1
|
Rutten C, Chavhan GB. Invited Commentary: Liver Masses in Children with Underlying Predispositions: The Need for Multidisciplinary Collaboration. Radiographics 2025; 45:e240216. [PMID: 39666570 DOI: 10.1148/rg.240216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Affiliation(s)
- Caroline Rutten
- From the Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8 (C.R., G.B.C.); and Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada (C.R., G.B.C.)
| | - Govind B Chavhan
- From the Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8 (C.R., G.B.C.); and Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada (C.R., G.B.C.)
| |
Collapse
|
2
|
Kolbe AB, Acord MR, Khanna G, Morin CE, Nguyen HN, Rees MA, Ro E, Schooler GR, Squires JH, Syed AB, Tang ER, Towbin AJ, Alazraki A. Imaging Findings and Management Strategies for Liver Masses in Children with Predisposition Disorders: A Review by the Pediatric LI-RADS Group. Radiographics 2025; 45:e240063. [PMID: 39666572 DOI: 10.1148/rg.240063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Liver masses in children with underlying systemic disease or a predisposing syndrome can be benign or malignant, ranging from focal fat to hepatocellular carcinoma (HCC). Knowledge of the underlying condition, the pathophysiologic effect on the liver, and the development of liver disease and specific liver lesions allows radiologists to guide imaging with regard to modality and frequency and give recommendations for biopsy when appropriate. In some predisposition disorders, such as Beckwith Wiedemann spectrum, familial adenomatous polyposis syndrome, and tuberous sclerosis complex, established guidelines for imaging screening exist. In many of the syndromes discussed, masses may occur outside of the liver and the liver may not be the primary focus of screening. For other entities, no consensus recommendations exist. Screening recommendations may be based on the risk of development of chronic liver disease. Once cirrhosis occurs, the risk of developing HCC is elevated. The authors summarize the spectrum of liver lesions that may be encountered in children with predisposing syndromes and systemic diseases, the imaging appearance of the lesions with various modalities, and screening guidelines where published. ©RSNA, 2024 See the invited commentary by Rutten and Chavan in this issue.
Collapse
Affiliation(s)
- Amy B Kolbe
- From the Department of Radiology, Mayo Clinic, 200 1st Ave SE, Rochester, MN 55905 (A.B.K.); Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa (M.R.A.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (G.K., A.A.); Department of Radiology, Cincinnati Children's Hospital, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio (C.E.M., A.J.T.); Department of Radiology, Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill (E.R.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (G.R.S.); Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa (J.H.S.); Department of Radiology, Stanford University School of Medicine, Stanford, Calif (A.B.S.); and Department of Radiology, Children's Hospital Colorado, Aurora, Colo (E.R.T.)
| | - Michael R Acord
- From the Department of Radiology, Mayo Clinic, 200 1st Ave SE, Rochester, MN 55905 (A.B.K.); Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa (M.R.A.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (G.K., A.A.); Department of Radiology, Cincinnati Children's Hospital, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio (C.E.M., A.J.T.); Department of Radiology, Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill (E.R.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (G.R.S.); Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa (J.H.S.); Department of Radiology, Stanford University School of Medicine, Stanford, Calif (A.B.S.); and Department of Radiology, Children's Hospital Colorado, Aurora, Colo (E.R.T.)
| | - Geetika Khanna
- From the Department of Radiology, Mayo Clinic, 200 1st Ave SE, Rochester, MN 55905 (A.B.K.); Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa (M.R.A.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (G.K., A.A.); Department of Radiology, Cincinnati Children's Hospital, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio (C.E.M., A.J.T.); Department of Radiology, Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill (E.R.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (G.R.S.); Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa (J.H.S.); Department of Radiology, Stanford University School of Medicine, Stanford, Calif (A.B.S.); and Department of Radiology, Children's Hospital Colorado, Aurora, Colo (E.R.T.)
| | - Cara E Morin
- From the Department of Radiology, Mayo Clinic, 200 1st Ave SE, Rochester, MN 55905 (A.B.K.); Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa (M.R.A.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (G.K., A.A.); Department of Radiology, Cincinnati Children's Hospital, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio (C.E.M., A.J.T.); Department of Radiology, Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill (E.R.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (G.R.S.); Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa (J.H.S.); Department of Radiology, Stanford University School of Medicine, Stanford, Calif (A.B.S.); and Department of Radiology, Children's Hospital Colorado, Aurora, Colo (E.R.T.)
| | - HaiThuy N Nguyen
- From the Department of Radiology, Mayo Clinic, 200 1st Ave SE, Rochester, MN 55905 (A.B.K.); Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa (M.R.A.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (G.K., A.A.); Department of Radiology, Cincinnati Children's Hospital, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio (C.E.M., A.J.T.); Department of Radiology, Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill (E.R.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (G.R.S.); Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa (J.H.S.); Department of Radiology, Stanford University School of Medicine, Stanford, Calif (A.B.S.); and Department of Radiology, Children's Hospital Colorado, Aurora, Colo (E.R.T.)
| | - Mitchell A Rees
- From the Department of Radiology, Mayo Clinic, 200 1st Ave SE, Rochester, MN 55905 (A.B.K.); Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa (M.R.A.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (G.K., A.A.); Department of Radiology, Cincinnati Children's Hospital, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio (C.E.M., A.J.T.); Department of Radiology, Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill (E.R.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (G.R.S.); Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa (J.H.S.); Department of Radiology, Stanford University School of Medicine, Stanford, Calif (A.B.S.); and Department of Radiology, Children's Hospital Colorado, Aurora, Colo (E.R.T.)
| | - Esther Ro
- From the Department of Radiology, Mayo Clinic, 200 1st Ave SE, Rochester, MN 55905 (A.B.K.); Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa (M.R.A.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (G.K., A.A.); Department of Radiology, Cincinnati Children's Hospital, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio (C.E.M., A.J.T.); Department of Radiology, Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill (E.R.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (G.R.S.); Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa (J.H.S.); Department of Radiology, Stanford University School of Medicine, Stanford, Calif (A.B.S.); and Department of Radiology, Children's Hospital Colorado, Aurora, Colo (E.R.T.)
| | - Gary R Schooler
- From the Department of Radiology, Mayo Clinic, 200 1st Ave SE, Rochester, MN 55905 (A.B.K.); Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa (M.R.A.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (G.K., A.A.); Department of Radiology, Cincinnati Children's Hospital, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio (C.E.M., A.J.T.); Department of Radiology, Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill (E.R.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (G.R.S.); Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa (J.H.S.); Department of Radiology, Stanford University School of Medicine, Stanford, Calif (A.B.S.); and Department of Radiology, Children's Hospital Colorado, Aurora, Colo (E.R.T.)
| | - Judy H Squires
- From the Department of Radiology, Mayo Clinic, 200 1st Ave SE, Rochester, MN 55905 (A.B.K.); Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa (M.R.A.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (G.K., A.A.); Department of Radiology, Cincinnati Children's Hospital, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio (C.E.M., A.J.T.); Department of Radiology, Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill (E.R.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (G.R.S.); Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa (J.H.S.); Department of Radiology, Stanford University School of Medicine, Stanford, Calif (A.B.S.); and Department of Radiology, Children's Hospital Colorado, Aurora, Colo (E.R.T.)
| | - Ali B Syed
- From the Department of Radiology, Mayo Clinic, 200 1st Ave SE, Rochester, MN 55905 (A.B.K.); Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa (M.R.A.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (G.K., A.A.); Department of Radiology, Cincinnati Children's Hospital, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio (C.E.M., A.J.T.); Department of Radiology, Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill (E.R.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (G.R.S.); Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa (J.H.S.); Department of Radiology, Stanford University School of Medicine, Stanford, Calif (A.B.S.); and Department of Radiology, Children's Hospital Colorado, Aurora, Colo (E.R.T.)
| | - Elizabeth R Tang
- From the Department of Radiology, Mayo Clinic, 200 1st Ave SE, Rochester, MN 55905 (A.B.K.); Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa (M.R.A.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (G.K., A.A.); Department of Radiology, Cincinnati Children's Hospital, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio (C.E.M., A.J.T.); Department of Radiology, Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill (E.R.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (G.R.S.); Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa (J.H.S.); Department of Radiology, Stanford University School of Medicine, Stanford, Calif (A.B.S.); and Department of Radiology, Children's Hospital Colorado, Aurora, Colo (E.R.T.)
| | - Alexander J Towbin
- From the Department of Radiology, Mayo Clinic, 200 1st Ave SE, Rochester, MN 55905 (A.B.K.); Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa (M.R.A.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (G.K., A.A.); Department of Radiology, Cincinnati Children's Hospital, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio (C.E.M., A.J.T.); Department of Radiology, Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill (E.R.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (G.R.S.); Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa (J.H.S.); Department of Radiology, Stanford University School of Medicine, Stanford, Calif (A.B.S.); and Department of Radiology, Children's Hospital Colorado, Aurora, Colo (E.R.T.)
| | - Adina Alazraki
- From the Department of Radiology, Mayo Clinic, 200 1st Ave SE, Rochester, MN 55905 (A.B.K.); Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa (M.R.A.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (G.K., A.A.); Department of Radiology, Cincinnati Children's Hospital, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio (C.E.M., A.J.T.); Department of Radiology, Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill (E.R.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (G.R.S.); Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa (J.H.S.); Department of Radiology, Stanford University School of Medicine, Stanford, Calif (A.B.S.); and Department of Radiology, Children's Hospital Colorado, Aurora, Colo (E.R.T.)
| |
Collapse
|
3
|
Cui J, Li X, Zhang Q, Du B, Ding Z, Yan C, Xue G, Gan L, Feng J, Fan Z, Xu Z, Yu Z, Fu T, Feng Y, Zhao H, Kong Y, Cui X, Tian Z, Liu Q, Yuan J. Existence and distribution of the microbiome in tumour tissues of children with hepatoblastoma. Heliyon 2024; 10:e39547. [PMID: 39553581 PMCID: PMC11564952 DOI: 10.1016/j.heliyon.2024.e39547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/18/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer microbiota have recently been demonstrated in several cancer types. The microbiome enhances inflammation in the cancer microenvironment and affects the disease pathology by regulating tumourigenesis, cancer progression, and chemotherapy resistance. Hepatoblastoma (HB), the most common childhood malignant tumour, is a malignant embryonic tumour. However, the pathogenesis and molecular basis of HB remain poorly understood. In this study, to explore the existence and distribution of the microbiome in tumour tissues and adjacent non-tumour tissues of children with HB, we mainly performed 16S rDNA sequencing, and the results showed that the diversity and abundance of the microbiome in children with HB were significantly different between HB tumours and adjacent non-tumour tissues (p < 0.01). At the phylum level, the dominant microbiome in the tumour tissues were Proteobacteria, Bacteroidetes, and Firmicutes. At the genus level, Ruminococcus was more abundant in HB tumours than in the adjacent non-tumour tissues. Simultaneously, the abundances of Bacteroides, Parabacteroides, Lachnospiracea-NK4A136, and Alistipes in HB tumours were lower than those in the adjacent non-tumour tissues. In addition, Romboutsia strongly correlated with alpha-fetoprotein, an important indicator of HB. Sphingomonas was abundant in primary HB tumours, whereas Oscillibacter and Pandoraea were abundant in metastatic HB tumours. However, whether these bacteria are associated with HB needs further evaluation. Therefore, we identified the microbiome that correlated with the occurrence and development of HB. Ruminococcus and Romboutsia were identified as potential bacterial markers of HB tumours. To conclude, we found that HB also contains cancer microbiome, and it is necessary to shed light on the microbiome characteristics of HB in the future.
Collapse
Affiliation(s)
- Jinghua Cui
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiaoran Li
- Postgraduate Base of the PLA Rocket Force Medical Center, Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
- Department of Hematology and Oncology, 155th Hospital of Kaifeng, Kaifeng, 475003, Henan Province, China
| | - Qun Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Bing Du
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zanbo Ding
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Chao Yan
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Guanhua Xue
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lin Gan
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Junxia Feng
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zheng Fan
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ziying Xu
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zihui Yu
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Tongtong Fu
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yanling Feng
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Hanqing Zhao
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yiming Kong
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiaohu Cui
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ziyan Tian
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Quanda Liu
- Postgraduate Base of the PLA Rocket Force Medical Center, Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
- Department of General Surgery, Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jing Yuan
- Capital Institute of Pediatrics, Beijing, 100020, China
| |
Collapse
|
4
|
Fu Y, Francés R, Monge C, Desterke C, Marchio A, Pineau P, Chang-Marchand Y, Mata-Garrido J. Metabolic and Epigenetic Mechanisms in Hepatoblastoma: Insights into Tumor Biology and Therapeutic Targets. Genes (Basel) 2024; 15:1358. [PMID: 39596558 PMCID: PMC11593527 DOI: 10.3390/genes15111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Hepatoblastoma, the most common pediatric liver malignancy, is characterized by significant molecular heterogeneity and poor prognosis in advanced stages. Recent studies highlight the importance of metabolic reprogramming and epigenetic dysregulation in hepatoblastoma pathogenesis. This review aims to explore the metabolic alterations and epigenetic mechanisms involved in hepatoblastoma and how these processes contribute to tumor progression and survival. METHODS Relevant literature on metabolic reprogramming, including enhanced glycolysis, mitochondrial dysfunction, and shifts in lipid and amino acid metabolism, as well as epigenetic mechanisms like DNA methylation, histone modifications, and non-coding RNAs, was reviewed. The interplay between these pathways and their potential as therapeutic targets were examined. RESULTS Hepatoblastoma exhibits metabolic shifts that support tumor growth and survival, alongside epigenetic changes that regulate gene expression and promote tumor progression. These pathways are interconnected, with metabolic changes influencing the epigenetic landscape and vice versa. CONCLUSIONS The dynamic interplay between metabolism and epigenetics in hepatoblastoma offers promising avenues for therapeutic intervention. Future research should focus on integrating metabolic and epigenetic therapies to improve patient outcomes, addressing current gaps in knowledge to develop more effective treatments.
Collapse
Affiliation(s)
- Yuanji Fu
- CNRS, INSERM, Institut Necker Enfants Malades, Université Paris Cité, 75015 Paris, France; (Y.F.); (Y.C.-M.)
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75006 Paris, France;
| | - Claudia Monge
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Christophe Desterke
- Faculté de Médecine du Kremlin Bicêtre, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France;
| | - Agnès Marchio
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Pascal Pineau
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Yunhua Chang-Marchand
- CNRS, INSERM, Institut Necker Enfants Malades, Université Paris Cité, 75015 Paris, France; (Y.F.); (Y.C.-M.)
| | - Jorge Mata-Garrido
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| |
Collapse
|
5
|
MacFarland SP, Becktell K, Schneider KW, Kuiper RP, Lesmana H, Meade J, Nichols KE, Porter CC, Savage SA, Schultz KA, Scott H, States L, Tabori U, Tamura C, Tomlinson G, Zelley K, Durno C, Bauer A, Plon SE. Pediatric Cancer Screening in Hereditary Gastrointestinal Cancer Risk Syndromes: An Update from the AACR Childhood Cancer Predisposition Working Group. Clin Cancer Res 2024; 30:4566-4571. [PMID: 39190470 DOI: 10.1158/1078-0432.ccr-24-0953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Gastrointestinal (GI) polyposis and cancer in pediatric patients is frequently due to an underlying hereditary cancer risk syndrome requiring ongoing cancer screening. Identification of at-risk patients through family history, clinical features of a syndrome, or symptom onset ensures appropriate cancer risk assessment and management in childhood and beyond. In this 2024 perspective, we outline updates to the hereditary GI cancer screening guidelines first published by the American Association of Cancer Research Pediatric Cancer Predisposition Workshop in 2017. These guidelines consider existing recommendations by pediatric and adult gastroenterology consortia to ensure alignment with gastroenterology practices in managing polyposis conditions. We specifically address the recommendations for pediatric screening in familial adenomatous polyposis, Peutz-Jeghers syndrome, and juvenile polyposis syndrome. Further, we emphasize the importance of multidisciplinary care and partnership with gastroenterology, as it is crucial in management of children and families with these conditions.
Collapse
Affiliation(s)
- Suzanne P MacFarland
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kerri Becktell
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kami Wolfe Schneider
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology and Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Harry Lesmana
- Department of Pediatric Hematology, Oncology and BMT, Cleveland Clinic, Cleveland, Ohio
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Julia Meade
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kim E Nichols
- St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Kris Ann Schultz
- Cancer and Blood Disorders, Children's Minnesota, Minneapolis, Minnesota
| | - Hamish Scott
- University of South Australia, Adelaide, Australia
| | - Lisa States
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Uri Tabori
- The Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | - Kristin Zelley
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Carol Durno
- The Hospital for Sick Children, Toronto, Canada
| | - Andrew Bauer
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sharon E Plon
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
6
|
Liu B, Lu Y, Wang Q, Dai Y, Liu L. Cancer in 22q11.2 deletion syndrome: A case report and literature review. Eur J Med Genet 2024; 70:104959. [PMID: 38969060 DOI: 10.1016/j.ejmg.2024.104959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/12/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Clinically, the 22q11.2 deletion syndrome (22q11.2DS) is considered the most commonly detected microdeletion syndrome. Hepatoblastoma is the most prevalent malignant liver cancer in childhood. However, cases of hepatoblastoma in children with 22q11.2DS have only been reported in four patients. In this report, we present a-13-year-old male treated at our center due to growth retardation, and later diagnosed with hepatoblastoma. Whole genome sequencing (WGS) identified 22q11.2DS. Chromosomal microarray analysis (CMA) of peripheral blood sample showed a 2.9 Mb deletion of chromosome 22q11.2. While underlying mechanisms remain unclear, our literature review suggests that patients with 22q11.2DS may show an elevated risk of malignancy. After reviewing 21 previously reported cases, we identified 33 individuals with both cancer and 22q11.2 DS or DiGeorge syndrome. Of these cases, 7 out of 33 (21%) were hematologic tumors, while 26 out of 33 (78%) were solid tumors.
Collapse
Affiliation(s)
- Bingju Liu
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yunfeng Lu
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qi Wang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yunpeng Dai
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Liying Liu
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
7
|
Riehle KJ, Vasudevan SA, Bondoc A, Cuenca AG, Garnier H, Kastenberg Z, Roach J, Weldon CB, Karpelowsky J, Hishiki T, Tiao G. Surgical management of liver tumors. Pediatr Blood Cancer 2024:e31155. [PMID: 38953150 DOI: 10.1002/pbc.31155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
Two percent of pediatric malignancies arise primarily in the liver; roughly 60% of these cancers are hepatoblastoma (HB). Despite the rarity of these cases, international collaborative efforts have led to the consistent histological classification and staging systems, which facilitate ongoing clinical trials. Other primary liver malignancies seen in children include hepatocellular carcinoma (HCC) with or without underlying liver disease, fibrolamellar carcinoma (FLC), undifferentiated embryonal sarcoma of the liver (UESL), and hepatocellular neoplasm not otherwise specified (HCN-NOS). This review describes principles of surgical management of malignant pediatric primary liver tumors, within the context of comprehensive multidisciplinary care.
Collapse
Affiliation(s)
- Kimberly J Riehle
- Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | | | - Alexander Bondoc
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alex G Cuenca
- Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Zachary Kastenberg
- Primary Children's Hospital, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | - Gregory Tiao
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Karstensen JG, Wullum L, Andersen KK, Beck SH, Bülow S, Højen H, Jelsig AM, Jespersen N, Wewer MD, Pommergaard HC, Burisch J. Psychiatric and Educational Aspects of Familial Adenomatous Polyposis: A Nationwide Danish Cohort Study With Matched Nonexposed Individuals. Am J Gastroenterol 2024; 119:957-964. [PMID: 38032076 DOI: 10.14309/ajg.0000000000002612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Familial adenomatous polyposis (FAP) is an autosomal, dominantly inherited disorder that predisposes to colorectal cancer. An increased risk of cancer may affect mental health, but the magnitude of this effect remains unknown. We assessed the psychosocial functioning, including the educational level attained and risk of psychiatric comorbidity, of patients with FAP by comparing them with matched nonexposed individuals. METHODS All Danish patients with FAP diagnosed before April 2021 were identified in the Danish Polyposis Register and paired with 4 matched nonexposed individuals. Educational history, psychiatric contacts or diagnoses ( International Classification of Disease, 10th Revision ), and treatment with antidepressants, anxiolytics, or antipsychotics were compared between patients with FAP and nonexposed individuals. RESULTS The analysis included 445 patients with FAP and 1,538 nonexposed individuals. The highest educational level reached was significantly lower for patients with FAP ( P < 0.001). When comparing patients with FAP and nonexposed and adjusting for a cancer diagnosis, an increased risk was observed for a psychiatric contact (1.69, 95% confidence interval [CI] 1.25-2.29, P < 0.001), any psychiatric prescription (1.39, 95% CI 1.17-1.66, P < 0.001), a psychiatric diagnosis (1.64, 95% CI 1.19-2.26, P = 0.002), and experiencing any psychiatric event (hazard ratio 1.42, 95% CI 1.20-1.68, P < 0.001). An increased risk was specifically seen for mood (affective) disorders (1.76, 95% CI 1.09-2.83, P = 0.02) and behavioral and emotional disorders (2.01, 95% CI 1.10-3.69, P = 0.02) and the need for antidepressants (1.59, 95% CI 1.24-2.03, P < 0.001) and antipsychotics (1.85, 95% CI 1.26-2.70, P = 0.002). DISCUSSION Compared with nonexposed individuals, patients with had significantly less education and an increased risk of developing mood and behavioral disorders, with an increased likelihood of needing antidepressants and antipsychotics.
Collapse
Affiliation(s)
- John Gásdal Karstensen
- Danish Polyposis Register, Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Søren Hammershøj Beck
- Danish Polyposis Register, Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Steffen Bülow
- Danish Polyposis Register, Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Helle Højen
- Danish Polyposis Register, Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Anne Marie Jelsig
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Niels Jespersen
- Danish Polyposis Register, Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Mads Damsgaard Wewer
- Danish Polyposis Register, Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Gastrounit, Medical Division, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Hans Christian Pommergaard
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Surgery and Transplantation, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Johan Burisch
- Danish Polyposis Register, Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Gastrounit, Medical Division, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| |
Collapse
|
9
|
Davini M, Hastings C, Feusner J. The Utility of Serum Alpha-fetoprotein for Monitoring for Relapse of Alpha-fetoprotein-Positive Hepatoblastoma. J Pediatr Hematol Oncol 2024; 46:206-210. [PMID: 38551915 DOI: 10.1097/mph.0000000000002832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/19/2024] [Indexed: 04/24/2024]
Abstract
Hepatoblastoma is the most common liver malignancy in children. Treatment typically involves surgery and cisplatin-based chemotherapy. After therapy completion, children undergo repetitive surveillance imaging to screen for relapse, which occurs in <12% of cases. Monitoring for relapse has gradually shifted to serial determination of serum alpha-fetoprotein (AFP) alone as most cases have AFP elevation at the time of relapse. Little primary data supports, such a practice, however, and herein we present both our institutional experience with relapsed hepatoblastoma and a careful review of published literature on this topic. While serial AFP monitoring may suffice for most patients, certain clinical characteristics should give pause to the practitioner, when considering posttreatment monitoring with serum AFP alone.
Collapse
Affiliation(s)
- Monica Davini
- Department of Pediatric Hematology and Oncology, Banner University Medical Center, University of Arizona Cancer Center
| | - Caroline Hastings
- Department of Pediatric Hematology and Oncology, UCSF Benioff Children's Hospital Oakland (Children Hospital and Research Center Oakland), Oakland, CA
| | - James Feusner
- Department of Pediatric Hematology and Oncology, UCSF Benioff Children's Hospital Oakland (Children Hospital and Research Center Oakland), Oakland, CA
| |
Collapse
|
10
|
Xu J, Chang X, Qin H, Yang W, Cheng H, Wang H. A case series of clinical characteristics and prognosis of congenital hepatoblastoma in a single center. Int J Surg Case Rep 2024; 116:109358. [PMID: 38364752 PMCID: PMC10943666 DOI: 10.1016/j.ijscr.2024.109358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
INTRODUCTION AND IMPORTANCE Congenital hepatoblastoma is an exceedingly rare neoplasm, predominantly documented as isolated instances, with contentious aspects surrounding its therapeutic approaches and prognostic implications. This study aims to comprehensively summarize and evaluate the management experience of congenital hepatoblastoma (CHB). CASE PRESENTATION This cohort comprised five infants diagnosed with hepatoblastoma, confirmed through pathological examination, and with an onset of symptoms before 28 days of age. They were enrolled between November 2019 and May 2022. The treatment course they underwent has been summarized, and their prognosis has been subject to analysis. CLINICAL DISCUSSION Distinguishing congenital hepatoblastoma from other medical conditions is typically necessary. Given the patient's tender age, the approach to treatment demands comprehensive assessment, particularly in cases involving unique tumor locations or substantial tumor sizes. The selection of treatment modalities, encompassing preoperative neoadjuvant chemotherapy and surgical techniques, becomes of paramount importance. Furthermore, determining the treatment's endpoint poses a notable challenge and often necessitates a comprehensive evaluation. CONCLUSION For pediatric patients afflicted with CHB, the application of preoperative neoadjuvant chemotherapy mitigates surgical risks, while the incorporation of surgical procedures followed by postoperative chemotherapy significantly enhances the overall prognosis. Additionally, AFP-L3% levels may serve as a valuable adjunctive marker signifying the conclusion of treatment.
Collapse
Affiliation(s)
- Jiatong Xu
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Xiaofeng Chang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Hong Qin
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Wei Yang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Haiyan Cheng
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Huanmin Wang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China.
| |
Collapse
|
11
|
Boopathy LK, Roy A, Gopal T, Kandy RRK, Arumugam MK. Potential molecular mechanisms of myrtenal against colon cancer: A systematic review. J Biochem Mol Toxicol 2024; 38:e23525. [PMID: 37665681 DOI: 10.1002/jbt.23525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Colon cancer is a serious health problem across the globe with various dietary lifestyle modifications. It arises as an inflammation mediated crypts in the colon epithelial cells and undergoes uncontrolled cell division and proliferation. Bacterial enzymes contribute to a major outbreak in colon cancer development upon the release of toxic metabolites from the gut microflora. Pathogen associated molecular patterns and damage associated molecular patterns triggers the NLPR3 inflammasome pathways that releases pro-inflammatory cytokines to induce cancer of the colon. Contributing to this, specific chemokines and receptor complexes attribute to cellular proliferation and metastasis. Bacterial enzymes synergistically attack the colon mucosa and degenerate the cellular integrity causing lysosomal discharge. These factors further instigate the Tol like receptors (TLRs) and Nod like receptors (NLRs) to promote angiogenesis and supply nutrients for the cancer cells. Myrtenal, a monoterpene, is gaining more importance in recent times and it is being widely utilized against many diseases such as cancers, neurodegenerative diseases and diabetes. Based on the research data's, the reviews focus on the anticancer property of myrtenal by emphasizing its therapeutic properties which downregulate the inflammasome pathways and other signalling pathways. Combination therapy is gaining more importance as they can target every variant in the cellular stress condition. Clinical studies with compounds like myrtenal of the monoterpenes family is provided with positive results which might open an effective anticancer drug therapy. This review highlights myrtenal and its biological potency as a cost effective drug for prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rakhee Rathnam Kalari Kandy
- Department of Biochemistry and Molecular Biology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
12
|
Remo A, Negro S, Bao RQ, d’Angelo E, Alaggio R, Crivellari G, Mammi I, Intini R, Bergamo F, Fassan M, Agostini M, Vitellaro M, Pucciarelli S, Urso EDL. Association between Pancreatoblastoma and Familial Adenomatous Polyposis: Review of the Literature with an Additional Case. Genes (Basel) 2023; 15:44. [PMID: 38254934 PMCID: PMC10815143 DOI: 10.3390/genes15010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Adult pancreatoblastoma (PBL) is a rare pancreatic malignancy, with recent evidence suggesting a possible link to familial adenomatous polyposis (FAP). This study aims to review the latest evidence and explore a possible association between adult PBL and FAP. METHODS Two independent literature reviews were conducted: (1) on PBL and FAP, and (2) on PBL in the adult population not diagnosed with FAP. RESULTS Out of 26 articles on PBL and FAP screened, 5 were selected for systematic review, including 1 additional case. We identified eight FAP-related PBL cases, with a median age of 40 (IQR: 34-50). Of these, seven (87%) occurred in adults. We found 65 cases of adult PBL not FAP-related; thus, 7 out of 65 cases (10.7%) of adult PBL reported in the literature are associated with a clinical diagnosis of FAP or were carriers of APC germline pathogenic variants (GPVs). CONCLUSION Data suggest a non-random association between adult PBL and FAP. Further research is essential to optimise surveillance protocols and develop more effective treatment strategies.
Collapse
Affiliation(s)
- Andrea Remo
- Pathology Unit, ULSS9 “Scaligera”, 37122 Verona, Italy;
| | - Silvia Negro
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35121 Padua, Italy; (R.Q.B.); (M.A.); (S.P.); (E.D.L.U.)
| | - Riccardo Quoc Bao
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35121 Padua, Italy; (R.Q.B.); (M.A.); (S.P.); (E.D.L.U.)
| | - Edoardo d’Angelo
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35121 Padua, Italy; (R.Q.B.); (M.A.); (S.P.); (E.D.L.U.)
| | - Rita Alaggio
- Pathology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Roma, Italy
| | - Gino Crivellari
- Familial Cancer Clinic and Oncoendocrinology, Veneto Institute of Oncology, IOV-IRCCS, 35121 Padua, Italy; (G.C.); (I.M.)
| | - Isabella Mammi
- Familial Cancer Clinic and Oncoendocrinology, Veneto Institute of Oncology, IOV-IRCCS, 35121 Padua, Italy; (G.C.); (I.M.)
| | - Rossana Intini
- Oncology 1, Veneto Institute of Oncology, IOV-IRCCS, 35121 Padua, Italy; (R.I.); (F.B.)
| | - Francesca Bergamo
- Oncology 1, Veneto Institute of Oncology, IOV-IRCCS, 35121 Padua, Italy; (R.I.); (F.B.)
| | - Matteo Fassan
- Department of Medicine-DIMED, University of Padova, 35121 Padua, Italy;
| | - Marco Agostini
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35121 Padua, Italy; (R.Q.B.); (M.A.); (S.P.); (E.D.L.U.)
| | - Marco Vitellaro
- Unit of Hereditary Digestive Tract Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35121 Padua, Italy; (R.Q.B.); (M.A.); (S.P.); (E.D.L.U.)
| | - Emanuele Damiano Luca Urso
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35121 Padua, Italy; (R.Q.B.); (M.A.); (S.P.); (E.D.L.U.)
| |
Collapse
|
13
|
Dangoni GD, Teixeira ACB, Aguiar TF, Sugayama SMM, Filho VO, Bertola DR, Krepischi ACV. A rare case of hepatoblastoma in a syndromic child with a de novo germline JAG1 mutation. Pediatr Blood Cancer 2023; 70:e30311. [PMID: 36965188 DOI: 10.1002/pbc.30311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/27/2023]
Affiliation(s)
- Gustavo Dib Dangoni
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Anne Caroline Barbosa Teixeira
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Talita Ferreira Aguiar
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Sofia Mizuho Miura Sugayama
- Faculty of Medicine, Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), University of São Paulo, São Paulo, SP, Brazil
| | - Vicente Odone Filho
- Faculty of Medicine, Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), University of São Paulo, São Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
- Genetics Unit, Instituto da Criança, Hospital das Clinicas Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Kusnik A, Li S, Graziano E, Katerji R, Ramaraju G. A Case of a Beta-Catenin-Activated Hepatic Adenoma in a Male Patient With Familial Adenomatous Polyposis. ACG Case Rep J 2023; 10:e01012. [PMID: 36936132 PMCID: PMC10019209 DOI: 10.14309/crj.0000000000001012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Hepatocellular adenoma is a benign liver tumor often diagnosed incidentally in women of reproductive age who are taking oral contraceptives. In this study, we present a unique case of an 18-year-old man with known familial adenomatous polyposis who presented with sepsis in the setting of a recent total proctocolectomy and was incidentally found to have multiple large hepatic lesions. A biopsy of a liver lesion confirmed the diagnosis of a beta-catenin-activated hepatic adenoma. To the best of our knowledge, this is the first known case of beta-catenin-activated hepatic adenoma in a patient with a known familial adenomatous polyposis mutation. Beta-catenin is one of the many subtypes of hepatocellular adenomas, which carries a high risk of malignant transformation.
Collapse
Affiliation(s)
| | - Shifan Li
- Department of Internal Medicine, University of Rochester Medical Center, Rochester, NY
| | - Elliot Graziano
- Division of Gastroenterology and Hepatology, University of Rochester Medical Center, Rochester, NY
| | - Roula Katerji
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Gopal Ramaraju
- Division of Gastroenterology and Hepatology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
15
|
Odani S, Nakata K, Inoue M, Kato M, Saito MK, Morishima T, Hashii Y, Hara J, Kawa K, Miyashiro I. Incidence of second primary cancers among survivors of childhood cancer: A population-based study, Osaka, Japan, 1975-2015. Cancer Sci 2023; 114:1142-1153. [PMID: 36345911 PMCID: PMC9986077 DOI: 10.1111/cas.15640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Second primary cancer (SPC) is one of the most life-threatening late effects of childhood cancers. We investigated the incidence and survival outcomes of SPC in childhood cancer patients in Japan. Data were obtained from the population-based Osaka Cancer Registry. Individuals diagnosed with cancer at age 0-14 years during 1975-2014 and survived 2 months or longer were followed through December 2015. The risk of developing SPC was assessed with standardized incidence ratio (SIR), excess absolute risk (EAR, per 100,000 person-years), and cumulative incidence. Multivariable Poisson regression analysis was carried out to assess relative risks of SPC by treatment method. Survival analysis was undertaken using the Kaplan-Meier method. Of 7229 childhood cancer survivors, 101 (1.4%) developed SPC after a median of 11.6 years. Overall SIR was 5.0, which corresponded with 84.3 EAR. The cumulative incidence was 0.9%, 2.1%, and 3.4% at 10, 20, and 30 years, respectively. Among all SPCs, the type that contributed most to the overall burden was cancers in the central nervous system (EAR = 28.0) followed by digestive system (EAR = 15.1), thyroid (EAR = 8.3), and bones and joints (EAR = 7.8); median latency ranged from 2.0 years (lymphomas) to 26.6 years (skin cancers). Patients treated with radiotherapy alone were at a 2.58-fold increased risk of developing SPC compared to those who received neither chemotherapy nor radiotherapy. Among patients who developed SPCs, 5-year and 10-year survival probabilities after SPC diagnosis were 61.7% and 52.0%, respectively. Risk-based long-term follow-up planning is essential to inform survivorship care and help reduce the burden of SPCs in childhood cancer survivors.
Collapse
Affiliation(s)
- Satomi Odani
- Cancer Control Center, Osaka International Cancer Institute, Osaka, Japan.,Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kayo Nakata
- Cancer Control Center, Osaka International Cancer Institute, Osaka, Japan
| | - Masami Inoue
- Department of Hematology/Oncology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Mizuki Kato
- Cancer Control Center, Osaka International Cancer Institute, Osaka, Japan
| | | | | | - Yoshiko Hashii
- Department of Pediatrics, Osaka International Cancer Institute, Osaka, Japan
| | - Junich Hara
- Department of Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Keisei Kawa
- Department of Hematology/Oncology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Isao Miyashiro
- Cancer Control Center, Osaka International Cancer Institute, Osaka, Japan.,Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
16
|
Hurley EH, Tao J, Liu S, Krutsenko Y, Singh S, Monga SP. Inhibition of Heat Shock Factor 1 Signaling Decreases Hepatoblastoma Growth via Induction of Apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:148-160. [PMID: 36336065 PMCID: PMC9887635 DOI: 10.1016/j.ajpath.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Although rare compared with adult liver cancers, hepatoblastoma (HB) is the most common pediatric liver malignancy, and its incidence is increasing. Currently, the treatment includes surgical resection with or without chemotherapy, and in severe cases, liver transplantation in children. The effort to develop more targeted, HB-specific therapies has been stymied by the lack of fundamental knowledge about HB biology. Heat shock factor 1 (HSF1), a transcription factor, is a canonical inducer of heat shock proteins, which act as chaperone proteins to prevent or undo protein misfolding. Recent work has shown a role for HSF1 in cancer beyond the canonical heat shock response. The current study found increased HSF1 signaling in HB versus normal liver. It showed that less differentiated, more embryonic tumors had higher levels of HSF1 than more differentiated, more fetal-appearing tumors. Most strikingly, HSF1 expression levels correlated with mortality. This study used a mouse model of HB to test the effect of inhibiting HSF1 early in tumor development on cancer growth. HSF1 inhibition resulted in fewer and smaller tumors, suggesting HSF1 is needed for aggressive tumor growth. Moreover, HSF1 inhibition also increased apoptosis in tumor foci. These data suggest that HSF1 may be a viable pharmacologic target for HB treatment.
Collapse
Affiliation(s)
- Edward H Hurley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | - Junyan Tao
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yekaterina Krutsenko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
17
|
Blackwell MC, Thakkar B, Flores A, Zhang W. Extracolonic manifestations of Gardner syndrome: A case report. Imaging Sci Dent 2023. [DOI: 10.5624/isd.20230006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Affiliation(s)
- McKenzie C. Blackwell
- Department of Surgical Sciences, East Carolina University School of Dental Medicine, Greenville, NC, USA
| | - Bhushan Thakkar
- Department of Surgical Sciences, East Carolina University School of Dental Medicine, Greenville, NC, USA
| | - Andres Flores
- Department of Surgical Sciences, East Carolina University School of Dental Medicine, Greenville, NC, USA
| | - Wenjian Zhang
- Department of General Dentistry, East Carolina University School of Dental Medicine, Greenville, NC, USA
| |
Collapse
|
18
|
Bhandari R, Shaikh II, Bhandari R, Chapagain S. LINC01023 Promotes the Hepatoblastoma Tumorigenesis via miR-378a-5p/WNT3 Axis. Mol Cell Biochem 2022:10.1007/s11010-022-04636-5. [PMID: 36576714 DOI: 10.1007/s11010-022-04636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
Hepatoblastoma is the most common type of hepatic tumors occurring in children between 0 and 5 years. And the exact pathophysiology of the disease is still mysterious. Accumulating studies on LncRNA have shown its pivotal role in the development and progression of distinct human cancers. However, the role of LINC01023 in hepatoblastoma is unknown. The relative expression of LINC01023, miR-378a-5p, and Wnt3 on hepatoblastoma tissue and cell lines was determined by quantitative polymerase chain reaction (qRT-PCR). The effect of LINC01023 downregulation and upregulation on cell proliferation, colony formation and apoptosis activities in HUH6 and HepG2 Cells was assessed by CKK8, clonogenic and flow cytometry analysis, respectively. Dual luciferase, RNA immunoprecipitation (RIP), and RNA pull-down were performed to confirm the interaction between LINC01023 and miR-378a-5p. Similarly, Dual luciferase assay was performed to confirmed the interaction between Wnt3 and miR-378a-5p. The xenograft tumorgenicity test was performed to elucidate the tumorgenicity potential of LINC01023. LINC01023 was significantly upregulated in hepatoblastoma tissue and cell lines rather than in adjacent normal hepatic tissue and QSG7701 cell lines. LINC01023 silencing attenuated cell proliferation, colony formation and increased cell apoptosis. Conversely, LINC01023 upregulation results in significant increase in cell proliferation, and colony formation activities however, a significant reduction in apoptosis activity was reported. Interaction between the LINC01023 and WNT3 was confirmed by dual luciferase assay. Xenograft animal tumorgenicity test confirmed the in-vivo tumorigenesis potential of LINC01203. To the best of our knowledge, this study is the first study demonstrating the role of LINC01023 in hepatoblastoma tumorigenesis through the LINC01023/miR-378a-5p/Wnt3 axis. It could be a potential therapeutic target and a prognostic biomarker in hepatoblastoma.
Collapse
Affiliation(s)
- Ramesh Bhandari
- Department of Clinical Laboratory Medicine, Shanghai Tenth Peoples Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.
| | - Imran Ibrahim Shaikh
- Department of Orthopedics, Tongji Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200065, People's Republic of China
| | - Rajeev Bhandari
- Department of Clinical Laboratory Medicine, Shanghai Tenth Peoples Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Sadikchha Chapagain
- Department of Clinical Laboratory Medicine, Shanghai Tenth Peoples Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| |
Collapse
|
19
|
Zhu LR, Zheng W, Gao Q, Chen T, Pan ZB, Cui W, Cai M, Fang H. Epigenetics and genetics of hepatoblastoma: Linkage and treatment. Front Genet 2022; 13:1070971. [PMID: 36531231 PMCID: PMC9748487 DOI: 10.3389/fgene.2022.1070971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/14/2022] [Indexed: 09/10/2024] Open
Abstract
Hepatoblastoma is a malignant embryonal tumor with multiple differentiation modes and is the clearest liver malignancy in children. However, little is known about genetic and epigenetic events in Hepatoblastoma. Increased research has recently demonstrated, unique genetic and epigenetic events in Hepatoblastoma, providing insights into its origin and precise treatment. Some genetic disorders and congenital factors are associated with the risk of Hepatoblastoma development, such as the Beckwith-Wiedemann syndrome, Familial Adenomatous polyposis, and Hemihypertrophy. Epigenetic modifications such as DNA modifications, histone modifications, and non-coding RNA regulation are also essential in the development of Hepatoblastoma. Herein, we reviewed genetic and epigenetic events in Hepatoblastoma, focusing on the relationship between these events and cancer susceptibility, tumor growth, and prognosis. By deciphering the genetic and epigenetic associations in Hepatoblastoma, tumor pathogenesis can be clarified, and guide the development of new anti-cancer drugs and prevention strategies.
Collapse
Affiliation(s)
- Li-ran Zhu
- Anhui Institute of Pediatric Research, Anhui Provincial Children’s Hospital, Hefei, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
| | - Wanqun Zheng
- Department of Chinese Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qun Gao
- Department of Pediatric Oncology Surgery, Anhui Provincial Children’s Hospital, Hefei, China
| | - Tianping Chen
- Department of Hematology and Oncology, Anhui Provincial Children’s Hospital, Hefei, China
| | - Zhu-bin Pan
- Department of General Surgery, Anhui Provincial Children’s Hospital, Hefei, China
| | - Wei Cui
- Department of Scientific Research and Education, Anhui Provincial Children’s Hospital, Anhui Institute of Pediatric Research, Hefei, China
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hui Fang
- Anhui Institute of Pediatric Research, Anhui Provincial Children’s Hospital, Hefei, China
| |
Collapse
|
20
|
Nucleic acid therapy in pediatric cancer. Pharmacol Res 2022; 184:106441. [PMID: 36096420 DOI: 10.1016/j.phrs.2022.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022]
Abstract
The overall survival, progress free survival, and life quality of cancer patients have improved due to the advance in minimally invasive surgery, precision radiotherapy, and various combined chemotherapy in the last decade. Furthermore, the discovery of new types of therapeutics, such as immune checkpoint inhibitors and immune cell therapies have facilitated both patients and doctors to fight with cancers. Moreover, in the context of the development in biocompatible and cell type targeting nano-carriers as well as nucleic acid-based drugs for initiating and enhancing the anti-tumor response have come to the age. The treatment paradigms utilization of nucleic acids, including short interfering RNA (siRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA), can target specific protein expression to achieve the therapeutic effects. Over ten nucleic acid therapeutics have been approved by the FDA and EMA in rare diseases and genetic diseases as well as dozens of registered clinical trails for varies cancers. Though generally less dangerous of pediatric cancers than adult cancers was observed during the past decades, yet pediatric cancers accounted for a significant proportion of child deaths which hurt those family very deeply. Therefore, it is necessary to pay more attention for improving the treatment of pediatric cancer and discovering new nucleic acid therapeutics which may help to improve the therapeutic effect and prognoses in turns to ameliorate the survival period and quality of life for children patient. In this review, we focus on the nucleic acid therapy in pediatric cancers.
Collapse
|
21
|
Castle JT, Levy BE, Rodeberg DA. Abdominal Tumors. Surg Clin North Am 2022; 102:715-737. [DOI: 10.1016/j.suc.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Nussbaumer G, Benesch M. Hepatoblastoma in molecularly defined, congenital diseases. Am J Med Genet A 2022; 188:2527-2535. [PMID: 35478319 PMCID: PMC9545988 DOI: 10.1002/ajmg.a.62767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/21/2022] [Accepted: 04/09/2022] [Indexed: 01/24/2023]
Abstract
Beckwith-Wiedemann spectrum, Simpson-Golabi-Behmel syndrome, familial adenomatous polyposis and trisomy 18 are the most common congenital conditions associated with an increased incidence of hepatoblastoma (HB). In patients with these genetic disorders, screening protocols for HB are proposed that include periodic abdominal ultrasound and measurement of alpha-fetoprotein levels. Surveillance in these children may contribute to the early detection of HB and possibly improve their chances of overall survival. Therefore, physicians must be aware of the high HB incidence in children with certain predisposing genetic diseases.
Collapse
Affiliation(s)
- Gunther Nussbaumer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent MedicineMedical University of GrazGrazAustria
| | - Martin Benesch
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent MedicineMedical University of GrazGrazAustria
| |
Collapse
|
23
|
Liu Y, Chen Y, Zhang Y, Zhong Q, Zhu X, Wu Q. A functionalized magnetic nanoparticle regulated CRISPR-Cas12a sensor for the ultrasensitive detection of alpha-fetoprotein. Analyst 2022; 147:3186-3192. [PMID: 35697344 DOI: 10.1039/d2an00697a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alpha-fetoprotein (AFP) is an important clinical tumor marker of hepatoblastoma, and the concentration of AFP in serum is closely related to the staging of hepatoblastoma. We report a magnetic bead separation platform based on a switching aptamer triggered hybridization chain reaction (SAT-HCR) and the CRISPR-Cas12a sensor for the in vitro detection of AFP. AFP aptamer, as an easily regulated nucleic acid strand, is responsible for binding to AFP into nucleic acid detection, while HCR-CRISPR-Cas12a, regulated by functionalized magnetic nanoparticles, is responsible for highly specific nucleic acid signal amplification. Under the optimal conditions, the fluorescence intensity was proportional to the concentration of AFP in the range of 0.5-104 ng mL-1 and the limit of detection was 0.170 ng mL-1. In addition, we have successfully applied this biosensor to detect AFP in clinical samples from patients with hepatoblastoma, with greater sensitivity relative to ELISA. Our proposed method showed great potential application in clinical diagnosis and pharmaceutical-related fields with the properties of high sensitivity, low cost and high selectivity.
Collapse
Affiliation(s)
- Ya Liu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Yan Chen
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Yue Zhang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Qi Zhong
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Xiaoli Zhu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Qi Wu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital Chong Ming Branch, 202150, China.,Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
24
|
An Atypical Case of Very Early-onset Familial Adenomatous Polyposis Associated With Focal Cortical Dysplasia. J Pediatr Hematol Oncol 2022; 44:e743-e746. [PMID: 34310467 DOI: 10.1097/mph.0000000000002256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/01/2021] [Indexed: 11/26/2022]
Abstract
We describe a female toddler with rectal bleeding from extensive colonic polyposis, and diagnosed with familial adenomatous polyposis. She has epilepsy from infancy attributed to focal cortical dysplasia. Hepatoblastoma was diagnosed at 13 months of age. Germline testing detected a pathogenic APC (adenomatous polyposis coli gene) variant. We discuss the anecdotal management of this case, including the clinical utility of genetic confirmation. We review the genotype-phenotype correlation of the APC mutational spectrum, and the existing evidence supporting the hypothesis that cortical dysplasia is part of the APC-related spectrum.
Collapse
|
25
|
Chen H, Chen Z, Wang M, Zhang J, Li Y, Li L, Li S, Cheng J, Wang X, Xia H, Yang Z, He J. METTL14 gene polymorphisms influence hepatoblastoma predisposition in Chinese children: Evidences from a seven-center case-control study. Gene 2022; 809:146050. [PMID: 34743822 DOI: 10.1016/j.gene.2021.146050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Hepatoblastoma as the most prevalent hepatic malignancy in children, its etiology remains unclear. N6-Methyladenosine (m6A) modification which can modify various physiological processes, plays a critical role in tumorigenesis. Methyltransferase-like 14 (METTL14), an important component of the m6A methyltransferase complex, remains elusive during hepatoblastoma occurrence and development. We explored the relationship between METTL14 gene polymorphisms (rs1064034 T > A, rs298982 G > A, rs62328061 A > G, rs9884978 G > A, and rs4834698 T > C) and hepatoblastoma susceptibility from 313 patients and 1446 controls. The role of METTL14 polymorphisms in hepatoblastoma was evaluated by odds ratios (ORs) and 95% confidence intervals (CIs). Of the included subjects, 308 patients and 1444 controls were successfully genotyped. We did not find any significant correlation between the risk of hepatoblastoma and the five potentially functional METTL14 polymorphisms individually. However, the presence of 4-5 risk genotypes exhibited a significant increased hepatoblastoma risk (adjusted OR = 1.32, 95% CI = 1.03-1.69, P = 0.031) compared to those carriers with 0-3 risk genotypes. Furthermore, the stratified analysis demonstrated that the rs1064034 AA genotype, rs62328061 AG/GG genotypes, rs4834698 TC/CC genotypes, and 4-5 risk genotypes were related to hepatoblastoma susceptibility in certain subgroups. The expression quantitative trait loci (eQTL) analysis revealed that rs1064034 T > A and rs4834698 T > C were correlated with the expression levels of METTL14 and its surrounding genes. Prospectively, these findings suggested that METTL14 polymorphisms may correlation with hepatoblastoma susceptibility and provide a fresh insight into the genetic underpinnings of m6A modification in hepatoblastoma.
Collapse
Affiliation(s)
- Huitong Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhen Chen
- Department of Pediatric Surgery, Capital Institute of Pediatrics, Beijing 100020, Beijing, China
| | - Mi Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha 410004, Hunan, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shanxi, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Xianqiang Wang
- Department of General Pediatrics, Senior Department of Pediatrics, National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ Failure, the Seventh Medical Center of PLA General Hospital, Beijing 100000, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
26
|
Yan Z, Bai W, Li L, Li S, Hua Y, Zhang XX, Hou XL. Case Report of Congenital Hepatoblastoma With the Onset at 30-Weeks' Gestation. Front Pediatr 2022; 10:905089. [PMID: 35844753 PMCID: PMC9283573 DOI: 10.3389/fped.2022.905089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/24/2022] [Indexed: 01/17/2023] Open
Abstract
This study reports a case of hepatoblastoma with onset at 30-weeks' gestation and rapid growth rate. The postnatal enhanced CT confirmed an intrahepatic mass with a size of 8.5 cm × 6.6 cm and a clear boundary accompanied by uneven enhancement, displacement, and narrow lumen of the hepatic vein due to compression. The alpha-fetoprotein (AFP) at birth was 1,002,632 ng/ml (normal level 48,406 [±34,718] ng/ml). A diagnosis of congenital hepatoblastoma was established based on the imaging and laboratory outcomes. The infant received chemotherapy of Cisplatin-5 fluorouracil-Vincristine (C5V) on the fourth day after birth. After four courses of C5V, a complete tumor resection was performed, and the postoperative pathology was consistent with mixed epithelial and mesenchymal hepatoblastoma. Four more courses of C5V and one course of C5VD (C5V plus doxorubicin) followed the surgery. Infectious diarrhea and acute kidney injury (stage I) occurred during chemotherapy, which recovered after anti-infection and symptomatic treatment. The patient is currently 2 years old and still in complete remission. In this case, the onset of hepatoblastoma was early, and the tumor grew rapidly, resulting in an obvious compression effect. Chemotherapy was started early after birth, and the curative effect was satisfactory, suggesting that the hepatoblastoma based on clinical diagnosis with rapid tumor progression and severe dysfunction of surrounding organs caused by compression should undergo chemotherapy as soon as possible if a pathological diagnosis cannot be obtained temporarily, which also plays an important role in improving the complete resection rate of intraoperative tumor and reducing the recurrence rate of postoperative tumor.
Collapse
Affiliation(s)
- Zheng Yan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wei Bai
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Li Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Shuo Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Hua
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiao-Xiao Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Xin-Lin Hou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
27
|
Liu APY, Chung PHY, Au Yeung RKH, Chan S, Wong KKY, Leung SY, Chiang AKS. Early Development of Colonic Adenocarcinoma With Minimal Polyposis in a Young Child With Metastatic Hepatoblastoma and Germline APC Mutation. J Pediatr Hematol Oncol 2021; 43:e1191-e1193. [PMID: 34001798 DOI: 10.1097/mph.0000000000002209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
Germline adenomatous polyposis coli (APC) gene mutation is a cancer-predisposing condition commonly presenting as familial adenomatous polyposis. We describe a patient first diagnosed at the age of 3 years with metastatic hepatoblastoma. With a positive family history, germline testing confirmed maternally inherited APC mutation (p.Thr899Ansfs*13). The patient was subsequently diagnosed at 8 years with colonic adenocarcinoma in the absence of macroscopic polyposis. Total colectomy with adjuvant chemotherapy was delivered and the patient remained disease-free for 5 years since the second diagnosis. This report demonstrates the importance of considering germline APC mutation in children with hepatoblastoma, who may benefit from the early institution of colonoscopic surveillance.
Collapse
Affiliation(s)
| | | | - Rex K H Au Yeung
- Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Shing Chan
- Departments of Paediatrics and Adolescent Medicine
| | | | - Suet-Yi Leung
- Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | | |
Collapse
|
28
|
Chen H, Duan F, Wang M, Zhu J, Zhang J, Cheng J, Li L, Li S, Li Y, Yang Z, Xia H, Niu H, He J. Polymorphisms in METTL3 gene and hepatoblastoma risk in Chinese children: A seven-center case-control study. Gene 2021; 800:145834. [PMID: 34274483 DOI: 10.1016/j.gene.2021.145834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Hepatoblastoma is the most common malignant liver cancer in childhood, yet its etiology remains unclear. As an m6A methylation modifier, methyltransferase like 3 (METTL3) has an active methyltransferase domain that functionally participates in various tumor occurrence and development. However, little is known about how METTL3 polymorphisms affect the occurrence of hepatoblastoma. Here, we attempted to investigate the associations between METTL3 gene polymorphisms and hepatoblastoma risk in a seven-center case-control study. We genotyped four METTL3 polymorphisms (rs1061026 T > G, rs1061027 C > A, rs1139130 A > G, rs1263801 G > C) by TaqMan technique in 313 cases and 1446 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the contributions of these four single nucleotide polymorphisms (SNPs) to hepatoblastoma susceptibility. In single genotype analysis, we detected no significant correlation between these four polymorphisms in METTL3 and hepatoblastoma risk. However, in the combined analysis, the presence of 2-4 risk genotypes of METTL3 was associated with an increased risk of hepatoblastoma compared with that of 0-1 risk genotypes (adjusted OR = 1.48, 95% CI = 1.03-2.12, P = 0.035). The stratified analysis further revealed that carriers of 2-4 risk genotypes are more susceptible to hepatoblastoma in the subgroups of subjects aged under 17 months (adjusted OR = 1.88, 95% CI = 1.12-3.16, P = 0.016) and females (adjusted OR = 1.79, 95% CI = 1.06-3.05, P = 0.031). Overall, our results revealed that none of these four SNPs could increase susceptibility to hepatoblastoma individually. Carriers with 2-4 risk genotypes in the combined analysis tend to increase the risk of hepatoblastoma.
Collapse
Affiliation(s)
- Huitong Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Fei Duan
- Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Mi Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha 410004, Hunan, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huizhong Niu
- Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
29
|
Feng SG, Bhandari R, Ya L, Zhixuan B, Qiuhui P, Jiabei Z, Sewi M, Ni Z, Jing W, Fenyong S, Ji M, Bhandari R. SNHG9 promotes Hepatoblastoma Tumorigenesis via miR-23a-5p/Wnt3a Axis. J Cancer 2021; 12:6031-6049. [PMID: 34539877 PMCID: PMC8425203 DOI: 10.7150/jca.60748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Hepatoblastoma is a common hepatic tumor occurring in children between 0-5 years. Accumulating studies have shown lncRNA's potential role in distinct cancer progression and development, including hepatoblastoma. SnoRNA host gene 9 (SNHG9) is associated with the progression of distinct human cancers, but, its specific molecular mechanisms in hepatoblastoma is not unknown. Methods: In this study, we estimated SNHG9 expression in hepatoblastoma tissue and cell lines by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Next, we downregulated and upregulated SNHG9 expression in hepatoblastoma cell lines and then determined cell proliferation (CCK-8), colony formation, and cellular apoptosis activity. The dual luciferase reporter activity, RNA immunoprecipitation (RIP), biotin RNA pull down and Spemann's Pearson correlation coefficient assay were performed to establish the interaction between SNHG9, WNt3a and miR- 23a-5p. A xenograft in-vivo tumorgenicity test was performed to elucidate the role of SNHG9 hepatoblastoma in tumorigenesis. SNHG9 role in Cisplatin drug resistance in hepatoblastoma was also determined. Results: SNHG9 was significantly upregulated in hepatoblastoma tissue and cell lines. SNHG9 overexpression on HUH6 & HepG2 resulted in a significant increase in cell proliferation and clonogenic activity while SNHG9 knock down resulted in a sustained inhibition of cell proliferation and clonogenic activity. Dual luciferase activity, RNA immunoprecipitation and biotin pull down confirmed the direct interaction of miR-23a-5p with SNHG9. The xenograft tumorgenicity test showed SNHG9 downregulation significantly inhibited the tumor growth in BALB/c mice. ROC and Kaplan-Meier analysis showed potential prognostic and diagnostic importance of SNHG9 in hepatoblastoma. Conclusion: We concluded that SNHG9/miR-23a-5p/Wnt3a axis promotes the progression hepatoblastoma tumor.
Collapse
Affiliation(s)
- Sun Gui Feng
- Department of Clinical Laboratory Medicine, Chengdu Second Peoples Hospital, Chengdu, Sichuan 610021, PR China.,Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University of Medicine Shanghai, China
| | - Rajeev Bhandari
- Department of Clinical Laboratory Medicine, Chengdu Second Peoples Hospital, Chengdu, Sichuan 610021, PR China
| | - Liu Ya
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University of Medicine Shanghai, China
| | - Bian Zhixuan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Pan Qiuhui
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zhu Jiabei
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Mao Sewi
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zhen Ni
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Wang Jing
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Sun Fenyong
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University of Medicine Shanghai, China
| | - Ma Ji
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ramesh Bhandari
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University of Medicine Shanghai, China
| |
Collapse
|
30
|
Chen H, Guan Q, Guo H, Miao L, Zhuo Z. The Genetic Changes of Hepatoblastoma. Front Oncol 2021; 11:690641. [PMID: 34367972 PMCID: PMC8335155 DOI: 10.3389/fonc.2021.690641] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatoblastoma is the most common malignant liver cancer in childhood. The etiology of hepatoblastoma remains obscure. Hepatoblastoma is closely related to genetic syndromes, hinting that hepatoblastoma is a genetic predisposition disease. However, no precise exposures or genetic events are reported to hepatoblastoma occurrence. During the past decade, significant advances have been made in the understanding of etiology leading to hepatoblastoma, and several important genetic events that appear to be important for the development and progression of this tumor have been identified. Advances in our understanding of the genetic changes that underlie hepatoblastoma may translate into better patient outcomes. Single nucleotide polymorphisms (SNPs) have been generally applied in the research of etiology's exploration, disease treatment, and prognosis assessment. Here, we reviewed and discussed the molecular epidemiology, especially SNPs progresses in hepatoblastoma, to provide references for future studies and promote the study of hepatoblastoma's etiology.
Collapse
Affiliation(s)
- Huitong Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Guan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
31
|
Rosina E, Rinaldi B, Silipigni R, Bergamaschi L, Gattuso G, Signoroni S, Guerneri S, Carnevali A, Marchisio PG, Milani D. Incidental finding of APC deletion in a child: double trouble or double chance? - a case report. Ital J Pediatr 2021; 47:31. [PMID: 33588901 PMCID: PMC7885235 DOI: 10.1186/s13052-021-00969-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/11/2021] [Indexed: 01/08/2023] Open
Abstract
Background 22q11.2 deletion syndrome is one of the most common genomic disorders, characterized by the variable presence of facial dysmorphisms, congenital cardiac defects, velopharyngeal insufficiency/cleft palate, thymic hypoplasia/aplasia, immunodeficiency, parathyroid hypoplasia, developmental delay, learning disabilities, psychiatric disorders, renal, ocular, and skeletal malformations, hearing loss and laryngeal abnormalities. Chromosomal microarray (CMA) hybridization is one of the most performed diagnostic tests but as a genome wide analysis, it can point out relevant incidental copy number variations. Case presentation We report the case of a 2-year-old boy that came to our attention for mild psychomotor delay, poor growth, and minor facial anomalies. Considering a diagnosis of 22q11.2 deletion syndrome, we performed CMA that not only confirmed our diagnosis, but also pointed out an additional de novo 5q21.3q22.2 microdeletion, encompassing APC gene. As a result of the genetic testing we enrolled the patient in a tailored surveillance protocol that enabled the early detection of a hepatoblastoma. The child underwent surgical and chemotherapic treatments with complete cancer eradication. Conclusions The concurrent finding of an expected result and an additional deletion of APC gene represents an example of a relevant issue about the health and ethical management of secondary findings revealed by genome-wide tests. Furthermore, this report highlights the need to develop dedicated surveillance guidelines for children with APC-related polyposis and raise the question whether to suspect and screen for APC-related conditions in cases of sporadic hepatoblastomas.
Collapse
Affiliation(s)
- Erica Rosina
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Highly Intensive Care Unit, Via della Commenda, 9, 20122, Milan, Italy
| | - Berardo Rinaldi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Highly Intensive Care Unit, Via della Commenda, 9, 20122, Milan, Italy.
| | - Rosamaria Silipigni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Laboratory of Medical Genetics, Milan, Italy
| | - Luca Bergamaschi
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Gattuso
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Signoroni
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvana Guerneri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Laboratory of Medical Genetics, Milan, Italy
| | - Alessandra Carnevali
- Department of Radiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Giovanna Marchisio
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Highly Intensive Care Unit, Via della Commenda, 9, 20122, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Donatella Milani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Highly Intensive Care Unit, Via della Commenda, 9, 20122, Milan, Italy
| |
Collapse
|
32
|
Kratz CP, Jongmans MC, Cavé H, Wimmer K, Behjati S, Guerrini-Rousseau L, Milde T, Pajtler KW, Golmard L, Gauthier-Villars M, Jewell R, Duncan C, Maher ER, Brugieres L, Pritchard-Jones K, Bourdeaut F. Predisposition to cancer in children and adolescents. THE LANCET. CHILD & ADOLESCENT HEALTH 2021; 5:142-154. [PMID: 33484663 DOI: 10.1016/s2352-4642(20)30275-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022]
Abstract
Childhood malignancies are rarely related to known environmental exposures, and it has become increasingly evident that inherited genetic factors play a substantial causal role. Large-scale sequencing studies have shown that approximately 10% of children with cancer have an underlying cancer predisposition syndrome. The number of recognised cancer predisposition syndromes and cancer predisposition genes are constantly growing. Imaging and laboratory technologies are improving, and knowledge of the range of tumours and risk of malignancy associated with cancer predisposition syndromes is increasing over time. Consequently, surveillance measures need to be constantly adjusted to address these new findings. Management recommendations for individuals with pathogenic germline variants in cancer predisposition genes need to be established through international collaborative studies, addressing issues such as genetic counselling, cancer prevention, cancer surveillance, cancer therapy, psychological support, and social-ethical issues. This Review represents the work by a group of experts from the European Society for Paediatric Oncology (SIOPE) and aims to summarise the current knowledge and define future research needs in this evolving field.
Collapse
Affiliation(s)
- Christian P Kratz
- Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Marjolijn C Jongmans
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands; Department of Genetics, University Medical Center Utrecht, Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Hélène Cavé
- Department of Genetics, Assistance Publique Hôpitaux de Paris-Robert Debre University Hospital, Paris, France; Denis Diderot School of Medicine, University of Paris, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1131, Institut de Recherche Saint Louis, Paris, France
| | - Katharina Wimmer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Sam Behjati
- Wellcome Sanger Institute, Cambridge, UK; Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Lea Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, Paris, France
| | - Till Milde
- Clinical Cooperation Unit Paediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; KiTZ Clinical Trial Unit, Department of Paediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany; Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Kristian W Pajtler
- Clinical Cooperation Unit Paediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; KiTZ Clinical Trial Unit, Department of Paediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany; Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Lisa Golmard
- Department of Genetics, Institut Curie, Paris, France; Paris Sciences Lettres Research University, Paris, France
| | - Marion Gauthier-Villars
- Department of Genetics, Institut Curie, Paris, France; Paris Sciences Lettres Research University, Paris, France
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK; NIHR Cambridge Biomedical Research Centre and Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Laurence Brugieres
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, Paris, France
| | - Kathy Pritchard-Jones
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Franck Bourdeaut
- SIREDO Paediatric Cancer Center, Institut Curie, Paris, France; INSERM U830, Laboratory of Translational Research in Paediatric Oncology, Institut Curie, Paris, France; Paris Sciences Lettres Research University, Paris, France.
| |
Collapse
|
33
|
Abstract
Hepatoblastoma (HB) is the predominant primary liver tumor in children. While the prognosis is favorable when the tumor can be resected, the outcome is dismal for patients with progressed HB. Therefore, a better understanding of the molecular mechanisms responsible for HB is imperative for early detection and effective treatment. Sequencing analysis of human HB specimens unraveled the pivotal role of Wnt/β-catenin pathway activation in this disease. Nonetheless, β-catenin activation alone does not suffice to induce HB, implying the need for additional alterations. Perturbations of several pathways, including Hippo, Hedgehog, NRF2/KEAP1, HGF/c-Met, NK-1R/SP, and PI3K/AKT/mTOR cascades and aberrant activation of c-MYC, n-MYC, and EZH2 proto-oncogenes, have been identified in HB, although their role requires additional investigation. Here, we summarize the current knowledge on HB molecular pathogenesis, the relevance of the preclinical findings for the human disease, and the innovative therapeutic strategies that could be beneficial for the treatment of HB patients.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Antonio Solinas
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefano Cairo
- XenTech, Evry, France,Istituto di Ricerca Pediatrica, Padova, Italy
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
34
|
Ren H, Zhuo ZJ, Duan F, Li Y, Yang Z, Zhang J, Cheng J, Li S, Li L, Geng J, Zhang Z, He J, Niu H. ALKBH5 Gene Polymorphisms and Hepatoblastoma Susceptibility in Chinese Children. JOURNAL OF ONCOLOGY 2021; 2021:6658480. [PMID: 33790968 PMCID: PMC7997766 DOI: 10.1155/2021/6658480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/11/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Incidence of hepatoblastoma has been increasing, but the causes of this disease remain unclear. Some studies have suggested that abnormal expressions of ALKBH5 gene are associated with multiple cancers. This study aims to test the hypothesis that hepatoblastoma risk may be modulated by genetic polymorphisms in ALKBH5 gene based on genotyped data from samples of 328 cases and 1476 controls enrolled from eight hospitals in China. We used TaqMan assay to genotype ALKBH5 gene single nucleotide polymorphisms (SNPs) rs1378602G > A and rs8400G > A. We calculated the odds ratios (ORs) and P values using logistic regression models to estimate the association between hepatoblastoma risk and ALKBH5 gene SNPs. We found the rs1378602G > A and rs8400G > A could not impact hepatoblastoma risk in single or combined analysis. Stratified analysis revealed that subjects with the rs8400 AA genotype are prone to getting hepatoblastoma in the clinical stage III + IV subgroup (adjusted OR = 1.93, 95% CI = 1.20-3.10, P=0.007), when compared to those with GG/GA genotype. False-positive report probability validated the reliability of the significant results. Preliminary functional annotations revealed that rs8400 A is correlated with increased expression of ALKBH5 gene in the expression quantitative trait locus (eQTL) analysis. In all, our investigation presents evidence of a weak impact of ALKBH5 gene polymorphisms on hepatoblastoma risk, using the largest hepatoblastoma sample size. These findings shed some light on the genetic basis of hepatoblastoma, implicating the role of ALKBH5 gene polymorphisms in the etiology of hepatoblastoma.
Collapse
Affiliation(s)
- Hui Ren
- 1Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Zhen-Jian Zhuo
- 2Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Fei Duan
- 1Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Yong Li
- 3Department of Pediatric Surgery, Hunan Children's Hospital, Changsha 410004, Hunan, China
| | - Zhonghua Yang
- 4Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jiao Zhang
- 5Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- 6Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Suhong Li
- 7Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shaanxi, China
| | - Li Li
- 8Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Jianlei Geng
- 1Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Zhiguang Zhang
- 1Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Jing He
- 2Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huizhong Niu
- 1Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| |
Collapse
|
35
|
Zhuo ZJ, Hua RX, Chen Z, Zhu J, Wang M, Yang Z, Zhang J, Li Y, Li L, Li S, Xin Y, Xia H, He J. WTAP Gene Variants Confer Hepatoblastoma Susceptibility: A Seven-Center Case-Control Study. Mol Ther Oncolytics 2020; 18:118-125. [PMID: 32671187 PMCID: PMC7338985 DOI: 10.1016/j.omto.2020.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma is a rare disease, and its etiology remains to be revealed. Wilms tumor suppressor-1-associated protein (WTAP) plays a critical role in tumorigenesis. However, whether single nucleotide polymorphisms (SNPs) of the WTAP gene predispose to hepatoblastoma risk awaits to be investigated. With the use of the TaqMan assay, we evaluated the genotype frequencies of three WTAP SNPs (rs7766006 G > T, rs9457712 G > A, and rs1853259 A > G) in Chinese children with 313 hepatoblastoma patients and 1,446 controls. Among these three SNPs, only the rs7766006 T allele exhibited a significant association with hepatoblastoma risk (GT versus GG: adjusted odds ratio [OR] = 0.70, 95% confidence interval [CI] = 0.53-0.92, p = 0.009; GT/TT versus GG: adjusted OR = 0.73, 95% CI = 0.57-0.95, p = 0.017). Combined analysis indicated that subjects with two risk genotypes showed significantly higher hepatoblastoma risk, compared to individuals without a risk genotype (adjusted OR = 1.38, 95% CI = 1.02-1.88, p = 0.037). The stratified analysis revealed that the rs1853259 GG genotype, the rs7766006 GT/TT genotype, and two risk genotypes modified hepatoblastoma risk in certain subgroups. The significant results were validated by haplotype analyses and false-positive report probability analyses. Furthermore, the expression quantitative trait locus analysis indicated that rs7766006 T was associated with decreased expression of WTAP mRNA. Collectively, our results suggest that WTAP SNPs may be genetic modifiers for the development of hepatoblastoma.
Collapse
Affiliation(s)
- Zhen-Jian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhen Chen
- Department of Pediatric Surgery, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jinhong Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, China
| | - Mi Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha, Hunan 410004, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children’s Hospital, Kunming, Yunnan 650228, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, Shannxi 030013, China
| | - Yijuan Xin
- Clinical Laboratory Medicine Center of PLA, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi 710032, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| |
Collapse
|
36
|
Shen G, Shen H, Zhang J, Yan Q, Liu H. DNA methylation in Hepatoblastoma-a literature review. Ital J Pediatr 2020; 46:113. [PMID: 32758256 PMCID: PMC7409486 DOI: 10.1186/s13052-020-00877-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver tumor in children. Abnormal activation of the Wnt/β-catenin signaling pathway plays an important role in the formation and development of HB. Genes in HB show a global hypomethylation change, accompanied by hypermethylation of specific tumor suppressor genes (TSGs). This article reviews the hypermethylation changes in several TSGs, such as RASSF1A, SOCS1, APC, HHIP, and P16, and analyzes the pathways and mechanisms of TSGs regulating gene expression. The role of the methylation-regulating enzymes DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) family members enzymes in the methylation changes of HB was analyzed, and it was speculated that the occurrence of HB is partly due to the obstruction of liver differentiation in the early stage of differentiation. The origin cells may be incompletely differentiated hepatocytes remaining in the liver of children after birth. Therefore, further studying the role of methylation regulating enzymes in methylation changes in HB is a promising future research direction.
Collapse
Affiliation(s)
- Gang Shen
- Pediatric Surgery Department, Weifang Peoples' Hospital, Weifang, China
| | - Hongyu Shen
- Ultrasound Department, Weifang Haifushan Hospital, Weifang, China
| | - Jing Zhang
- Pediatric Surgery Department, Weifang Peoples' Hospital, Weifang, China
| | - Qingtao Yan
- Pediatric Surgery Department, Weifang Peoples' Hospital, Weifang, China
| | - Huixian Liu
- Dermatology Department, Weifang Peoples' Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261041, China.
| |
Collapse
|
37
|
Liu P, Zhuo ZJ, Zhu J, Yang Z, Xin Y, Li S, Li L, Li Y, Wang H, He J. Association of TP53 rs1042522 C>G and miR-34b/c rs4938723 T>C polymorphisms with hepatoblastoma susceptibility: A seven-center case-control study. J Gene Med 2020; 22:e3182. [PMID: 32166848 DOI: 10.1002/jgm.3182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatoblastoma is a rare malignancy originating from pluripotent stem cells with unknown etiology. An understanding of the etiology in pediatric hepatoblastoma has been hampered by the unavailability of sufficient patient samples. To date, only a few epidemiological studies with small sample sizes have been performed investigating risk factors for hepatoblastoma. TP53 and pri-miR-34b/c genes are implicated in the tumorigenesis, yet the role of their polymorphisms in hepatoblastoma susceptibility remains unknown. METHODS We conducted a seven-center case-control study to explore the genetic variants predisposing to hepatoblastoma susceptibility. In our study, we genotyped two functional polymorphisms, the TP53 rs1042522 C>G (Arg72Pro) and miR-34b/c rs4938723 T>C, in 313 cases and 1446 controls using the TaqMan method. RESULTS Single loci analysis showed that neither TP53 rs1042522 C>G, nor miR-34b/c rs4938723 T>C significantly modified hepatoblastoma risk. In the stratification analysis, we identified that the miR-34b/c rs4938723 TC/CC genotypes were associated with a decreased risk in patients with clinical stages III + IV hepatoblastoma (adjusted odds ratio = 0.53, 95% confidence interval = 0.33-0.84, P=0.007] compared to the rs4938723 TT genotype. Subsequent analysis further showed that the combination of TP53 and miR-34b/c variant genotypes had no impact on susceptibility hepatoblastoma. CONCLUSIONS Taken together, TP53 rs1042522 C>G and miR-34b/c rs4938723 T>C may not confer hepatoblastoma susceptibility. These findings may aid in our understanding of the genetic etiology of hepatoblastoma.
Collapse
Affiliation(s)
- Peng Liu
- Department of Pediatric Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen-Jian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinhong Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yijuan Xin
- Clinical Laboratory Medicine Center of PLA, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, Shaanxi, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha, Hunan, China
| | - Huaili Wang
- Department of Pediatric Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Hafberg E, Borinstein SC, Alexopoulos SP. Contemporary management of hepatoblastoma. Curr Opin Organ Transplant 2020; 24:113-117. [PMID: 30762666 DOI: 10.1097/mot.0000000000000618] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Hepatoblastoma is the most common primary pediatric liver malignancy. The goal of treatment in hepatoblastoma is complete surgical resection. Recently published multinational collaborative studies are better defining risk factors for disease recurrence and guide optimal treatment strategy. RECENT FINDINGS Successful margin-negative resection of hepatoblastoma is dependent on the location and extent of disease as defined by the PRETEXT classification. Liver transplantation is an appropriate treatment modality when complete oncological resection requires total hepatectomy. In general, advanced PRETEXT class as well as histologic features, age at presentation, tumoral production of α-feto protein and the presence of metastatic disease adversely affect outcome. Hepatoblastoma is chemosensitive and significant downstaging can occur with the use of neoadjuvant chemotherapy allowing for less extensive hepatectomy. In addition, patients at moderate-to-high risk of postresection recurrence should receive neoadjuvant chemotherapy. Cisplatin-based chemotherapy can allow for resection of transplantation of patients with metastatic disease when complete metasatectomy can be achieved albeit with inferior results. SUMMARY Treatment of hepatoblastoma with surgical resection or liver transplantation is associated with excellent long-term results in the setting of modern chemotherapy.
Collapse
Affiliation(s)
- Einar Hafberg
- Division of Gastroenterology, Department of Pediatrics, Vanderbilt University Medical Center
| | - Scott C Borinstein
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Vanderbilt University Medical Center
| | - Sophoclis P Alexopoulos
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
39
|
Luo Z, Li G, Wang M, Zhu J, Yang Z, Li Y, Zhang J, Xin Y, Li S, Li L, Zhuo Z, He J. YTHDF1 rs6090311 A>G polymorphism reduces Hepatoblastoma risk: Evidence from a seven-center case-control study. J Cancer 2020; 11:5129-5134. [PMID: 32742460 PMCID: PMC7378914 DOI: 10.7150/jca.46120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Various factors modulate the risk of hepatoblastoma. In this study, we aimed to investigate whether single nucleotide polymorphisms (SNPs) in the YTHDF1 gene could predispose to hepatoblastoma. We used TaqMan assay to genotype two YTHDF1 SNPs (rs6011668 C>T and rs6090311 A>G) in a Chinese population composed of 313 subjects with hepatoblastoma and 1446 controls from seven hospitals. We then evaluated the associations of these two SNPs with hepatoblastoma risk using unconditional logistic regression. We found that rs6090311 G allele exhibited a significant association with decreased hepatoblastoma risk [AG vs. AA: adjusted odds ratio (OR)=0.75; 95% confidence interval (CI)=0.58-0.98, P=0.033; AG/GG vs. AA: adjusted OR=0.76, 95% CI=0.59-0.97, P=0.029]. Furthermore, the combined analysis of protective genotypes revealed that subjects carrying two protective genotypes were less likely to have hepatoblastoma than those with 0-1 protective genotypes (adjusted OR=0.75, 95% CI=0.59-0.96, P=0.022). Subjects ≥17 months of age had decreased hepatoblastoma risk, in case that they carried rs6090311 AG/GG (adjusted OR=0.63, 95% CI=0.44-0.91, P=0.012), or two protective genotypes (adjusted OR=0.63, 95% CI=0.44-0.91, P=0.012). False-positive report probability analysis validated the reliability of the significant results. Preliminary functional annotations revealed that rs6090311 G was correlated with decreased expression of its surrounding genes in the expression quantitative trait locus (eQTL) analysis. In conclusion, our results indicate that the rs6090311 A>G in the YTHDF1 gene is related to decreased hepatoblastoma risk.
Collapse
Affiliation(s)
- Zhendong Luo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Guoyuan Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Mi Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jinhong Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha 410004, Hunan, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yijuan Xin
- Clinical Laboratory Medicine Center of PLA, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- ✉ Corresponding authors: Jing He or Zhenjian Zhuo, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, E-mails: (Jing He) or (Zhenjian Zhuo)
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- ✉ Corresponding authors: Jing He or Zhenjian Zhuo, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, E-mails: (Jing He) or (Zhenjian Zhuo)
| |
Collapse
|
40
|
Health Status in Long-Term Survivors of Hepatoblastoma. Cancers (Basel) 2019; 11:cancers11111777. [PMID: 31718024 PMCID: PMC6895795 DOI: 10.3390/cancers11111777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate the health status of children cured from hepatoblastoma. Forty-five patients with hepatoblastoma treated between 1996–2014 were assessed. The recorded data included sex, age at diagnosis, disease stage, treatment methods, time since diagnosis, and the evaluation of health status domains which included performance status, growth development, hearing, cardiovascular, skeletal, gastrointestinal, genitourinary, neurological, and hematological function. There were 30 boys and 15 girls. The age at diagnosis ranged from one month to 14 years (median one year). At the time of the health status evaluation, the youngest patient was 5.5 years old and the oldest was 21 years of age (median—10 years). All patients were treated according to the Childhood Liver Tumors Strategy Group—SIOPEL recommendations, though they were not active participants of the studies. The median cumulative dose of cisplatin was 520 mg/m2 and 360 mg/m2 for doxorubicin. Thirty-six patients underwent partial hepatectomy, and nine total hepatectomy and liver transplantation. At a median of nine years from diagnosis, 68% of hepatoblastoma survivors had experienced at least one chronic health condition of any grade. The most frequent late complication was ototoxicity (28.8%), and the most serious were second malignancies (6.6%) and cardiomyopathy (4.4%). Conclusion: Survivors of hepatoblastoma are at risk for long-term complications. They require long-term monitoring for late effects.
Collapse
|
41
|
Zhang W, Meyfeldt J, Wang H, Kulkarni S, Lu J, Mandel JA, Marburger B, Liu Y, Gorka JE, Ranganathan S, Prochownik EV. β-Catenin mutations as determinants of hepatoblastoma phenotypes in mice. J Biol Chem 2019; 294:17524-17542. [PMID: 31597698 DOI: 10.1074/jbc.ra119.009979] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric liver cancer. Although long-term survival of HB is generally favorable, it depends on clinical stage, tumor histology, and a variety of biochemical and molecular features. HB appears almost exclusively before the age of 3 years, is represented by seven histological subtypes, and is usually associated with highly heterogeneous somatic mutations in the catenin β1 (CTNNB1) gene, which encodes β-catenin, a Wnt ligand-responsive transcriptional co-factor. Numerous recurring β-catenin mutations, not previously documented in HB, have also been identified in various other pediatric and adult cancer types. Little is known about the underlying factors that determine the above HB features and behaviors or whether non-HB-associated β-catenin mutations are tumorigenic when expressed in hepatocytes. Here, we investigated the oncogenic properties of 14 different HB- and non-HB-associated β-catenin mutants encoded by Sleeping Beauty vectors following their delivery into the mouse liver by hydrodynamic tail-vein injection. We show that all β-catenin mutations, as well as WT β-catenin, are tumorigenic when co-expressed with a mutant form of yes-associated protein (YAP). However, tumor growth rates, histologies, nuclear-to-cytoplasmic partitioning, and metabolic and transcriptional landscapes were strongly influenced by the identities of the β-catenin mutations. These findings provide a context for understanding at the molecular level the notable biological diversity of HB.
Collapse
Affiliation(s)
- Weiqi Zhang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224.,Tsinghua University School of Medicine, Beijing 100084, China
| | - Jennifer Meyfeldt
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Huabo Wang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Sucheta Kulkarni
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Jie Lu
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Jordan A Mandel
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Brady Marburger
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Ying Liu
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Joanna E Gorka
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Sarangarajan Ranganathan
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224.,Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213
| | - Edward V Prochownik
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224 .,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213.,Department of Microbiology and Molecular Genetics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213.,Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15232
| |
Collapse
|
42
|
MacFarland SP, Zelley K, Katona BW, Wilkins BJ, Brodeur GM, Mamula P. Gastrointestinal Polyposis in Pediatric Patients. J Pediatr Gastroenterol Nutr 2019; 69:273-280. [PMID: 31211762 PMCID: PMC7336255 DOI: 10.1097/mpg.0000000000002421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gastrointestinal polyps are mucosal overgrowths that, if unchecked, can undergo malignant transformation. Although relatively uncommon in the pediatric age group, they can be the harbingers of multiorgan cancer risk and require close management and follow-up. Additionally, as many polyposis syndromes are inherited, appropriate genetic testing and management of relatives is vital for the health of the entire family. In this review, we discuss both common and uncommon childhood gastrointestinal polyposis syndromes in terms of clinical presentation, management, and surveillance. We also detail any additional malignancy risk and surveillance required in the pediatric age group (<21 years old). Through this review, we provide a framework for gastroenterologists to manage the multifaceted nature of pediatric polyposis syndromes.
Collapse
Affiliation(s)
- Suzanne P. MacFarland
- Division of Oncology, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kristin Zelley
- Division of Oncology, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Bryson W. Katona
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Benjamin J. Wilkins
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Garrett M. Brodeur
- Division of Oncology, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Petar Mamula
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
43
|
Schooler GR. American College of Radiology LI-RADS in pediatric patients: the good, the bad, and the future. Pediatr Radiol 2019; 49:707-709. [PMID: 31069469 DOI: 10.1007/s00247-019-04351-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Gary R Schooler
- Pediatric Radiology, Department of Radiology, Duke University Medical Center, 1905 McGovern-Davison Children's Health Center, Durham, NC, 27710, USA.
| |
Collapse
|
44
|
Morcrette G, Hirsch TZ, Badour E, Pilet J, Caruso S, Calderaro J, Martin Y, Imbeaud S, Letouzé E, Rebouissou S, Branchereau S, Taque S, Chardot C, Guettier C, Scoazec JY, Fabre M, Brugières L, Zucman-Rossi J. APC germline hepatoblastomas demonstrate cisplatin-induced intratumor tertiary lymphoid structures. Oncoimmunology 2019; 8:e1583547. [PMID: 31069152 PMCID: PMC6492969 DOI: 10.1080/2162402x.2019.1583547] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatoblastoma (HB) is the most common liver cancer in children. We aimed to characterize HB related to APC (Adenomatous Polyposis Coli) germline mutation (APC-HB). This French multicentric retrospective study included 12 APC-HB patients under 5 at diagnosis. Clinical features of APC-HB were compared to the French SIOPEL2-3 cohort of HB patients. Molecular and histopathological analyses of APC-HB were compared to 15 consecutive sporadic HB treated at Bicêtre hospital from 2013 to 2015 (non-APC-HB). APC-HB patients have a peculiar spectrum of germline APC mutations, with no events in the main hotspot of classical APC mutations at codon 1309 (P < .05). Compared to sporadic HB, they have similar clinical features including good prognosis since all patients are alive in complete remission at last follow-up. APC-HB are mostly well-limited tumors with fetal predominance and few mesenchymal components. All APC-HB have an activated Wnt/β-catenin pathway without CTNNB1 mutation, confirming that germline APC and somatic CTNNB1 mutations are mutually exclusive (P < .001). Pathological reviewing identified massive intratumor tertiary lymphoid structures (TLS) containing both lymphocytes and antigen-presenting cells in all 11 APC-HB cases who received cisplatin-based neoadjuvant chemotherapy but not in five pre-chemotherapy samples (four paired biopsies and one patient resected without chemotherapy), indicating that these TLS are induced by chemotherapy (P < .001). Conclusion: APC-HB show a good prognosis, they are all infiltrated by cisplatin-induced TLS, a feature only retrieved in a minority of non-APC-HB. This suggests that APC inactivation can synergize with cisplatin to induce an immunogenic cell death that initiates an anti-tumor immune response.
Collapse
Affiliation(s)
- Guillaume Morcrette
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Service de Pathologie Pédiatrique, Assistance Publique Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
| | - Theo Z Hirsch
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Elise Badour
- Service de pédiatrie, Centre Hospitalier de la Côte Basque, Bayonne, France
| | - Jill Pilet
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Julien Calderaro
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Service d'anatomopathologie, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France.,Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, France
| | - Yoann Martin
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Sandrine Imbeaud
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Sandra Rebouissou
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Branchereau
- Service de chirurgie pédiatrique, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Université Paris-Saclay, Le Kremlin, France
| | - Sophie Taque
- Département de Médecine de l'Enfant et l'Adolescent, CHU de Rennes, France
| | - Christophe Chardot
- Service de Chirurgie viscérale pédiatrique, Assistance Publique Hôpitaux de Paris, Hôpital Necker-Enfants malades, Paris, France
| | - Catherine Guettier
- Service d'anatomie et de cytologie pathologiques, Hôpitaux Universitaires Paris Sud, Assistance Publique Hôpitaux de Paris Le Kremlin Bicêtre, Faculté de Médecine Paris Sud, INSERM, Paris, France
| | - Jean-Yves Scoazec
- Service d'anatomie et de cytologie pathologiques, Gustave Roussy Cancer Center, Villejuif, France
| | - Monique Fabre
- Service d'anatomie et de cytologie pathologiques, Assistance Publique Hôpitaux de Paris, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Laurence Brugières
- Département de cancérologie de l'Enfant et l'adolescent, Gustave Roussy Cancer Center, Villejuif, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Functional Genomics of Solid Tumors laboratory, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Labex OncoImmunology, Equipe labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Département de cancérologie, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|