1
|
Matorras R, Pérez-Fernández S, Mercader A, Sierra S, Larreategui Z, Ferrando M, Malaina I, Rubio C, Gantxegi M. Lessons learned from 64,071 embryos subjected to PGT for aneuploidies: results, recurrence pattern and indications analysis. Reprod Biomed Online 2024; 49:103979. [PMID: 39186907 DOI: 10.1016/j.rbmo.2024.103979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 08/28/2024]
Abstract
RESEARCH QUESTION What is the influence of biological, technical and clinical factors on embryo outcomes in preimplantation genetic testing for aneuploidies (PGT-A) and what is the recurrence pattern? DESIGN This retrospective study included 64,071 embryos undergoing PGT-A in the same laboratory between 2011 and 2019. Biopsies were performed at the day 3 embryo stage (48.32%) or blastocyst stage (51.70%). Advanced maternal age (AMA) was the main indication (65.62%). RESULTS The aneuploidy rate was 67.75%, higher in women aged over 35 years than in women aged 35 years or less (71.76% versus 47.44%), and higher in day 3 embryo versus blastocyst biopsies (77.51% versus 58.62%). The trisomy:monosomy ratio was 1.01 for blastocysts versus 0.84 for day 3 embryos. Trisomy 21 was present in 4.9% of embryos. In aneuploid embryos, the probability of having one or more involved chromosomes followed a decreasing exponential pattern. The probability of an embryo being euploid was constant at around 30% (40% in blastocysts, 20% in day 3 embryos). The cumulative probability of having one or more euploid embryos after 10 biopsied embryos was 94.79% in blastocysts and 80.61% in day 3 embryos. AMA was associated with a much higher aneuploidy rate than all other indications, which among them had similar aneuploidy rate and chromosomal involvement. CONCLUSIONS There is a considerably lower aneuploidy rate in blastocysts than day 3 embryos, which is most notable for monosomies. While AMA shows an increased aneuploidy rate and a specific chromosomal pattern of involvement, the remaining indications showed a similar aneuploidy rate and chromosomal pattern. Even after producing many consecutive aneuploid embryos, the possibility of obtaining a euploid embryo is not negligible.
Collapse
Affiliation(s)
- Roberto Matorras
- Instituto Valenciano de Infertilidad (IVI), IVIRMA, Bilbao, Spain.; Biobizkaia Health Research Institute, Baracaldo, Spain.; Human Reproduction Unit, Cruces University Hospital, Baracaldo, Spain.; Obstetrics and Gynecology Department, Basque Country University, Bilbao, Spain..
| | | | - Amparo Mercader
- Instituto Valenciano de Infertilidad (IVI), IVIRMA, Valencia, Spain
| | - Silvia Sierra
- Human Reproduction Unit, Cruces University Hospital, Baracaldo, Spain
| | | | - Marcos Ferrando
- Instituto Valenciano de Infertilidad (IVI), IVIRMA, Bilbao, Spain
| | - Iker Malaina
- Clinical Epidemiological Unit, Cruces Hospital, Biocruces Health Research Institute BIOEF, Vizcaya, Spain.; Department of Mathematics, Faculty of Science and Technology, UPV/EHU, Vizcaya, Spain
| | - Carmen Rubio
- EmbryoGenetics Department, Igenomix, Valencia, Spain
| | | |
Collapse
|
2
|
Elghetany MT, Patnaik MM, Khoury JD. Myelodysplastic neoplasms evolving from inherited bone marrow failure syndromes / germline predisposition syndromes: Back under the microscope. Leuk Res 2024; 137:107441. [PMID: 38301422 DOI: 10.1016/j.leukres.2024.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
Inherited bone marrow failure syndromes and germline predisposition syndromes (IBMFS/GPS) are associated with increased risk for hematologic malignancies, particularly myeloid neoplasms, such as myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML). The diagnosis of MDS in these syndromes poses difficulty due to frequent bone marrow hypocellularity and the presence of some degree of dysplastic features related to the underlying germline defect causing abnormal maturation of one or more cell lines. Yet, the diagnosis of MDS is usually associated with a worse outcome in several IBMFS/GPS. Criteria for the diagnosis of MDS in IBMFS/GPS have not been standardized with some authors suggesting a mixture of morphologic, cytogenetic, and genetic criteria. This review highlights these challenges and suggests a more standardized approach to nomenclature and diagnostic criteria.
Collapse
Affiliation(s)
- M Tarek Elghetany
- Department of Pathology & Immunology and Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph D Khoury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Brock JM, Dillinger C, Covey D, Lim JA, Martin DE. New-Onset Monosomy 7-Induced Pancytopenia in a 66-Year-Old Woman. Cureus 2024; 16:e53159. [PMID: 38420066 PMCID: PMC10901191 DOI: 10.7759/cureus.53159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2024] [Indexed: 03/02/2024] Open
Abstract
Myelodysplastic syndrome (MDS) is characterized by failure to initiate hematopoiesis or impaired maturation of cells, often presenting with pancytopenias with or without associated fatigue, infections, or inappropriate bleeding and bruising. Karyotype analyses of MDS patients commonly show deletion of the q arm of chromosome 7, suggesting loss of this region is likely implicated in the insufficient hematopoiesis seen in MDS. The predisposition to deletion of 7q is commonly inherited, with clinical presentation in early childhood associated with pancytopenia or hematological malignancy. In this case, we present a 66-year-old female who was incidentally found to be pancytopenic in the emergency department while being evaluated for dyspnea, with a bone marrow biopsy later confirming a diagnosis of MDS with monosomy 7. Sporadic loss of 7q can occur at any stage in life without any family history of hematological disease. Our patient has no known personal or family history of MDS, with normal blood counts during hospitalization three years prior, suggesting de novo loss of 7q occurring at greater than 60 years of age.
Collapse
Affiliation(s)
| | | | - David Covey
- Internal Medicine, Unity Health, Searcy, USA
| | | | | |
Collapse
|
4
|
Strullu M, Leblanc T, Lainey E. [Juvenile myelomonocytic leukemia and pediatric myelodysplastic syndromes]. Bull Cancer 2023; 110:1183-1195. [PMID: 37453833 DOI: 10.1016/j.bulcan.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 07/18/2023]
Abstract
Juvenile myelomonocytic leukemia (JMML) and myelodysplastic syndromes (MDS) of children are rare and aggressive diseases. They both have the particularity of being very frequently associated with an underlying predisposition syndrome, which must be systematically investigated by meticulous clinical exam completed by molecular analysis on fibroblasts, in order to guarantee the best therapeutic management. New generation sequencing techniques have made it possible to better define the landscape of constitutional predisposing pathologies, to understand the clonal evolution that leads to the development of hematological malignancies and to identify new prognostic markers. In these two diseases, the only curative treatment is allogeneic hematopoietic stem cell transplantation, for which the appropriate timeframe, the type of donor and the conditioning must be decided in consultation with the expert teams in each entity.
Collapse
Affiliation(s)
- Marion Strullu
- AP-HP, hôpital Robert-Debré, service d'hémato-immunologie pédiatrique, Paris, France; Université Paris-Cité, institut universitaire d'hématologie, Inserm UMR1131, Paris, France.
| | - Thierry Leblanc
- AP-HP, hôpital Robert-Debré, service d'hémato-immunologie pédiatrique, Paris, France
| | - Elodie Lainey
- Université Paris-Cité, institut universitaire d'hématologie, Inserm UMR1131, Paris, France; AP-HP, hôpital Robert-Debré, service d'hématologie biologique, Paris, France
| |
Collapse
|
5
|
Yanagi M, Kobayashi R, Matsushima S, Hori D, Sano H, Yoshihara M, Kobayashi K. Development of nephrotic syndrome during immunosuppressive treatment for aplastic anaemia with monosomy 7 in a 16-year-old boy: A case report. J Paediatr Child Health 2023; 59:365-367. [PMID: 36285821 DOI: 10.1111/jpc.16262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 10/17/2022] [Indexed: 02/03/2023]
Affiliation(s)
- Masato Yanagi
- Department of Hematology/Oncology for Children and Adolescents, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Ryoji Kobayashi
- Department of Hematology/Oncology for Children and Adolescents, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Satoru Matsushima
- Department of Hematology/Oncology for Children and Adolescents, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Daiki Hori
- Department of Hematology/Oncology for Children and Adolescents, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Hirozumi Sano
- Department of Hematology/Oncology for Children and Adolescents, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Mayumi Yoshihara
- Department of Nephrology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Kunihiko Kobayashi
- Department of Hematology/Oncology for Children and Adolescents, Sapporo Hokuyu Hospital, Sapporo, Japan
| |
Collapse
|
6
|
Kubota Y, Zawit M, Durrani J, Shen W, Bahaj W, Kewan T, Ponvilawan B, Mori M, Meggendorfer M, Gurnari C, LaFramboise T, Feurstein S, Sekeres MA, Visconte V, Godley LA, Haferlach T, Maciejewski JP. Significance of hereditary gene alterations for the pathogenesis of adult bone marrow failure versus myeloid neoplasia. Leukemia 2022; 36:2827-2834. [PMID: 36266327 DOI: 10.1038/s41375-022-01729-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Broader genetic screening has led to the growing recognition of the role of germline variants associated with adult bone marrow failure (BMF) and myeloid neoplasia (MN) not exclusively in children and young adults. In this study, we applied a germline variant panel to 3008 adult BMF and MN cases to assess the importance of germline genetics and its impact on disease phenotype and prognosis. In our cohort, up to 9.7% of BMF and 5.3% of MN cases carried germline variants. Our cohort also included heterozygous carriers of recessive traits, suggesting they contribute to the risk of BMF and MN. By gene category, variants of Fanconi anemia gene family represented the highest-frequency category for both BMF and MN cases, found in 4.9% and 1.7% cases, respectively. In addition, about 1.4% of BMF and 0.19% of MN cases harbored multiple germline variants affecting often functionally related genes as compound heterozygous. The burden of germline variants in BMF and MN was clearly associated with acquisition of monosomy 7. While BMF cases carrying germline variants showed similar overall survival as compared to the wild-type (WT) cases, MN cases with germline variants experienced a significantly shorter overall survival as compared to WT cases.
Collapse
Affiliation(s)
- Yasuo Kubota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Misam Zawit
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jibran Durrani
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wenyi Shen
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Waled Bahaj
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tariq Kewan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ben Ponvilawan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Minako Mori
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Simone Feurstein
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
- Department of Internal Medicine, Section of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mikkael A Sekeres
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lucy A Godley
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | | | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
7
|
Ramos H, Aly MM, Balasubramanian SK. Late Presentation of Dyskeratosis Congenita: Germline Predisposition to Adult-Onset Secondary Acute Myeloid Leukemia. Hematol Rep 2022; 14:294-299. [PMID: 36278519 PMCID: PMC9589946 DOI: 10.3390/hematolrep14040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/12/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Classic dyskeratosis congenita is a hereditary disease where the majority of patients present with bone marrow failure and mucocutaneous changes: mainly skin pigmentation, nail dystrophy, oral premalignant leukoplakia, in addition to increased risk for malignancies. A 63-year-old man with a long history of untreated chronic pulmonary disease, a smoker in the past, presented initially with pancytopenia and a clinical diagnosis of myelodysplastic syndrome with excess blasts returned a month later with leukocytosis (WBC 215.9 × 106/μL) and diagnosed with acute myeloid leukemia (AML) with deletion of chromosome 7 and FLT3-TKD mutation. The patient's mother and sister died in their 6th decade from rapidly progressing fulminant pulmonary fibrosis. He had abnormal skin pigmentation and oral leukoplakia on presentation. He was induced with 7 + 3 chemotherapy and started on midostaurin but experienced prolonged cytopenias, complicated by hypoxic acute on chronic respiratory failure requiring intubation and mechanical ventilation. D + 28 and D + 36 bone marrow examination showed trilineage hypoplasia but no blasts, though the D + 28 bone marrow biopsy revealed one metaphase with del (7) that was cleared on D + 35. The constellation of clinical features and strong family history along with del 7 and FLT3-TKD AML with preceding MDS highly suggests a germline predisposition state dyskeratosis congenita. Germline predispositions are often underrecognized as delayed onset conditions leading to AML and may have treatment and preventative implications especially genetic counseling for blood-related family members.
Collapse
Affiliation(s)
- Harry Ramos
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Mai Mostafa Aly
- Clinical Hematology Unit, Department of Internal Medicine, Assiut University, Assiut 71515, Egypt
| | - Suresh Kumar Balasubramanian
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +1-216-925-7323
| |
Collapse
|
8
|
Avagyan S, Shimamura A. Lessons From Pediatric MDS: Approaches to Germline Predisposition to Hematologic Malignancies. Front Oncol 2022; 12:813149. [PMID: 35356204 PMCID: PMC8959480 DOI: 10.3389/fonc.2022.813149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Pediatric myelodysplastic syndromes (MDS) often raise concern for an underlying germline predisposition to hematologic malignancies, referred to as germline predisposition herein. With the availability of genetic testing, it is now clear that syndromic features may be lacking in patients with germline predisposition. Many genetic lesions underlying germline predisposition may also be mutated somatically in de novo MDS and leukemias, making it critical to distinguish their germline origin. The verification of a suspected germline predisposition informs therapeutic considerations, guides monitoring pre- and post-treatment, and allows for family counseling. Presentation of MDS due to germline predisposition is not limited to children and spans a wide age range. In fact, the risk of MDS may increase with age in many germline predisposition conditions and can present in adults who lack classical stigmata in their childhood. Furthermore, germline predisposition associated with DDX41 mutations presents with older adult-onset MDS. Although a higher proportion of pediatric patients with MDS will have a germline predisposition, the greater number of MDS diagnoses in adult patients may result in a larger overall number of those with an underlying germline predisposition. In this review, we present a framework for the evaluation of germline predisposition to MDS across all ages. We discuss characteristics of personal and family history, clinical exam and laboratory findings, and integration of genetic sequencing results to assist in the diagnostic evaluation. We address the implications of a diagnosis of germline predisposition for the individual, for their care after MDS therapy, and for family members. Studies on MDS with germline predisposition have provided unique insights into the pathogenesis of hematologic malignancies and mechanisms of somatic genetic rescue vs. disease progression. Increasing recognition in adult patients will inform medical management and may provide potential opportunities for the prevention or interception of malignancy.
Collapse
Affiliation(s)
- Serine Avagyan
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| | - Akiko Shimamura
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Imgruet MK, Lutze J, An N, Hu B, Khan S, Kurkewich J, Martinez TC, Wolfgeher D, Gurbuxani SK, Kron SJ, McNerney ME. Loss of a 7q gene, CUX1, disrupts epigenetically driven DNA repair and drives therapy-related myeloid neoplasms. Blood 2021; 138:790-805. [PMID: 34473231 PMCID: PMC8414261 DOI: 10.1182/blood.2020009195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Therapy-related myeloid neoplasms (t-MNs) are high-risk late effects with poorly understood pathogenesis in cancer survivors. It has been postulated that, in some cases, hematopoietic stem and progenitor cells (HSPCs) harboring mutations are selected for by cytotoxic exposures and transform. Here, we evaluate this model in the context of deficiency of CUX1, a transcription factor encoded on chromosome 7q and deleted in half of t-MN cases. We report that CUX1 has a critical early role in the DNA repair process in HSPCs. Mechanistically, CUX1 recruits the histone methyltransferase EHMT2 to DNA breaks to promote downstream H3K9 and H3K27 methylation, phosphorylated ATM retention, subsequent γH2AX focus formation and propagation, and, ultimately, 53BP1 recruitment. Despite significant unrepaired DNA damage sustained in CUX1-deficient murine HSPCs after cytotoxic exposures, they continue to proliferate and expand, mimicking clonal hematopoiesis in patients postchemotherapy. As a consequence, preexisting CUX1 deficiency predisposes mice to highly penetrant and rapidly fatal therapy-related erythroleukemias. These findings establish the importance of epigenetic regulation of HSPC DNA repair and position CUX1 as a gatekeeper in myeloid transformation.
Collapse
MESH Headings
- Animals
- Chromosomes, Mammalian/genetics
- Chromosomes, Mammalian/metabolism
- Clonal Hematopoiesis
- DNA Repair
- Epigenesis, Genetic
- Gene Expression Regulation, Leukemic
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/metabolism
- Mice
- Mice, Transgenic
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasms, Second Primary/genetics
- Neoplasms, Second Primary/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
Collapse
Affiliation(s)
| | - Julian Lutze
- Department of Molecular Genetics and Cell Biology
- Committee on Cancer Biology
| | | | | | | | | | | | | | - Sandeep K Gurbuxani
- Department of Pathology
- The University of Chicago Medicine Comprehensive Cancer Center, and
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology
- Committee on Cancer Biology
- The University of Chicago Medicine Comprehensive Cancer Center, and
| | - Megan E McNerney
- Department of Pathology
- Committee on Cancer Biology
- The University of Chicago Medicine Comprehensive Cancer Center, and
- Section of Pediatric Hematology/Oncology and Stem Cell Transplantation, Department of Pediatrics, The University of Chicago, Chicago, IL
| |
Collapse
|
10
|
Crisà E, Boggione P, Nicolosi M, Mahmoud AM, Al Essa W, Awikeh B, Aspesi A, Andorno A, Boldorini R, Dianzani I, Gaidano G, Patriarca A. Genetic Predisposition to Myelodysplastic Syndromes: A Challenge for Adult Hematologists. Int J Mol Sci 2021; 22:ijms22052525. [PMID: 33802366 PMCID: PMC7959319 DOI: 10.3390/ijms22052525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Myelodysplastic syndromes (MDS) arising in the context of inherited bone marrow failure syndromes (IBMFS) differ in terms of prognosis and treatment strategy compared to MDS occurring in the adult population without an inherited genetic predisposition. The main molecular pathways affected in IBMFS involve telomere maintenance, DNA repair, biogenesis of ribosomes, control of proliferation and others. The increased knowledge on the genes involved in MDS pathogenesis and the wider availability of molecular diagnostic assessment have led to an improvement in the detection of IBMFS genetic predisposition in MDS patients. A punctual recognition of these disorders implies a strict surveillance of the patient in order to detect early signs of progression and promptly offer allogeneic hematopoietic stem cell transplantation, which is the only curative treatment. Moreover, identifying an inherited mutation allows the screening and counseling of family members and directs the choice of donors in case of need for transplantation. Here we provide an overview of the most recent data on MDS with genetic predisposition highlighting the main steps of the diagnostic and therapeutic management. In order to highlight the pitfalls of detecting IBMFS in adults, we report the case of a 27-year-old man affected by MDS with an underlying telomeropathy.
Collapse
Affiliation(s)
- Elena Crisà
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
- Correspondence: (E.C.); (G.G.); Tel.: +39-0321-660-655 (E.C. & G.G.); Fax: +39-0321-373-3095 (E.C.)
| | - Paola Boggione
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Maura Nicolosi
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Abdurraouf Mokhtar Mahmoud
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Wael Al Essa
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Bassel Awikeh
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Anna Aspesi
- Laboratory of Genetic Pathology, Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (A.A.); (I.D.)
| | - Annalisa Andorno
- Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (A.A.); (R.B.)
| | - Renzo Boldorini
- Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (A.A.); (R.B.)
| | - Irma Dianzani
- Laboratory of Genetic Pathology, Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (A.A.); (I.D.)
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
- Correspondence: (E.C.); (G.G.); Tel.: +39-0321-660-655 (E.C. & G.G.); Fax: +39-0321-373-3095 (E.C.)
| | - Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| |
Collapse
|
11
|
Affiliation(s)
- Neal S Young
- From the Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| |
Collapse
|
12
|
Wlodarski MW, Sahoo SS, Niemeyer CM. Monosomy 7 in Pediatric Myelodysplastic Syndromes. Hematol Oncol Clin North Am 2018; 32:729-743. [DOI: 10.1016/j.hoc.2018.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Corey SJ, Oyarbide U. New monogenic disorders identify more pathways to neutropenia: from the clinic to next-generation sequencing. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:172-180. [PMID: 29222253 PMCID: PMC5912212 DOI: 10.1182/asheducation-2017.1.172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neutrophils are the most common type of leukocyte in human circulating blood and constitute one of the chief mediators for innate immunity. Defined as a reduction from a normal distribution of values, neutropenia results from a number of congenital and acquired conditions. Neutropenia may be insignificant, temporary, or associated with a chronic condition with or without a vulnerability to life-threatening infections. As an inherited bone marrow failure syndrome, neutropenia may be associated with transformation to myeloid malignancy. Recognition of an inherited bone marrow failure syndrome may be delayed into adulthood. The list of monogenic neutropenia disorders is growing, heterogeneous, and bewildering. Furthermore, greater knowledge of immune-mediated and drug-related causes makes the diagnosis and management of neutropenia challenging. Recognition of syndromic presentations and especially the introduction of next-generation sequencing are improving the accuracy and expediency of diagnosis as well as their clinical management. Furthermore, identification of monogenic neutropenia disorders is shedding light on the molecular mechanisms of granulopoiesis and myeloid malignancies.
Collapse
Affiliation(s)
- Seth J Corey
- Department of Pediatrics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| | - Usua Oyarbide
- Department of Pediatrics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|