1
|
He YL, Liu JY, Almgrami RT, Fan YZ, Zhang Y. Cancer immunotherapy of Wilms tumor: a narrative review. Future Oncol 2024; 20:2293-2302. [PMID: 39235074 PMCID: PMC11508995 DOI: 10.1080/14796694.2024.2386929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Wilms tumor (WT) is the most common malignant tumor of the urinary system in children. Though the traditional treatment of surgery plus radiotherapy and chemotherapy achieves exciting clinical efficacy, in relapsed and refractory cases, the long-term overall survival rates are poor. Besides, chemotherapy and radiation have serious long-term toxic side effects on children. Cancer immunotherapy is a new tumor therapy that works by activating the body's immune system to allow immune cells to kill tumor cells more efficiently. Currently, cancer immunotherapy has been tested in clinical trials or basic studies in WT. This article reviews the current status of clinical trials and basic research of cancer immunotherapy in WT to promote the application of cancer immunotherapy in WT patients.
Collapse
Affiliation(s)
- Yu Lin He
- Second Ward of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Yan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rahma Taher Almgrami
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Zhong Fan
- Second Ward of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Hegde M, Girisa S, Aswani BS, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Harnessing potential role of gangliosides in immunomodulation and cancer therapeutics. Life Sci 2024; 351:122786. [PMID: 38848944 DOI: 10.1016/j.lfs.2024.122786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Gangliosides represent glycolipids containing sialic acid residues, present on the cell membrane with glycan residues exposed to the extracellular matrix (ECM), while the ceramides are anchored within the membrane. These molecules play a critical role in pathophysiological processes such as host-pathogen interactions, cell-cell recognition, signal transduction, cell adhesion, motility, and immunomodulation. Accumulated evidence suggests the overexpression of gangliosides on tumor tissues in comparison to healthy human tissues. These tumor-associated gangliosides have been implicated in various facets of tumor biology, including cell motility, differentiation, signaling, immunosuppression, angiogenesis, and metastasis. Consequently, these entities emerge as attractive targets for immunotherapeutic interventions. Notably, the administration of antibodies targeting gangliosides has demonstrated cytotoxic effects on cancer cells that exhibit an overexpression of these glycolipids. Passive immunotherapy approaches utilizing murine or murine/human chimeric anti-ganglioside antibodies have been explored as potential treatments for diverse cancer types. Additionally, vaccination strategies employing tumor-associated gangliosides in conjunction with adjuvants have entered the realm of promising techniques currently undergoing clinical trials. The present comprehensive review encapsulates the multifaceted roles of gangliosides in tumor initiation, progression, immunosuppression, and metastasis. Further, an overview is provided of the correlation between the expression status of gangliosides in normal and tumor cells and its impact on cancer patient survival. Furthermore, the discussion extends to ongoing and completed clinical trials employing diverse strategies to target gangliosides, elucidating their effectiveness in treating cancers. This emerging discipline is expected to supply substantial impetus for the establishment of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
3
|
Lee WG, Kim ES. Precision Oncology in Pediatric Cancer Surgery. Surg Oncol Clin N Am 2024; 33:409-446. [PMID: 38401917 DOI: 10.1016/j.soc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Pediatric precision oncology has provided a greater understanding of the wide range of molecular alterations in difficult-to-treat or rare tumors with the aims of increasing survival as well as decreasing toxicity and morbidity from current cytotoxic therapies. In this article, the authors discuss the current state of pediatric precision oncology which has increased access to novel targeted therapies while also providing a framework for clinical implementation in this unique population. The authors evaluate the targetable mutations currently under investigation-with a focus on pediatric solid tumors-and discuss the key surgical implications associated with novel targeted therapies.
Collapse
Affiliation(s)
- William G Lee
- Department of Surgery, Cedars-Sinai Medical Center, 116 North Robertson Boulevard, Suite PACT 700, Los Angeles, CA 90048, USA. https://twitter.com/william_ghh_lee
| | - Eugene S Kim
- Division of Pediatric Surgery, Department of Surgery, Cedars-Sinai Medical Center, 116 North Robertson Boulevard, Suite PACT 700, Los Angeles, CA 90048, USA.
| |
Collapse
|
4
|
Larrosa C, Mora J, Cheung NK. Global Impact of Monoclonal Antibodies (mAbs) in Children: A Focus on Anti-GD2. Cancers (Basel) 2023; 15:3729. [PMID: 37509390 PMCID: PMC10378537 DOI: 10.3390/cancers15143729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Monoclonal antibodies (mAbs), as the name implies, are clonal antibodies that bind to the same antigen. mAbs are broadly used as diagnostic or therapeutic tools for neoplasms, autoimmune diseases, allergic conditions, and infections. Although most mAbs are approved for treating adult cancers, few are applicable to childhood malignancies, limited mostly to hematological cancers. As for solid tumors, only anti-disialoganglioside (GD2) mAbs are approved specifically for neuroblastoma. Inequities of drug access have continued, affecting most therapeutic mAbs globally. To understand these challenges, a deeper dive into the complex transition from basic research to the clinic, or between marketing and regulatory agencies, is timely. This review focuses on current mAbs approved or under investigation in pediatric cancer, with special attention on solid tumors and anti-GD2 mAbs, and the hurdles that limit their broad global access. Beyond understanding the mechanisms of drug resistance, the continual discovery of next generation drugs safer for children and easier to administer, the discovery of predictive biomarkers to avoid futility should ease the acceptance by patient, health care professionals and regulatory agencies, in order to expand clinical utility. With a better integration into the multimodal treatment for each disease, protocols that align with the regional clinical practice should also improve acceptance and cost-effectiveness. Communication and collaboration between academic institutions, pharmaceutical companies, and regulatory agencies should help to ensure accessible, affordable, and sustainable health care for all.
Collapse
Affiliation(s)
- Cristina Larrosa
- Pediatric Cancer Center Barcelona, 08950 Barcelona, Spain; (C.L.); (J.M.)
| | - Jaume Mora
- Pediatric Cancer Center Barcelona, 08950 Barcelona, Spain; (C.L.); (J.M.)
| | - Nai-Kong Cheung
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
5
|
Wang J, Shewell LK, Day CJ, Jennings MP. N-glycolylneuraminic acid as a carbohydrate cancer biomarker. Transl Oncol 2023; 31:101643. [PMID: 36805917 PMCID: PMC9971276 DOI: 10.1016/j.tranon.2023.101643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 02/20/2023] Open
Abstract
One of the forms of aberrant glycosylation in human tumors is the expression of N-glycolylneuraminic acid (Neu5Gc). The only known enzyme to biosynthesize Neu5Gc in mammals, cytidine-5'-monophosphate-N-acetylneuraminic acid (CMAH), appears to be genetically inactivated in humans. Regardless, low levels of Neu5Gc have been detected in healthy humans. Therefore, it is proposed that the presence of Neu5Gc in humans is from dietary acquisition, such as red meat. Notably, detection of elevated Neu5Gc levels has been repeatedly found in cancer tissues, cells and serum samples, thereby Neu5Gc-containing antigens may be exploited as a class of cancer biomarkers. Here we review the findings to date on using Neu5Gc-containing tumor glycoconjugates as a class of cancer biomarkers for cancer detection, surveillance, prognosis and therapeutic targets. We review the evidence that supports an emerging hypothesis of de novo Neu5Gc biosynthesis in human cancer cells as a source of Neu5Gc in human tumors, generated under certain metabolic conditions.
Collapse
Affiliation(s)
- Jing Wang
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Lucy K Shewell
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | | | | |
Collapse
|
6
|
Zang B, Ding L, Liu L, Arun Kumar S, Liu W, Zhou C, Duan Y. The immunotherapy advancement targeting malignant blastomas in early childhood. Front Oncol 2023; 13:1015115. [PMID: 36874100 PMCID: PMC9978522 DOI: 10.3389/fonc.2023.1015115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/12/2023] [Indexed: 02/18/2023] Open
Abstract
Malignant blastomas develop relentlessly in all functional body organs inflicting severe health ailments in younger children. Malignant blastomas exhibit diverse clinical characteristics in compliance with their emergence in functional body organs. Surprisingly, neither of these preferred treatment types (surgery, radiotherapy, and chemotherapy) showed promise or were effective in treating malignant blastomas among child patients. N ew, innovative immunotherapeutic procedures including monoclonal antibodies and chimeric-antigen based receptor (CAR) cell therapy, coupled with the clinical study of reliable therapeutic targets and immune regulatory pathways targeting malignant blastomas, have attracted the attention of clinicians recently.
Collapse
Affiliation(s)
- Bolun Zang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Luyue Ding
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Linlin Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Senthil Arun Kumar
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wei Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chongchen Zhou
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Schaiquevich P, Francis JH, Cancela MB, Carcaboso AM, Chantada GL, Abramson DH. Treatment of Retinoblastoma: What Is the Latest and What Is the Future. Front Oncol 2022; 12:822330. [PMID: 35433448 PMCID: PMC9010858 DOI: 10.3389/fonc.2022.822330] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
The management of retinoblastoma, the most common intraocular malignancy in children, has changed drastically over the last decade. Landmark developments in local drug delivery, namely, safer techniques for intravitreal chemotherapy injection and ophthalmic artery chemosurgery, have resulted in eye globe salvages that were not previously attainable using systemic chemotherapy or external beam irradiation. Novel drugs, oncolytic viruses, and immunotherapy are promising approaches in the treatment of intraocular retinoblastoma. Importantly, emerging studies of the pattern of tumor dissemination and local drug delivery may provide the first steps toward new treatments for metastatic disease. Here, we review recent advances in retinoblastoma treatment, especially with regard to local drug delivery, that have enabled successful conservative management of intraocular retinoblastoma. We also review emerging data from preclinical and clinical studies on innovative approaches that promise to lead to further improvement in outcomes, namely, the mechanisms and potential uses of new and repurposed drugs and non-chemotherapy treatments, and discuss future directions for therapeutic development.
Collapse
Affiliation(s)
- Paula Schaiquevich
- Unit of Innovative Treatments, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina,National Scientific and Technological Research Council (CONICET), Buenos Aires, Argentina
| | - Jasmine H. Francis
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States,Department of Ophthalmology, Weill/Cornell Medical School, New York, NY, United States
| | - María Belén Cancela
- Unit of Innovative Treatments, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina,National Scientific and Technological Research Council (CONICET), Buenos Aires, Argentina
| | - Angel Montero Carcaboso
- Hemato-Oncology, Hospital Sant Joan de Déu, Barcelona, Spain,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Guillermo L. Chantada
- National Scientific and Technological Research Council (CONICET), Buenos Aires, Argentina,Hemato-Oncology, Hospital Sant Joan de Déu, Barcelona, Spain,Institute for Translational Research, Universidad Austral, Buenos Aires, Argentina,Research Department, Fundacion Perez-Scremini, Montevideo, Uruguay
| | - David H. Abramson
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States,Department of Ophthalmology, Weill/Cornell Medical School, New York, NY, United States,*Correspondence: David H. Abramson,
| |
Collapse
|
8
|
Shalabi H, Nellan A, Shah NN, Gust J. Immunotherapy Associated Neurotoxicity in Pediatric Oncology. Front Oncol 2022; 12:836452. [PMID: 35265526 PMCID: PMC8899040 DOI: 10.3389/fonc.2022.836452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022] Open
Abstract
Novel immunotherapies are increasingly being employed in pediatric oncology, both in the upfront and relapsed/refractory settings. Through various mechanisms of action, engagement and activation of the immune system can cause both generalized and disease site-specific inflammation, leading to immune-related adverse events (irAEs). One of the most worrisome irAEs is that of neurotoxicity. This can present as a large spectrum of neurological toxicities, including confusion, aphasia, neuropathies, seizures, and/or death, with variable onset and severity. Earlier identification and treatment, generally with corticosteroids, remains the mainstay of neurotoxicity management to optimize patient outcomes. The pathophysiology of neurotoxicity varies across the different therapeutic strategies and remains to be elucidated in most cases. Furthermore, little is known about long-term neurologic sequelae. This review will focus on neurotoxicity seen with the most common immunotherapies used in pediatric oncology, including CAR T cell therapy, alternative forms of adoptive cell therapy, antibody therapies, immune checkpoint inhibitors, and tumor vaccines. Herein we will discuss the incidence, pathophysiology, symptomatology, diagnosis, and management strategies currently being utilized for immunotherapy-associated neurotoxicity with a focus on pediatric specific considerations.
Collapse
Affiliation(s)
- Haneen Shalabi
- National Cancer Institute, Pediatric Oncology Branch, National Institutes of Health, Bethesda, MD, United States
| | - Anandani Nellan
- National Cancer Institute, Pediatric Oncology Branch, National Institutes of Health, Bethesda, MD, United States
| | - Nirali N. Shah
- National Cancer Institute, Pediatric Oncology Branch, National Institutes of Health, Bethesda, MD, United States
| | - Juliane Gust
- Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Neurology, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Berois N, Pittini A, Osinaga E. Targeting Tumor Glycans for Cancer Therapy: Successes, Limitations, and Perspectives. Cancers (Basel) 2022; 14:cancers14030645. [PMID: 35158915 PMCID: PMC8833780 DOI: 10.3390/cancers14030645] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aberrant glycosylation is a common feature of many cancers, and it plays crucial roles in tumor development and biology. Cancer progression can be regulated by several physiopathological processes controlled by glycosylation, such as cell–cell adhesion, cell–matrix interaction, epithelial-to-mesenchymal transition, tumor proliferation, invasion, and metastasis. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs), which are suitable for selective cancer targeting, as well as novel antitumor immunotherapy approaches. This review summarizes the strategies developed in cancer immunotherapy targeting TACAs, analyzing molecular and cellular mechanisms and state-of-the-art methods in clinical oncology. Abstract Aberrant glycosylation is a hallmark of cancer and can lead to changes that influence tumor behavior. Glycans can serve as a source of novel clinical biomarker developments, providing a set of specific targets for therapeutic intervention. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs) suitable for selective cancer-targeting therapy. The best characterized TACAs are truncated O-glycans (Tn, TF, and sialyl-Tn antigens), gangliosides (GD2, GD3, GM2, GM3, fucosyl-GM1), globo-serie glycans (Globo-H, SSEA-3, SSEA-4), Lewis antigens, and polysialic acid. In this review, we analyze strategies for cancer immunotherapy targeting TACAs, including different antibody developments, the production of vaccines, and the generation of CAR-T cells. Some approaches have been approved for clinical use, such as anti-GD2 antibodies. Moreover, in terms of the antitumor mechanisms against different TACAs, we show results of selected clinical trials, considering the horizons that have opened up as a result of recent developments in technologies used for cancer control.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Correspondence: (N.B.); (E.O.)
| | - Alvaro Pittini
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (N.B.); (E.O.)
| |
Collapse
|
10
|
Abstract
Results of immunotherapy in childhood solid cancer have been so far, with the exception of neuroblastoma, quite disappointing. Lack of knowledge of the immune contexture of these tumors may have contributed to the failure of immunotherapies so far. Here, we systematically reviewed the literature regarding the immunology of Wilms tumor (WT), one of the most frequent pediatric solid tumors of the abdomen. In Wilms tumor patients the high cure rate of >90%, achieved by the combination of surgery and radio-chemotherapy, is at the expense of a high early and late toxicity. Moreover, treatment-resistant entities, such as diffuse anaplastic tumors or recurrent disease, still pose unsolved clinical problems. Successful immunotherapy could represent a novel and possibly less-toxic treatment option. Employing the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) method of literature search, we analyzed the current knowledge of the immunological landscape of Wilms tumors in terms of tumor microenvironment, prognostic implications of single biomarkers, and immunotherapy response.
Collapse
|
11
|
Pezeshki PS, Moeinafshar A, Ghaemdoust F, Razi S, Keshavarz-Fathi M, Rezaei N. Advances in pharmacotherapy for neuroblastoma. Expert Opin Pharmacother 2021; 22:2383-2404. [PMID: 34254549 DOI: 10.1080/14656566.2021.1953470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Neuroblastoma is the most prevalent cancer type diagnosed within the first year after birth and accounts for 15% of deaths from pediatric cancer. Despite the improvements in survival rates of patients with neuroblastoma, the incidence of the disease has increased over the last decade. Neuroblastoma tumor cells harbor a vast range of variable and heterogeneous histochemical and genetic alterations which calls for the need to administer individualized and targeted therapies to induce tumor regression in each patient. AREAS COVERED This paper provides reviews the recent clinical trials which used chemotherapeutic and/or targeted agents as either monotherapies or in combination to improve the response rate in patients with neuroblastoma, and especially high-risk neuroblastoma. It also reviews some of the prominent preclinical studies which can provide the rationale for future clinical trials. EXPERT OPINION Although some distinguished advances in pharmacotherapy have been made to improve the survival rate and reduce adverse events in patients with neuroblastoma, a more comprehensive understanding of the mechanisms of tumorigenesis, resistance to therapies or relapse, identifying biomarkers of response to each specific drug, and developing predictive preclinical models of the tumor can lead to further breakthroughs in the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Parmida Sadat Pezeshki
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysan Moeinafshar
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Ghaemdoust
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
12
|
Smith BAH, Bertozzi CR. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat Rev Drug Discov 2021; 20:217-243. [PMID: 33462432 PMCID: PMC7812346 DOI: 10.1038/s41573-020-00093-1] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/31/2023]
Abstract
Carbohydrates - namely glycans - decorate every cell in the human body and most secreted proteins. Advances in genomics, glycoproteomics and tools from chemical biology have made glycobiology more tractable and understandable. Dysregulated glycosylation plays a major role in disease processes from immune evasion to cognition, sparking research that aims to target glycans for therapeutic benefit. The field is now poised for a boom in drug development. As a harbinger of this activity, glycobiology has already produced several drugs that have improved human health or are currently being translated to the clinic. Focusing on three areas - selectins, Siglecs and glycan-targeted antibodies - this Review aims to tell the stories behind therapies inspired by glycans and to outline how the lessons learned from these approaches are paving the way for future glycobiology-focused therapeutics.
Collapse
Affiliation(s)
- Benjamin A H Smith
- Department of Chemical & Systems Biology and ChEM-H, Stanford School of Medicine, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemical & Systems Biology and ChEM-H, Stanford School of Medicine, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW In the era of immune-oncology, a breakthrough in the field of pediatric solid tumor research has been the demonstration that immunotherapy for patients with high-risk neuroblastoma improves the event-free and overall survival. Immunotherapeutic approaches including a monoclonal antibody targeting the cell surface glycosphingolipid disialoganglioside and cytokines successfully eliminate minimal residual disease. RECENT FINDINGS Since this seminal discovery, clinical trials evaluating immunotherapy in combination with chemotherapy and cellular therapies have begun to demonstrate effectiveness in treatment of bulky disease. Broader knowledge has also been gained regarding immunotherapy-limiting side-effects. Furthermore, biologic studies in actively treated patients have contributed to our growing understanding of the underlying immunologic processes and mechanisms of tumor response and immune evasion. SUMMARY The example of neuroblastoma is beginning to demonstrate that various immunotherapies combined with more conventional anticancer treatments can be synergistic. These advancements pose new challenges to both clinical researchers and medical provider and herald a new era in pediatric cancer therapy.
Collapse
Affiliation(s)
- Rosa Nguyen
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD
| | - Carol J. Thiele
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD
| |
Collapse
|
14
|
Wienke J, Dierselhuis MP, Tytgat GAM, Künkele A, Nierkens S, Molenaar JJ. The immune landscape of neuroblastoma: Challenges and opportunities for novel therapeutic strategies in pediatric oncology. Eur J Cancer 2020; 144:123-150. [PMID: 33341446 DOI: 10.1016/j.ejca.2020.11.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Immunotherapy holds great promise for the treatment of pediatric cancers. In neuroblastoma, the recent implementation of anti-GD2 antibody Dinutuximab into the standard of care has improved patient outcomes substantially. However, 5-year survival rates are still below 50% in patients with high-risk neuroblastoma, which has sparked investigations into novel immunotherapeutic approaches. T cell-engaging therapies such as immune checkpoint blockade, antibody-mediated therapy and adoptive T cell therapy have proven remarkably successful in a range of adult cancers but still meet challenges in pediatric oncology. In neuroblastoma, their limited success may be due to several factors. Neuroblastoma displays low immunogenicity due to its low mutational load and lack of MHC-I expression. Tumour infiltration by T and NK cells is especially low in high-risk neuroblastoma and is prognostic for survival. Only a small fraction of tumour-infiltrating lymphocytes shows tumour reactivity. Moreover, neuroblastoma tumours employ a variety of immune evasion strategies, including expression of immune checkpoint molecules, induction of immunosuppressive myeloid and stromal cells, as well as secretion of immunoregulatory mediators, which reduce infiltration and reactivity of immune cells. Overcoming these challenges will be key to the successful implementation of novel immunotherapeutic interventions. Combining different immunotherapies, as well as personalised strategies, may be promising approaches. We will discuss the composition, function and prognostic value of tumour-infiltrating lymphocytes (TIL) in neuroblastoma, reflect on challenges for immunotherapy, including a lack of TIL reactivity and tumour immune evasion strategies, and highlight opportunities for immunotherapy and future perspectives with regard to state-of-the-art developments in the tumour immunology space.
Collapse
Affiliation(s)
- Judith Wienke
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | | | | | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
15
|
Favoino E, Prete M, Catacchio G, Conteduca G, Perosa F. CD20-Mimotope Peptides: A Model to Define the Molecular Basis of Epitope Spreading. Int J Mol Sci 2019; 20:ijms20081920. [PMID: 31003532 PMCID: PMC6515264 DOI: 10.3390/ijms20081920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/28/2022] Open
Abstract
Antigen-mimicking peptide (mimotope)-based vaccines are one of the most promising forms of active-immunotherapy. The main drawback of this approach is that it induces antibodies that react poorly with the nominal antigen. The aim of this study was to investigate the molecular basis underlying the weak antibody response induced against the naïve protein after peptide vaccination. For this purpose, we analyzed the fine specificity of monoclonal antibodies (mAb) elicited with a 13-mer linear peptide, complementary to theantigen-combining site of the anti-CD20 mAb, Rituximab, in BALB/c mice. Anti-peptide mAb competed with Rituximab for peptide binding. Even so, they recognized a different antigenic motif from the one recognized by Rituximab. This explains their lack of reactivity with membrane (naïve) CD20. These data indicate that even on a short peptide the immunogenic and antigenic motifs may be different. These findings highlight an additional mechanism for epitope spreading and should be taken into account when designing peptides for vaccine purposes.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal, Murine-Derived/genetics
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antigens, CD20/genetics
- Antigens, CD20/immunology
- Binding Sites, Antibody/genetics
- Epitopes/genetics
- Epitopes/immunology
- Humans
- Mice
- Peptide Library
- Peptides/genetics
- Peptides/immunology
- Rituximab/genetics
- Rituximab/immunology
- Vaccination/methods
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Elvira Favoino
- Department of Biomedical Sciences and Human Oncology (DIMO), Rheumatologic and Systemic Autoimmune Diseases Unit, University of Bari Medical School, I-70124 Bari, Italy.
| | - Marcella Prete
- Department of Biomedical Sciences and Human Oncology (DIMO), Rheumatologic and Systemic Autoimmune Diseases Unit, University of Bari Medical School, I-70124 Bari, Italy.
| | - Giacomo Catacchio
- Department of Biomedical Sciences and Human Oncology (DIMO), Rheumatologic and Systemic Autoimmune Diseases Unit, University of Bari Medical School, I-70124 Bari, Italy.
| | - Giuseppina Conteduca
- Department of Biomedical Sciences and Human Oncology (DIMO), Rheumatologic and Systemic Autoimmune Diseases Unit, University of Bari Medical School, I-70124 Bari, Italy.
| | - Federico Perosa
- Department of Biomedical Sciences and Human Oncology (DIMO), Rheumatologic and Systemic Autoimmune Diseases Unit, University of Bari Medical School, I-70124 Bari, Italy.
| |
Collapse
|
16
|
Pasquel-Dávila DS, Yanez-Vaca SA, Espinosa-Hidalgo ND, Cuadros Buenaventura EG. Gangliosides generalities and role in cancer therapies. BIONATURA 2019. [DOI: 10.21931/rb/cs/2019.02.01.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Gangliosides are located in the plasma membrane; this confers them the ability to interact with other molecules in order to participate in important cellular processes. Some gangliosides presence or absence in the cell surface is associated with either normal condition or pathologies. Particularly in cancer, gangliosides play a critical role in pathological events like cellular malignancy, tumor formation, and metastasis, defining gangliosides as good candidates to be used as cellular markers. When specific gangliosides are exhibited, immunotherapy could be applied in order to inhibit tumorigenesis or induce an immunogenic response. Novel cancer treatments such as NGcGM3/VSSP vaccines, valproic acid, BMS-345541 inhibitor of GD2 and immunotherapies using 1E10 and 14F7 monoclonal antibodies are described. On this review, there will be studied the gangliosides that allowed developing biological techniques that can give immunogenicity to cancer cells
Collapse
Affiliation(s)
| | - Sabrina A. Yanez-Vaca
- School of Biological Science and Engineering, Yachay Tech University, Urcuquí – Ecuador
| | | | | |
Collapse
|
17
|
Albertó M, Cuello HA, Gulino CA, Pifano M, Belgorosky D, Gabri MR, Eiján AM, Segatori VI. Expression of bladder cancer-associated glycans in murine tumor cell lines. Oncol Lett 2019; 17:3141-3150. [PMID: 30867744 PMCID: PMC6396118 DOI: 10.3892/ol.2019.9995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
The characterization of murine cell lines is of great importance in order to identify preclinical models that could resemble human diseases. Aberrant glycosylation includes the loss, excessive or novel expression of glycans and the appearance of truncated structures. MB49 and MB49-I are currently the only two murine cell lines available for the development of preclinical bladder cancer models. The glycans Lewis X (LeX), Sialyl lewis X (SLeX) and Sialyl Tn (STn) have previously been associated with aggressiveness, dissemination and poor prognosis in human bladder cancer, additionally N-glycolyl GM3 (NGcGM3) is a neo-antigen expressed in many types of tumors; however, to the best of our knowledge, its expression has not previously been assessed in this type of cancer. Taking into account the relevance of glycans in tumor biology and considering that they can act as targets of therapies and biomarkers, the present study evaluated the expression of LeX, SLeX, STn and NGcGM3 in MB49 and MB49-I cells, in different growth conditions such as monolayer cultures, three-dimensional multicellular spheroids and mouse heterotopic and orthotopic tumors. The expression of LeX was not detected in either cell line, whereas SLeX was expressed in monolayers, spheroids and orthotopic tumors of both cell lines. STn was only identified in MB49 monolayers and spheroids. There are no reports concerning the expression of NGcGM3 in human or murine bladder cancer. In our hands, MB49 and MB49-I expressed this ganglioside in all the growth conditions evaluated. The assessment of its expression in cancer cell lines and patient tumors is of great importance, considering the relevance of this ganglioside in tumor biology. The data obtained by the present study demonstrates that glycan expression may be substantially altered depending on the growth conditions, highlighting the importance of the characterization of murine cancer models. To the best of our knowledge, the present study is the first to examine the expression of cancer-associated glycans, in the two murine cell lines available for the development of preclinical studies in bladder cancer.
Collapse
Affiliation(s)
- Marina Albertó
- Laboratory of Molecular Oncology, Quilmes National University, Bernal B1876BXD, Argentina
| | - Hector Adrián Cuello
- Laboratory of Molecular Oncology, Quilmes National University, Bernal B1876BXD, Argentina
| | | | - Marina Pifano
- Laboratory of Molecular Oncology, Quilmes National University, Bernal B1876BXD, Argentina
| | - Denise Belgorosky
- Research Area, Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires 1417 DTB, Argentina
| | - Mariano Rolando Gabri
- Laboratory of Molecular Oncology, Quilmes National University, Bernal B1876BXD, Argentina
| | - Ana María Eiján
- Research Area, Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires 1417 DTB, Argentina
| | - Valeria Inés Segatori
- Laboratory of Molecular Oncology, Quilmes National University, Bernal B1876BXD, Argentina
| |
Collapse
|
18
|
Young JS, Dayani F, Morshed RA, Okada H, Aghi MK. Immunotherapy for High Grade Gliomas: A Clinical Update and Practical Considerations for Neurosurgeons. World Neurosurg 2019; 124:397-409. [PMID: 30677574 PMCID: PMC6642850 DOI: 10.1016/j.wneu.2018.12.222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
The current standard of care for patients with high grade gliomas includes surgical resection, chemotherapy, and radiation; but even still the majority of patients experience disease progression and succumb to their illness within a few years of diagnosis. Immunotherapy, which stimulates an anti-tumor immune response, has been revolutionary in the treatment of some hematological and solid malignancies, generating substantial excitement for its potential for patients with glioblastoma. The most commonly used immunotherapies include dendritic cell and peptide vaccines, checkpoint inhibitors, and adoptive T cell therapy. However, to date, the preclinical success of these approaches against high-grade glioma models has not been replicated in human clinical trials. Moreover, the complex response to these biologically active treatments can complicate management decisions, and the neurosurgical oncology community needs to be actively involved in and up to date on the use of these agents in high grade glioma patients. In this review, we discuss the challenges immunotherapy faces for high grade gliomas, the completed and ongoing clinical trials for the major immunotherapies, and the nuances in management for patients being actively treated with one of these agents.
Collapse
Affiliation(s)
- Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Fara Dayani
- School of Medicine, University of California, San Francisco
| | - Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| |
Collapse
|
19
|
Rossig C, Kailayangiri S, Jamitzky S, Altvater B. Carbohydrate Targets for CAR T Cells in Solid Childhood Cancers. Front Oncol 2018; 8:513. [PMID: 30483473 PMCID: PMC6240699 DOI: 10.3389/fonc.2018.00513] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/22/2018] [Indexed: 12/23/2022] Open
Abstract
Application of the CAR targeting strategy in solid tumors is challenged by the need for adequate target antigens. As a consequence of their tissue origin, embryonal cancers can aberrantly express membrane-anchored gangliosides. These are carbohydrate molecules consisting of a glycosphingolipid linked to sialic acids residues. The best-known example is the abundant expression of ganglioside GD2 on the cell surface of neuroblastomas which derive from GD2-positive neuroectoderm. Gangliosides are involved in various cellular functions, including signal transduction, cell proliferation, differentiation, adhesion and cell death. In addition, transformation of human cells to cancer cells can be associated with distinct glycosylation profiles which provide advantages for tumor growth and dissemination and can serve as immune targets. Both gangliosides and aberrant glycosylation of proteins escape the direct molecular and proteomic screening strategies currently applied to identify further immune targets in cancers. Due to their highly restricted expression and their functional roles in the malignant behavior, they are attractive targets for immune engineering strategies. GD2-redirected CAR T cells have shown activity in clinical phase I/II trials in neuroblastoma and next-generation studies are ongoing. Further carbohydrate targets for CAR T cells in preclinical development are O-acetyl-GD2, NeuGc-GM3 (N-glycolyl GM3), GD3, SSEA-4, and oncofetal glycosylation variants. This review summarizes knowledge on the role and function of some membrane-expressed non-protein antigens, including gangliosides and abnormal protein glycosylation patterns, and discusses their potential to serve as a CAR targets in pediatric solid cancers.
Collapse
Affiliation(s)
- Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Muenster, Muenster, Germany
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Silke Jamitzky
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| |
Collapse
|
20
|
|
21
|
Torbidoni AV, Sampor C, Laurent VE, Aschero R, Iyer S, Rossi J, Alderete D, Alonso DF, Szijan I, Chantada GL. Minimal disseminated disease evaluation and outcome in trilateral retinoblastoma. Br J Ophthalmol 2018; 102:1597-1601. [DOI: 10.1136/bjophthalmol-2018-312263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/13/2018] [Accepted: 06/21/2018] [Indexed: 11/04/2022]
Abstract
Trilateral retinoblastoma (TRb) presents a management challenge, since intracranial tumours are seldom times resectable and quickly disseminate. However, there are no risk factors to predict the final outcome in each patient.ObjectiveTo evaluate minimal disseminated disease (MDD) in the bone marrow (BM) and the cerebrospinal fluid (CSF) at diagnosis and during follow-up and reviewing its potential impact in the outcome of patients with TRb.Methods and analysisWe evaluated MDD in five patients with TRb, detecting the mRNA of CRX and/or GD2, in samples from BM and CSF, obtained at diagnosis, follow-up and relapse.ResultsTreatment involved intensive systemic chemotherapy in four patients, one did not receive this treatment and died of progression of the disease. Two patients underwent stem cell rescue. Three patients had leptomeningeal relapse and died. One patient remains disease-free for 84 months. RB1 mutations were identified in the five patients, all of them were null mutations. At diagnosis, one patient had tumour cells in the CSF, and none had the BM involved. Only one case of four presented MDD during follow-up in the CSF, without concomitant detection in the BM. On leptomeningeal relapse, no case had MDD in the BM. In all these cases, cells in the CSF were positive for GD2 and/or CRX.ConclusionCSF dissemination always concluded in the death of the patient, without concomitant systemic dissemination denoting the importance of increasing treatment directed to the CSF compartment. The MDD presence could indicate a forthcoming relapse.
Collapse
|
22
|
Abstract
CNS disorders are on the rise despite advancements in our understanding of their pathophysiological mechanisms. A major hurdle to the treatment of these disorders is the blood-brain barrier (BBB), which serves as an arduous janitor to protect the brain. Many drugs are being discovered for CNS disorders, which, however fail to enter the market because of their inability to cross the BBB. This is a pronounced challenge for the pharmaceutical fraternity. Hence, in addition to the discovery of novel entities and drug candidates, scientists are also developing new formulations of existing drugs for brain targeting. Several approaches have been investigated to allow therapeutics to cross the BBB. As the molecular structure of the BBB is better elucidated, several key approaches for brain targeting include physiological transport mechanisms such as adsorptive-mediated transcytosis, inhibition of active efflux pumps, receptor-mediated transport, cell-mediated endocytosis, and the use of peptide vectors. Drug-delivery approaches comprise delivery from microspheres, biodegradable wafers, and colloidal drug-carrier systems (e.g., liposomes, nanoparticles, nanogels, dendrimers, micelles, nanoemulsions, polymersomes, exosomes, and quantum dots). The current review discusses the latest advancements in these approaches, with a major focus on articles published in 2015 and 2016. In addition, we also cover the alternative delivery routes, such as intranasal and convection-enhanced diffusion methods, and disruption of the BBB for brain targeting.
Collapse
Affiliation(s)
- Mayur M Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India.
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India
| |
Collapse
|
23
|
Targeting O-Acetyl-GD2 Ganglioside for Cancer Immunotherapy. J Immunol Res 2017; 2017:5604891. [PMID: 28154831 PMCID: PMC5244029 DOI: 10.1155/2017/5604891] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/18/2016] [Accepted: 12/08/2016] [Indexed: 12/29/2022] Open
Abstract
Target selection is a key feature in cancer immunotherapy, a promising field in cancer research. In this respect, gangliosides, a broad family of structurally related glycolipids, were suggested as potential targets for cancer immunotherapy based on their higher abundance in tumors when compared with the matched normal tissues. GD2 is the first ganglioside proven to be an effective target antigen for cancer immunotherapy with the regulatory approval of dinutuximab, a chimeric anti-GD2 therapeutic antibody. Although the therapeutic efficacy of anti-GD2 monoclonal antibodies is well documented, neuropathic pain may limit its application. O-Acetyl-GD2, the O-acetylated-derivative of GD2, has recently received attention as novel antigen to target GD2-positive cancers. The present paper examines the role of O-acetyl-GD2 in tumor biology as well as the available preclinical data of anti-O-acetyl-GD2 monoclonal antibodies. A discussion on the relevance of O-acetyl-GD2 in chimeric antigen receptor T cell therapy development is also included.
Collapse
|
24
|
Brok J, Treger TD, Gooskens SL, van den Heuvel-Eibrink MM, Pritchard-Jones K. Biology and treatment of renal tumours in childhood. Eur J Cancer 2016; 68:179-195. [PMID: 27969569 DOI: 10.1016/j.ejca.2016.09.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/25/2016] [Accepted: 09/01/2016] [Indexed: 02/08/2023]
Abstract
In Europe, almost 1000 children are diagnosed with a malignant renal tumour each year. The vast majority of cases are nephroblastoma, also known as Wilms' tumour (WT). Most children are treated according to Société Internationale d'Oncologie Pédiatrique Renal Tumour Study Group (SIOP-RTSG) protocols with pre-operative chemotherapy, surgery, and post-operative treatment dependent on stage and histology. Overall survival approaches 90%, but a subgroup of WT, with high-risk histology and/or relapsed disease, still have a much poorer prognosis. Outcome is similarly poor for the rare non-WT, particularly for malignant rhabdoid tumour of the kidney, metastatic clear cell sarcoma of the kidney (CCSK), and metastatic renal cell carcinoma (RCC). Improving outcome and long-term quality of life requires more accurate risk stratification through biological insights. Biomarkers are also needed to signpost potential targeted therapies for high-risk subgroups. Our understanding of Wilms' tumourigenesis is evolving and several signalling pathways, microRNA processing and epigenetics are now known to play pivotal roles. Most rhabdoid tumours display somatic and/or germline mutations in the SMARCB1 gene, whereas CCSK and paediatric RCC reveal a more varied genetic basis, including characteristic translocations. Conducting early-phase trials of targeted therapies is challenging due to the scarcity of patients with refractory or relapsed disease, the rapid progression of relapse and the genetic heterogeneity of the tumours with a low prevalence of individual somatic mutations. A further consideration in improving population survival rates is the geographical variation in outcomes across Europe. This review provides a comprehensive overview of the current biological knowledge of childhood renal tumours alongside the progress achieved through international collaboration. Ongoing collaboration is needed to ensure consistency of outcomes through standardised diagnostics and treatment and incorporation of biomarker research. Together, these objectives constitute the rationale for the forthcoming SIOP-RTSG 'UMBRELLA' study.
Collapse
Affiliation(s)
- Jesper Brok
- Cancer Section, University College London, Institute of Child Health, UK; Department of Paediatric Haematology and Oncology, Rigshospitalet, Copenhagen University Hospital, Denmark.
| | - Taryn D Treger
- Cancer Section, University College London, Institute of Child Health, UK
| | - Saskia L Gooskens
- Department of Paediatric Oncology, Princess Máxima Center for Pediatric Oncology and University of Utrecht, The Netherlands; Department of Paediatric Haematology and Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marry M van den Heuvel-Eibrink
- Department of Paediatric Oncology, Princess Máxima Center for Pediatric Oncology and University of Utrecht, The Netherlands
| | | |
Collapse
|
25
|
Ho WL, Hsu WM, Huang MC, Kadomatsu K, Nakagawara A. Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma. J Hematol Oncol 2016; 9:100. [PMID: 27686492 PMCID: PMC5041531 DOI: 10.1186/s13045-016-0334-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023] Open
Abstract
Glycosylation is the most complex post-translational modification of proteins. Altered glycans on the tumor- and host-cell surface and in the tumor microenvironment have been identified to mediate critical events in cancer pathogenesis and progression. Tumor-associated glycan changes comprise increased branching of N-glycans, higher density of O-glycans, generation of truncated versions of normal counterparts, and generation of unusual forms of terminal structures arising from sialylation and fucosylation. The functional role of tumor-associated glycans (Tn, sTn, T, and sLea/x) is dependent on the interaction with lectins. Lectins are expressed on the surface of immune cells and endothelial cells or exist as extracellular matrix proteins and soluble adhesion molecules. Expression of tumor-associated glycans is involved in the dysregulation of glycogenes, which mainly comprise glycosyltransferases and glycosidases. Furthermore, genetic and epigenetic mechanisms on many glycogenes are associated with malignant transformation. With better understanding of all aspects of cancer-cell glycomics, many tumor-associated glycans have been utilized for diagnostic, prognostic, and therapeutic purposes. Glycan-based therapeutics has been applied to cancers from breast, lung, gastrointestinal system, melanomas, and lymphomas but rarely to neuroblastomas (NBs). The success of anti-disialoganglioside (GD2, a glycolipid antigen) antibodies sheds light on glycan-based therapies for NB and also suggests the possibility of protein glycosylation-based therapies for NB. This review summarizes our understanding of cancer glycobiology with a focus of how protein glycosylation and associated glycosyltransferases affect cellular behaviors and treatment outcome of various cancers, especially NB. Finally, we highlight potential applications of glycosylation in drug and cancer vaccine development for NB.
Collapse
Affiliation(s)
- Wan-Ling Ho
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan.,Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| | - Min-Chuan Huang
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan. .,Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 10051, Taiwan.
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | |
Collapse
|
26
|
Perez Horta Z, Goldberg JL, Sondel PM. Anti-GD2 mAbs and next-generation mAb-based agents for cancer therapy. Immunotherapy 2016; 8:1097-117. [PMID: 27485082 PMCID: PMC5619016 DOI: 10.2217/imt-2016-0021] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 05/11/2016] [Indexed: 12/16/2022] Open
Abstract
Tumor-specific monoclonal antibodies (mAbs) have demonstrated efficacy in the clinic, becoming an important approach for cancer immunotherapy. Due to its limited expression on normal tissue, the GD2 disialogangloside expressed on neuroblastoma cells is an excellent candidate for mAb therapy. In 2015, dinutuximab (an anti-GD2 mAb) was approved by the US FDA and is currently used in a combination immunotherapeutic regimen for the treatment of children with high-risk neuroblastoma. Here, we review the extensive preclinical and clinical development of anti-GD2 mAbs and the different mechanisms by which they mediate tumor cell killing. In addition, we discuss different mAb-based strategies that capitalize on the targeting ability of anti-GD2 mAbs to potentially deliver, as monotherapy, or in combination with other treatments, improved antitumor efficacy.
Collapse
Affiliation(s)
| | - Jacob L Goldberg
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics & Genetics, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| |
Collapse
|
27
|
Gabri MR, Cacciavillano W, Chantada GL, Alonso DF. Racotumomab for treating lung cancer and pediatric refractory malignancies. Expert Opin Biol Ther 2016; 16:573-8. [DOI: 10.1517/14712598.2016.1157579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Daniotti JL, Lardone RD, Vilcaes AA. Dysregulated Expression of Glycolipids in Tumor Cells: From Negative Modulator of Anti-tumor Immunity to Promising Targets for Developing Therapeutic Agents. Front Oncol 2016; 5:300. [PMID: 26779443 PMCID: PMC4703717 DOI: 10.3389/fonc.2015.00300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/14/2015] [Indexed: 12/14/2022] Open
Abstract
Glycolipids are complex molecules consisting of a ceramide lipid moiety linked to a glycan chain of variable length and structure. Among these are found the gangliosides, which are sialylated glycolipids ubiquitously distributed on the outer layer of vertebrate plasma membranes. Changes in the expression of certain species of gangliosides have been described to occur during cell proliferation, differentiation, and ontogenesis. However, the aberrant and elevated expression of gangliosides has been also observed in different types of cancer cells, thereby promoting tumor survival. Moreover, gangliosides are actively released from the membrane of tumor cells, having a strong impact on impairing anti-tumor immunity. Beyond the undesirable effects of gangliosides in cancer cells, a substantial number of cancer immunotherapies have been developed in recent years that have used gangliosides as the main target. This has resulted in successful immune cell- or antibody-responses against glycolipids, with promising results having been obtained in clinical trials. In this review, we provide a general overview on the metabolism of glycolipids, both in normal and tumor cells, as well as examining glycolipid-mediated immune modulation and the main successes achieved in immunotherapies using gangliosides as molecular targets.
Collapse
Affiliation(s)
- Jose Luis Daniotti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Ricardo D Lardone
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute at Providence Saint John's Health Center , Santa Monica, CA , USA
| | - Aldo A Vilcaes
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba , Argentina
| |
Collapse
|
29
|
Cellular and Antibody Based Approaches for Pediatric Cancer Immunotherapy. J Immunol Res 2015; 2015:675269. [PMID: 26587548 PMCID: PMC4637498 DOI: 10.1155/2015/675269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/31/2015] [Indexed: 11/17/2022] Open
Abstract
Progress in the use of traditional chemotherapy and radiation-based strategies for the treatment of pediatric malignancies has plateaued in the past decade, particularly for patients with relapsing or therapy refractory disease. As a result, cellular and humoral immunotherapy approaches have been investigated for several childhood cancers. Several monoclonal antibodies are now FDA approved and commercially available, some of which are currently considered standard of practice. There are also several new cellular immunotherapy approaches under investigation, including chimeric antigen receptor (CAR) modified T cells, cancer vaccines and adjuvants, and natural killer (NK) cell therapies. In this review, we will discuss previous studies on pediatric cancer immunotherapy and new approaches that are currently being investigated in clinical trials.
Collapse
|