteristics. The correct stratification of neuroblastoma patients within risk groups (low, intermediate, high and ultra-high) is critical for the adequate treatment of the patients. High-throughput technologies in the Omics disciplines are leading to significant insights into the molecular pathogenesis of neuroblastoma. Nonetheless, further study of Omics data is necessary to better characterise neuroblastoma tumour biology. In the present review, we report an update of compounds that are used in preclinical tests and/or in Phase I-II trials for neuroblastoma. Furthermore, we recapitulate a number of compounds targeting proteins associated to neuroblastoma: MYCN (direct and indirect inhibitors) and downstream targets, Trk, ALK and its downstream signalling pathways. In particular, for the latter, given the frequency of ALK gene deregulation in neuroblastoma patients, we discuss on second-generation ALK inhibitors in preclinical or clinical phases developed for the treatment of neuroblastoma patients resistant to crizotinib. We summarise how Omics drive clinical trials for neuroblastoma treatment and how much the research of biological targets is useful for personalised medicine. Finally, we give an overview of the most recent druggable targets selected by Omics investigation and discuss how the Omics results can provide us additional advantages for overcoming tumour drug resistance.
Collapse
Affiliation(s)
- Maria Rosaria Esposito
- Paediatric Research Institute, Fondazione Città della Speranza, Neuroblastoma Laboratory, Corso Stati Uniti, 4, Padua, 35127, Italy.
| | - Sanja Aveic
- Paediatric Research Institute, Fondazione Città della Speranza, Neuroblastoma Laboratory, Corso Stati Uniti, 4, Padua, 35127, Italy
| | - Anke Seydel
- Department of Biology, University of Padua, Padua, Italy
| | - Gian Paolo Tonini
- Paediatric Research Institute, Fondazione Città della Speranza, Neuroblastoma Laboratory, Corso Stati Uniti, 4, Padua, 35127, Italy
| |
Collapse
|
44
|
Niazi MKK, Chung JH, Heaton-Johnson KJ, Martinez D, Castellanos R, Irwin MS, Master SR, Pawel BR, Gurcan MN, Weiser DA. Advancing Clinicopathologic Diagnosis of High-risk Neuroblastoma Using Computerized Image Analysis and Proteomic Profiling. Pediatr Dev Pathol 2017; 20:394-402. [PMID: 28420318 PMCID: PMC7059208 DOI: 10.1177/1093526617698603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A subset of patients with neuroblastoma are at extremely high risk for treatment failure, though they are not identifiable at diagnosis and therefore have the highest mortality with conventional treatment approaches. Despite tremendous understanding of clinical and biological features that correlate with prognosis, neuroblastoma at ultra-high risk for treatment failure remains a diagnostic challenge. As a first step towards improving prognostic risk stratification within the high-risk group of patients, we determined the feasibility of using computerized image analysis and proteomic profiling on single slides from diagnostic tissue specimens. After expert pathologist review of tumor sections to ensure quality and representative material input, we evaluated multiple regions of single slides as well as multiple sections from different patients' tumors using computational histologic analysis and semiquantitative proteomic profiling. We found that both approaches determined that intertumor heterogeneity was greater than intratumor heterogeneity. Unbiased clustering of samples was greatest within a tumor, suggesting a single section can be representative of the tumor as a whole. There is expected heterogeneity between tumor samples from different individuals with a high degree of similarity among specimens derived from the same patient. Both techniques are novel to supplement pathologist review of neuroblastoma for refined risk stratification, particularly since we demonstrate these results using only a single slide derived from what is usually a scarce tissue resource. Due to limitations of traditional approaches for upfront stratification, integration of new modalities with data derived from one section of tumor hold promise as tools to improve outcomes.
Collapse
Affiliation(s)
- M Khalid Khan Niazi
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Jonathan H Chung
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Katherine J Heaton-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Martinez
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Raquel Castellanos
- Department of Pediatrics, Albert Einstein College of Medicine, New York, New York, USA
| | - Meredith S Irwin
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Totonto, Ontario, Canada
| | - Stephen R. Master
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Bruce R Pawel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Metin N Gurcan
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Daniel A Weiser
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA,Department of Pediatrics, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
45
|
Enrichment of Targetable Mutations in the Relapsed Neuroblastoma Genome. PLoS Genet 2016; 12:e1006501. [PMID: 27997549 PMCID: PMC5172533 DOI: 10.1371/journal.pgen.1006501] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/22/2016] [Indexed: 01/21/2023] Open
Abstract
Neuroblastoma is characterized by a relative paucity of recurrent somatic mutations at diagnosis. However, recent studies have shown that the mutational burden increases at relapse, likely as a result of clonal evolution of mutation-carrying cells during primary treatment. To inform the development of personalized therapies, we sought to further define the frequency of potentially actionable mutations in neuroblastoma, both at diagnosis and after chemotherapy. We performed a retrospective study to determine mutation frequency, the only inclusion criterion being availability of cancer gene panel sequencing data from Foundation Medicine. We analyzed 151 neuroblastoma tumor samples: 44 obtained at diagnosis, 42 at second look surgery or biopsy for stable disease after chemotherapy, and 59 at relapse (6 were obtained at unknown time points). Nine patients had multiple tumor biopsies. ALK was the most commonly mutated gene in this cohort, and we observed a higher frequency of suspected oncogenic ALK mutations in relapsed disease than at diagnosis. Patients with relapsed disease had, on average, a greater number of mutations reported to be recurrent in cancer, and a greater number of mutations in genes that are potentially targetable with available therapeutics. We also observed an enrichment of reported recurrent RAS/MAPK pathway mutations in tumors obtained after chemotherapy. Our data support recent evidence suggesting that neuroblastomas undergo substantial mutational evolution during therapy, and that relapsed disease is more likely to be driven by a targetable oncogenic pathway, highlighting that it is critical to base treatment decisions on the molecular profile of the tumor at the time of treatment. However, it will be necessary to conduct prospective clinical trials that match sequencing results to targeted therapeutic intervention to determine if cancer genomic profiling improves patient outcomes. Neuroblastoma is a pediatric cancer that usually affects children within the first five years of life. The survival rate for the high-risk form of the disease is 40–50%, and patients suffering metastatic recurrences have no known curative therapeutic options. Drugs targeted to specific genetic alterations in neuroblastoma may be more effective. Although neuroblastomas generally have few actionable genetic alterations at diagnosis, targetable mutations that confer therapy resistance may be selected for over time. Here, we analyzed cancer gene panel sequencing data from 151 neuroblastomas acquired at various time points during therapy to further define how the genomic landscape of neuroblastoma evolves. We found that relapsed tumors tended to have a higher frequency of mutations potentially targetable with currently available therapies, particularly in the RAS/MAPK pathway. Our data support the concept that therapeutic decisions targeting specific oncogenic mutations should be based on sequencing data obtained as close to the intervention as possible, and not be reliant on archived diagnostic material. Prospective clinical trials will be required to determine if sequencing data obtained at the time of tumor progression can lend to improved neuroblastoma patient outcomes.
Collapse
|
46
|
Abstract
Neuroblastoma is the most common extracranial solid tumour occurring in childhood and has a diverse clinical presentation and course depending on the tumour biology. Unique features of these neuroendocrine tumours are the early age of onset, the high frequency of metastatic disease at diagnosis and the tendency for spontaneous regression of tumours in infancy. The most malignant tumours have amplification of the MYCN oncogene (encoding a transcription factor), which is usually associated with poor survival, even in localized disease. Although transgenic mouse models have shown that MYCN overexpression can be a tumour-initiating factor, many other cooperating genes and tumour suppressor genes are still under investigation and might also have a role in tumour development. Segmental chromosome alterations are frequent in neuroblastoma and are associated with worse outcome. The rare familial neuroblastomas are usually associated with germline mutations in ALK, which is mutated in 10-15% of primary tumours, and provides a potential therapeutic target. Risk-stratified therapy has facilitated the reduction of therapy for children with low-risk and intermediate-risk disease. Advances in therapy for patients with high-risk disease include intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy; these have improved 5-year overall survival to 50%. Currently, new approaches targeting the noradrenaline transporter, genetic pathways and the tumour microenvironment hold promise for further improvements in survival and long-term quality of life.
Collapse
|
47
|
Luksch R, Castellani MR, Collini P, De Bernardi B, Conte M, Gambini C, Gandola L, Garaventa A, Biasoni D, Podda M, Sementa AR, Gatta G, Tonini GP. Neuroblastoma (Peripheral neuroblastic tumours). Crit Rev Oncol Hematol 2016; 107:163-181. [PMID: 27823645 DOI: 10.1016/j.critrevonc.2016.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 09/05/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023] Open
Abstract
Peripheral neuroblastic tumours (PNTs), a family of tumours arising in the embryonal remnants of the sympathetic nervous system, account for 7-10% of all tumours in children. In two-thirds of cases, PNTs originate in the adrenal glands or the retroperitoneal ganglia. At least one third present metastases at onset, with bone and bone marrow being the most frequent metastatic sites. Disease extension, MYCN oncogene status and age are the most relevant prognostic factors, and their influence on outcome have been considered in the design of the recent treatment protocols. Consequently, the probability of cure has increased significantly in the last two decades. In children with localised operable disease, surgical resection alone is usually a sufficient treatment, with 3-year event-free survival (EFS) being greater than 85%. For locally advanced disease, primary chemotherapy followed by surgery and/or radiotherapy yields an EFS of around 75%. The greatest problem is posed by children with metastatic disease or amplified MYCN gene, who continue to do badly despite intensive treatments. Ongoing trials are exploring the efficacy of new drugs and novel immunological approaches in order to save a greater number of these patients.
Collapse
Affiliation(s)
- Roberto Luksch
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | | | - Paola Collini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Massimo Conte
- Giannina Gaslini Children's Research Hospital, Genoa, Italy
| | | | - Lorenza Gandola
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Davide Biasoni
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marta Podda
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Gemma Gatta
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Paediatric Research Institute, Padua, Italy
| |
Collapse
|
48
|
e Silva TDS, de Castro ACH, de Rezende Rodovalho V, Madurro JM, Madurro AGB. Development of electrochemical genosensor for MYCN oncogene detection using rhodamine B as electroactive label. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3326-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Thompson D, Vo KT, London WB, Fischer M, Ambros PF, Nakagawara A, Brodeur GM, Matthay KK, DuBois SG. Identification of patient subgroups with markedly disparate rates of MYCN amplification in neuroblastoma: A report from the International Neuroblastoma Risk Group project. Cancer 2015; 122:935-45. [PMID: 26709890 DOI: 10.1002/cncr.29848] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/17/2015] [Accepted: 11/17/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND MYCN gene amplification (MNA) is a hallmark of aggressive neuroblastoma. This study was performed to determine univariate and multivariate predictors of tumor MNA. METHODS Data from the International Neuroblastoma Risk Group were analyzed for a subset of 7102 patients with known MYCN status. Chi-square testing and logistic regression were used to identify univariate and multivariate predictors of MYCN status. Recursive partitioning was used to identify groups of patients with maximal differences in rates of MNA. RESULTS All clinical features (age ≥ 18 months, high ferritin levels, high lactate dehydrogenase [LDH] levels, International Neuroblastoma Staging System stage 4, and adrenal sites) and pathological/biological features (DNA index ≤ 1, high mitosis-karyorrhexis index [MKI], undifferentiated/poorly differentiated grade, unfavorable histology according to the International Neuroblastoma Pathology Classification, and segmental chromosomal aberrations [SCAs]) were significantly associated with MNA. LDH (odds ratio [OR], 8.4; P < .001) and chromosomal 1p loss of heterozygosity (OR, 19.8; P < .001) were the clinical and biological variables, respectively, most strongly associated with MNA. In logistic regression, all variables except chromosome 17q aberration and pooled SCAs were independently predictive of MNA. Recursive partitioning identified subgroups with disparate rates of MNA, including subgroups with 85.7% MNA (patients with high LDH levels who had poorly differentiated adrenal tumors with chromosome 1p deletion) and 0.6% MNA (localized tumors having hyperdiploidy and low MKIs and lacking chromosome 1p aberrations). CONCLUSIONS MNA is strongly associated with other clinical and biological variables in neuroblastoma. Recursive partitioning has identified subgroups of neuroblastoma patients with highly disparate rates of MNA. These findings can be used to inform investigations of molecular mechanisms of MNA.
Collapse
Affiliation(s)
- Daria Thompson
- Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco School of Medicine, San Francisco, California
| | - Kieuhoa T Vo
- Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco School of Medicine, San Francisco, California
| | - Wendy B London
- Dana-Farber Children's Hospital Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Matthias Fischer
- Department of Pediatric Oncology, Children's Hospital and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Peter F Ambros
- Children's Cancer Research Institute, St. Anne Kinderkrebsforschung, Vienna, Austria
| | - Akira Nakagawara
- Department of Biochemistry, Chiba Cancer Center Research Institute and Chiba University, Chiba, Japan
| | - Garrett M Brodeur
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katherine K Matthay
- Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco School of Medicine, San Francisco, California
| | - Steven G DuBois
- Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco School of Medicine, San Francisco, California
| |
Collapse
|
50
|
Yeung F, Chung PHY, Tam PKH, Wong KKY. Is complete resection of high-risk stage IV neuroblastoma associated with better survival? J Pediatr Surg 2015; 50:2107-11. [PMID: 26377869 DOI: 10.1016/j.jpedsurg.2015.08.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 08/24/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND The role of surgery in the management of stage IV neuroblastoma is controversial. In this study, we attempted to study if complete tumor resection had any impact on event-free survival (EFS) and overall survival (OS). METHODS A retrospective analysis of patients with stage IV neuroblastoma between November 2000 and July 2014 in a tertiary referral center was performed. Demographics data, extent of surgical resection, and outcomes were analyzed. RESULTS A total of 34 patients with stage IV neuroblastoma according to International Neuroblastoma Staging System (INSS) were identified. The median age at diagnosis and operation was 3.5 (±1.9) years and 3.8 (±2.0) years, respectively. Complete gross tumor resection (CTR) was achieved in twenty-four patients (70.1%), in which one of the patients had nephrectomy and another had distal pancreatectomy. Gross total resection (GTR) with removal of >95% of tumor was performed in six patients (17.6%) and subtotal tumor resection (STR) with removal of >50%, but <95% of tumor was performed in four patients (11.8%). There was no statistical significance in terms of 5-year EFS and OS among the 3 groups. There was no surgery-related mortality or morbidity. CONCLUSIONS From our center's experience, as there was no substantial survival benefit in stage IV neuroblastoma patients undergoing complete tumor resection, organ preservation and minimalization of morbidity should also be taken into consideration.
Collapse
Affiliation(s)
- Fanny Yeung
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Patrick Ho Yu Chung
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Paul Kwong Hang Tam
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kenneth Kak Yuen Wong
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|