1
|
Yu H, Liu W, Zhang J, Xie L, Lai A, Tian Z, Tang K, Xing H, Wang Y, Wei H, Rao Q, Gu R, Wang M, Wang H, Wang J, Qiu S. The Clinical and Molecular Characterization of Distinct Subtypes in Adult T Cell Acute Lymphoblastic Leukemia. Cancer Sci 2025; 116:1126-1138. [PMID: 39920885 PMCID: PMC11967253 DOI: 10.1111/cas.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/26/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a clonal proliferative malignant disease characterized by abnormal T-cell development. The classification of T-ALL primarily hinges on immunophenotype, encompassing early T-cell precursor (ETP)-ALL, near-ETP-ALL, and non-ETP-ALL. We summarized clinical information from 117 patients, with genetic data available for 77 patients and transcriptomic data available for 24 patients. An ETP-like score model was established based on transcriptome, aiming to address the subjectivity in the current T-ALL immunophenotype classification. The retrospective analysis indicated that ETP immunophenotype was not a prognostic factor for T-ALL patients. Compared to non-ETP-ALL patients, ETP-like patients including ETP-ALL and near-ETP-ALL were more likely to carry MED12 gene mutations, which may predict a dismal outcome. Transcriptomic analysis suggested that T-ALL patients with different immunophenotypes were in accordance with the T-cell development trajectory, while ETP-like patients exhibited characteristics of early T-cell development. Finally, we established an ETP-like score model and confirmed its efficiency across four independent cohorts, with sensitivity exceeding 80%. And T-ALL patients with high ETP-like score were associated with poor prognosis. In conclusion, our study elucidated the clinical and molecular features of distinct subtypes of T-ALL patients, providing new valuable insights for T-ALL classification.
Collapse
Affiliation(s)
- Heye Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Wenbing Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Junping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Leling Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Anli Lai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Zheng Tian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Runxia Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Shaowei Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell EcosystemInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| |
Collapse
|
2
|
Kempter T, Richter-Pechańska P, Michel K, Rausch T, Erarslan-Uysal B, Eckert C, Zimmermann M, Stanulla M, Schrappe M, Cario G, Köhrer S, Attarbaschi A, Korbel JO, Kunz JB, Kulozik AE. Subclonal TP53 and KRAS variants combined with poor treatment response identify ultrahigh-risk pediatric patients with T-ALL. Blood Adv 2025; 9:1267-1279. [PMID: 39808796 PMCID: PMC11950767 DOI: 10.1182/bloodadvances.2024014209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
ABSTRACT Variations in the TP53 and KRAS genes indicate a particularly adverse prognosis in relapsed pediatric T-cell acute lymphoblastic leukemia (T-ALL). We hypothesized that these variations might be subclonally present at disease onset and contribute to relapse risk. To test this, we examined 2 cohorts of children diagnosed with T-ALL: cohort 1 with 81 patients who relapsed and 79 who matched nonrelapsing controls, and cohort 2 with 226 consecutive patients, 30 of whom relapsed. In cohort 1, targeted sequencing revealed TP53 clonal and subclonal variants in 6 of 81 relapsing patients but none in the nonrelapsing group (P = .014). KRAS alterations were found in 9 of 81 relapsing patients compared with 2 of 79 nonrelapsing patients (P = .032). Survival analysis showed that none of the relapsed patients with TP53 and/or KRAS alterations survived, whereas 19 of 67 relapsed patients without such variants did, with a minimum follow-up time of 3 years (P = .023). In cohort 2, none of the relapsing patients but 10 of 196 nonrelapsing patients carried TP53 or KRAS variants, indicating that mutation status alone does not predict poor prognosis. All 10 nonrelapsing patients with mutations had a favorable early treatment response. Among the total cohort of 386 patients, 188 showed poor treatment response, of whom 69 relapsed. Of these poor responders, 9 harbored TP53 or KRAS variants. In conclusion, subclonal TP53 and KRAS alterations identified at the time of initial diagnosis, along with a poor treatment response, characterize a subset of children with T-ALL who face a dismal prognosis and who may benefit from alternative treatment approaches.
Collapse
Affiliation(s)
- Tamara Kempter
- Department of Pediatric Oncology, Hematology, and Immunology and Hopp Children’s Cancer Center Heidelberg, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | - Paulina Richter-Pechańska
- Department of Pediatric Oncology, Hematology, and Immunology and Hopp Children’s Cancer Center Heidelberg, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | - Katarzyna Michel
- Department of Pediatric Oncology, Hematology, and Immunology and Hopp Children’s Cancer Center Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Tobias Rausch
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Büşra Erarslan-Uysal
- Department of Pediatric Oncology, Hematology, and Immunology and Hopp Children’s Cancer Center Heidelberg, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité University School of Medicine Berlin, Berlin, Germany
| | - Martin Zimmermann
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Köhrer
- Labdia Labordiagnostik, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Andishe Attarbaschi
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- Department of Pediatric Hematology and Oncology, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
| | - Jan O. Korbel
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center, Heidelberg, Germany
| | - Joachim B. Kunz
- Department of Pediatric Oncology, Hematology, and Immunology and Hopp Children’s Cancer Center Heidelberg, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | - Andreas E. Kulozik
- Department of Pediatric Oncology, Hematology, and Immunology and Hopp Children’s Cancer Center Heidelberg, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
3
|
Summers RJ, Teachey DT, Hunger SP. How I treat ETP-ALL in children. Blood 2025; 145:43-52. [PMID: 38364183 DOI: 10.1182/blood.2023023155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
ABSTRACT Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is a unique subtype of immature T-cell ALL that was initially associated with a dramatically inferior prognosis compared with non-ETP T-cell ALL (Not-ETP) when it was first described in 2009. Analyses of larger patient cohorts treated with more contemporary regimens, however, have shown minimal survival differences between ETP and Not-ETP. In this manuscript, we use representative cases to explore therapeutic advances and address common clinical questions regarding the management of children, adolescents, and young adults with ETP-ALL. We describe our recommended treatment approach for a child or adolescent with newly diagnosed ETP-ALL, with an emphasis on the prognostic significance of induction failure and detectable minimal residual disease and the role of hematopoietic stem cell transplant in first remission. We discuss the interplay between the ETP immunophenotype and genomic markers of immaturity in T-cell ALL. Finally, we review novel therapeutic approaches that should be considered when managing relapsed or refractory ETP-ALL.
Collapse
Affiliation(s)
- Ryan J Summers
- Department of Pediatrics, Emory University, Atlanta, GA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA
| | - David T Teachey
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
4
|
Chen XY, Wang JY, Jiang H, Zhang WN. [Clinical characteristics and prognosis of children with T-lineage acute lymphoblastic leukemia: a single-center study]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:1308-1314. [PMID: 39725394 DOI: 10.7499/j.issn.1008-8830.2408039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
OBJECTIVES To study the clinical characteristics and prognosis of T-lineage acute lymphoblastic leukemia (T-ALL) and related prognostic factors. METHODS A retrospective analysis was conducted on the children with T-ALL who were treated with the Chinese Children's Cancer Group Acute Lymphoblastic Leukemia (CCCG-ALL) regimen in Guangzhou Women and Children's Medical Center between April 2015 and December 2022. RESULTS A total of 80 children were included, with a median age of 7 years and 3 months and a male/female ratio of 6:1. Among these children, the children with mediastinal mass accounted for 20% (16/80), those with central nervous system leukemia accounted for 4% (3/80), and those with testicular leukemia accounted for 1% (1/69). SIL/TAL1 was the most common fusion gene (22%, 18/80), and NOTCH1 was the most common mutation gene (69%, 37/54). The median follow-up time was 52 months, with a 5-year overall survival (OS) rate of 87.3%±4.0% and a 5-year event-free survival rate of 84.0%±4.3%. The non-central nervous system-1 group had a significantly lower 5-year OS rate than the central nervous system-1 group (66.7%±16.1% vs 90.3%±3.8%; P<0.05), and the group with minimal residual disease (MRD) ≥0.01% on day 46 of induction therapy had a significantly lower 5-year OS rate than the group with MRD <0.01% (68.6%±13.5% vs 94.8%±3.0%; P<0.05). CONCLUSIONS Children treated with the CCCG-ALL regimen tend to have a good treatment outcome. Non-central nervous system-1 status and MRD ≥0.01% on day 46 of induction therapy are associated with the poor prognosis in these children.
Collapse
Affiliation(s)
- Xiao-Yan Chen
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510000, China
| | - Jia-Yi Wang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510000, China
| | - Hua Jiang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510000, China
| | - Wei-Na Zhang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510000, China
| |
Collapse
|
5
|
Das P, Kumar S, Ranjan R, Arumugam P, Dhole N, Kori R, Yadav A, Singh A, Kanwar V, Singh N. Should we perform baseline NGS testing in precursor T lymphoblastic leukaemias: a single centre experience from Eastern India. Ecancermedicalscience 2024; 18:1815. [PMID: 40171462 PMCID: PMC11959121 DOI: 10.3332/ecancer.2024.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 04/03/2025] Open
Abstract
Introduction T-lymphoblastic leukaemia accounts for approximately one-fourth of acute lymphoblastic leukaemia cases. Sequencing approaches have identified >100 genes that can be mutated in T-cell acute lymphoblastic leukaemia (T-ALL). However, the revised WHO 2022 edition of lymphoid neoplasms still does not incorporate molecular signatures into the T-ALL subgrouping unlike B-ALLs and acute myeloid leukemia, which are classified mainly based on molecular landscapes. Methods This retrospective observational study included all newly diagnosed patients of T-lymphoblastic leukaemia of all age groups who presented during the period between January 2022 and October 2023 in whom complete baseline diagnostic work-up was available including flow cytometry, fluorescence in situ hybridization and next generation sequencing studies. Results There was a lower frequency of karyotypic abnormalities in adult early T progenitor (ETP)-ALLs than in other sub-groups. Non-ETP ALLs showed significant association with NOTCH1 mutations (p ≤ 0.00001), followed by JAK3 (p = 0.01), FBXW7 (p = 0.066) and PHF6 (p = 0.09) mutations. There was no difference between adult and pediatric patients, in terms of genomic profiling except in the PHF6 gene. There was no significant difference between NOTCH1-mutated and NOTCH1-wild T-ALL patients as well as NOTCH1-heterodimerization versus NOTCH1-PEST mutated patients in terms of measurable residual disease (MRD), relapse-free survival (RFS) and/or overall survival (OS). 45.1% of all TALL patients harboured ≥3 mutations. However, the complex molecular profile did not correlate significantly with MRD positivity and poor RFS and/or OS rates. Conclusion Molecular profiling of TALLs do not significantly impact long-term survival outcomes. In resource-constrained settings, we can get away by not doing comprehensive molecular profiling of TALLs at baseline and restrict the sequencing assay to only those cases that are persistently MRD positive or have relapsed.
Collapse
Affiliation(s)
- Prateek Das
- Hematopathology (Oncopathology), Homi Bhabha Cancer Hospital, Varanasi 221010, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Sujeet Kumar
- Homi Bhabha National Institute, Mumbai 400094, India
- Department of Medical Oncology (Adult Hematolymphoid Unit), Homi Bhabha Cancer Hospital, Varanasi 221010, India
| | - Raghwesh Ranjan
- Homi Bhabha National Institute, Mumbai 400094, India
- Department of Pediatric Oncology, Homi Bhabha Cancer Hospital, Varanasi 221010, India
| | - Pradeep Arumugam
- Hematopathology (Oncopathology), Homi Bhabha Cancer Hospital, Varanasi 221010, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Nilesh Dhole
- Homi Bhabha National Institute, Mumbai 400094, India
- Hematopathology, Homi Bhabha Cancer Hospital, Varanasi 221010, India
| | - RohitKumar Kori
- Homi Bhabha National Institute, Mumbai 400094, India
- Hematopathology, Homi Bhabha Cancer Hospital, Varanasi 221010, India
| | - Anil Yadav
- Homi Bhabha National Institute, Mumbai 400094, India
- Cancer Cytogenetics, Homi Bhabha Cancer Hospital, Varanasi 221010, India
| | - Anil Singh
- Homi Bhabha National Institute, Mumbai 400094, India
- Department of Medical Oncology (Adult Hematolymphoid Unit), Homi Bhabha Cancer Hospital, Varanasi 221010, India
| | - Vikramjit Kanwar
- Homi Bhabha National Institute, Mumbai 400094, India
- Department of Pediatric Oncology, Homi Bhabha Cancer Hospital, Varanasi 221010, India
| | - Neha Singh
- Hematopathology (Oncopathology), Homi Bhabha Cancer Hospital, Varanasi 221010, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
6
|
Khawaji ZY, Khawaji NY, Alahmadi MA, Elmoneim AA. Prediction of Response to FDA-Approved Targeted Therapy and Immunotherapy in Acute Lymphoblastic Leukemia (ALL). Curr Treat Options Oncol 2024; 25:1163-1183. [PMID: 39102166 DOI: 10.1007/s11864-024-01237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/06/2024]
Abstract
OPINION STATEMENT Acute lymphoblastic leukemia (ALL) represents the predominant cancer in pediatric populations, though its occurrence in adults is relatively rare. Pre-treatment risk stratification is crucial for predicting prognosis. Important factors for assessment include patient age, white blood cell (WBC) count at diagnosis, extramedullary involvement, immunophenotype, and cytogenetic aberrations. Minimal residual disease (MRD), primarily assessed by flow cytometry following remission, plays a substantial role in guiding management plans. Over the past decade, significant advancements in ALL outcomes have been witnessed. Conventional chemotherapy has remarkably reduced mortality rates; however, its intensive nature raises safety concerns and has led to the emergence of treatment-resistant cases with recurrence of relapses. Consequently, The U.S. Food and Drug Administration (FDA) has approved several novel treatments for relapsed/refractory ALL due to their demonstrated efficacy, as indicated by improved complete remission and survival rates. These treatments include tyrosine kinase inhibitors (TKIs), the anti-CD19 monoclonal antibody blinatumomab, anti-CD22 inotuzumab ozogamicin, anti-CD20 rituximab, and chimeric antigen receptor (CAR) T-cell therapy. Identifying the variables that influence treatment decisions is a pressing necessity for tailoring therapy based on heterogeneous patient characteristics. Key predictive factors identified in various observational studies and clinical trials include prelymphodepletion disease burden, complex genetic abnormalities, and MRD. Furthermore, the development of serious adverse events following treatment could be anticipated through predictive models, allowing for appropriate prophylactic measures to be considered. The ultimate aim is to incorporate the concept of precision medicine in the field of ALL through valid prediction platform to facilitate the selection of the most suitable treatment approach.
Collapse
Affiliation(s)
| | | | | | - Abeer Abd Elmoneim
- Women and Child Health Department, Taibah University, Madinah, Kingdom of Saudi Arabia
- 2nd Affiliation: Pediatric Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
7
|
Lizcova L, Prihodova E, Pavlistova L, Svobodova K, Mejstrikova E, Hrusak O, Luknarova P, Janotova I, Sramkova L, Stary J, Zemanova Z. Cytogenomic characterization of pediatric T-cell acute lymphoblastic leukemia reveals TCR rearrangements as predictive factors for exceptional prognosis. Mol Cytogenet 2024; 17:14. [PMID: 38783324 PMCID: PMC11118568 DOI: 10.1186/s13039-024-00682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND T-cell acute lymphoblastic leukemia (T-ALL) represents a rare and clinically and genetically heterogeneous disease that constitutes 10-15% of newly diagnosed pediatric ALL cases. Despite improved outcomes of these children, the survival rate after relapse is extremely poor. Moreover, the survivors must also endure the acute and long-term effects of intensive therapy. Although recent studies have identified a number of recurrent genomic aberrations in pediatric T-ALL, none of the changes is known to have prognostic significance. The aim of our study was to analyze the cytogenomic changes and their various combinations in bone marrow cells of children with T-ALL and to correlate our findings with the clinical features of the subjects and their treatment responses. RESULTS We performed a retrospective and prospective comprehensive cytogenomic analysis of consecutive cohort of 66 children (46 boys and 20 girls) with T-ALL treated according to BFM-based protocols and centrally investigated cytogenetics and immunophenotypes. Using combinations of cytogenomic methods (conventional cytogenetics, FISH, mFISH/mBAND, arrayCGH/SNP and MLPA), we identified chromosomal aberrations in vast majority of patients (91%). The most frequent findings involved the deletion of CDKN2A/CDKN2B genes (71%), T-cell receptor (TCR) loci translocations (27%), and TLX3 gene rearrangements (23%). All chromosomal changes occurred in various combinations and were rarely found as a single abnormality. Children with aberrations of TCR loci had a significantly better event free (p = 0.0034) and overall survival (p = 0.0074), all these patients are living in the first complete remission. None of the abnormalities was an independent predictor of an increased risk of relapse. CONCLUSIONS We identified a subgroup of patients with TCR aberrations (both TRA/TRD and TRB), who had an excellent prognosis in our cohort with 5-year EFS and OS of 100%, regardless of the presence of other abnormality or the translocation partner. Our data suggest that escalation of treatment intensity, which may be considered in subsets of T-ALL is not needed for nonHR (non-high risk) patients with TCR aberrations.
Collapse
Affiliation(s)
- Libuse Lizcova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | - Eva Prihodova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Lenka Pavlistova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Karla Svobodova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Ester Mejstrikova
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague and University Hospital Motol, Prague, Czech Republic
| | - Ondrej Hrusak
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague and University Hospital Motol, Prague, Czech Republic
| | - Pavla Luknarova
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague and University Hospital Motol, Prague, Czech Republic
| | - Iveta Janotova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague and University Hospital Motol, Prague, Czech Republic
| | - Lucie Sramkova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague and University Hospital Motol, Prague, Czech Republic
| | - Jan Stary
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague and University Hospital Motol, Prague, Czech Republic
| | - Zuzana Zemanova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
8
|
Demina I, Dagestani A, Borkovskaia A, Semchenkova A, Soldatkina O, Kashpor S, Olshanskaya Y, Roumiantseva J, Karachunskiy A, Novichkova G, Maschan M, Zerkalenkova E, Popov A. Immunophenotypic but Not Genetic Changes Reclassify the Majority of Relapsed/Refractory Pediatric Cases of Early T-Cell Precursor Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:5610. [PMID: 38891797 PMCID: PMC11171474 DOI: 10.3390/ijms25115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) develops from very early cells with the potential for both T-cell and myeloid differentiation. The ambiguous nature of leukemic blasts in ETP-ALL may lead to immunophenotypic alterations at relapse. Here, we address immunophenotypic alterations and related classification issues, as well as genetic features of relapsed pediatric ETP-ALL. Between 2017 and 2022, 7518 patients were diagnosed with acute leukemia (AL). In addition to conventional immunophenotyping, karyotyping, and FISH studies, we performed next-generation sequencing of the T-cell receptor clonal repertoire and reverse transcription PCR and RNA sequencing for patients with ETP-ALL at both initial diagnosis and relapse. Among a total of 534 patients diagnosed with T-cell ALL (7.1%), 60 had ETP-ALL (11.2%). Ten patients with ETP-ALL experienced relapse or progression on therapy (16.7%), with a median time to event of 5 months (ranging from two weeks to 5 years). Most relapses were classified as AL of ambiguous lineage (n = 5) and acute myeloid leukemia (AML) (n = 4). Major genetic markers of leukemic cells remained unchanged at relapse. Of the patients with relapse, four had polyclonal leukemic populations and a relapse with AML or bilineal mixed-phenotype AL (MPAL). Three patients had clonal TRD rearrangements and relapse with AML, undifferentiated AL, or retention of the ETP-ALL phenotype. ETP-ALL relapse requires careful clinical and laboratory diagnosis. Treatment decisions should rely mainly on initial examination data, taking into account both immunophenotypic and molecular/genetic characteristics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117998, Russia; (I.D.); (A.D.); (A.B.); (A.S.); (O.S.); (S.K.); (Y.O.); (J.R.); (A.K.); (G.N.); (M.M.); (E.Z.)
| |
Collapse
|
9
|
Petrykey K, Lippé S, Sultan S, Robaey P, Drouin S, Affret-Bertout L, Beaulieu P, St-Onge P, Baedke JL, Yasui Y, Hudson MM, Laverdière C, Sinnett D, Krajinovic M. Genetic Factors and Long-term Treatment-Related Neurocognitive Deficits, Anxiety, and Depression in Childhood Leukemia Survivors: An Exome-Wide Association Study. Cancer Epidemiol Biomarkers Prev 2024; 33:234-243. [PMID: 38051303 PMCID: PMC10903523 DOI: 10.1158/1055-9965.epi-23-0634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/23/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND An increased risk of neurocognitive deficits, anxiety, and depression has been reported in childhood cancer survivors. METHODS We analyzed associations of neurocognitive deficits, as well as anxiety and depression, with common and rare genetic variants derived from whole-exome sequencing data of acute lymphoblastic leukemia (ALL) survivors from the PETALE cohort. In addition, significant associations were assessed using stratified and multivariable analyses. Next, top-ranking common associations were analyzed in an independent SJLIFE replication cohort of ALL survivors. RESULTS Significant associations were identified in the entire discovery cohort (N = 229) between the AK8 gene and changes in neurocognitive function, whereas PTPRZ1, MUC16, TNRC6C-AS1 were associated with anxiety. Following stratification according to sex, the ZNF382 gene was linked to a neurocognitive deficit in males, whereas APOL2 and C6orf165 were associated with anxiety and EXO5 with depression. Following stratification according to prognostic risk groups, the modulatory effect of rare variants on depression was additionally found in the CYP2W1 and PCMTD1 genes. In the replication SJLIFE cohort (N = 688), the male-specific association in the ZNF382 gene was not significant; however, a P value<0.05 was observed when the entire SJLIFE cohort was analyzed. ZNF382 was significant in males in the combined cohorts as shown by meta-analyses as well as the depression-associated gene EXO5. CONCLUSIONS Further research is needed to confirm whether the current findings, along with other known risk factors, may be valuable in identifying patients at increased risk of these long-term complications. IMPACT Our results suggest that specific genes may be related to increased neuropsychological consequences.
Collapse
Affiliation(s)
- Kateryna Petrykey
- Sainte-Justine University Health Center (SJUHC), Montreal (Quebec), Canada
- Department of Pharmacology and Physiology, Université de Montréal (Quebec), Canada
| | - Sarah Lippé
- Sainte-Justine University Health Center (SJUHC), Montreal (Quebec), Canada
- Department of Psychology, Université de Montréal (Quebec), Canada
| | - Serge Sultan
- Sainte-Justine University Health Center (SJUHC), Montreal (Quebec), Canada
- Department of Psychology, Université de Montréal (Quebec), Canada
| | - Philippe Robaey
- Sainte-Justine University Health Center (SJUHC), Montreal (Quebec), Canada
- Children’s Hospital of Eastern Ontario, Ottawa (Ontario), Canada
- Department of Psychiatry, Université de Montréal (Quebec), Canada
- Department of Psychiatry, University of Ottawa (Ontario), Canada
| | - Simon Drouin
- Sainte-Justine University Health Center (SJUHC), Montreal (Quebec), Canada
| | | | - Patrick Beaulieu
- Sainte-Justine University Health Center (SJUHC), Montreal (Quebec), Canada
| | - Pascal St-Onge
- Sainte-Justine University Health Center (SJUHC), Montreal (Quebec), Canada
| | - Jessica L. Baedke
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis (TN), USA
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis (TN), USA
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis (TN), USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis (TN), USA
| | - Caroline Laverdière
- Sainte-Justine University Health Center (SJUHC), Montreal (Quebec), Canada
- Department of Pediatrics, Université de Montréal (Quebec), Canada
| | - Daniel Sinnett
- Sainte-Justine University Health Center (SJUHC), Montreal (Quebec), Canada
- Department of Pediatrics, Université de Montréal (Quebec), Canada
| | - Maja Krajinovic
- Sainte-Justine University Health Center (SJUHC), Montreal (Quebec), Canada
- Department of Pharmacology and Physiology, Université de Montréal (Quebec), Canada
- Department of Pediatrics, Université de Montréal (Quebec), Canada
| |
Collapse
|
10
|
Gutierrez-Camino A, Richer C, Ouimet M, Fuchs C, Langlois S, Khater F, Caron M, Beaulieu P, St-Onge P, Bataille AR, Sinnett D. Characterisation of FLT3 alterations in childhood acute lymphoblastic leukaemia. Br J Cancer 2024; 130:317-326. [PMID: 38049555 PMCID: PMC10803556 DOI: 10.1038/s41416-023-02511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Alterations of FLT3 are among the most common driver events in acute leukaemia with important clinical implications, since it allows patient classification into prognostic groups and the possibility of personalising therapy thanks to the availability of FLT3 inhibitors. Most of the knowledge on FLT3 implications comes from the study of acute myeloid leukaemia and so far, few studies have been performed in other leukaemias. METHODS A comprehensive genomic (DNA-seq in 267 patients) and transcriptomic (RNA-seq in 160 patients) analysis of FLT3 in 342 childhood acute lymphoblastic leukaemia (ALL) patients was performed. Mutations were functionally characterised by in vitro experiments. RESULTS Point mutations (PM) and internal tandem duplications (ITD) were detected in 4.3% and 2.7% of the patients, respectively. A new activating mutation of the TKD, G846D, conferred oncogenic properties and sorafenib resistance. Moreover, a novel alteration involving the circularisation of read-through transcripts (rt-circRNAs) was observed in 10% of the cases. Patients presenting FLT3 alterations exhibited higher levels of the receptor. In addition, patients with ZNF384- and MLL/KMT2A-rearranged ALL, as well as hyperdiploid subtype, overexpressed FLT3. DISCUSSION Our results suggest that specific ALL subgroups may also benefit from a deeper understanding of the biology of FLT3 alterations and their clinical implications.
Collapse
Affiliation(s)
- Angela Gutierrez-Camino
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Chantal Richer
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Manon Ouimet
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Claire Fuchs
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Sylvie Langlois
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Fida Khater
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Maxime Caron
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Patrick Beaulieu
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Pascal St-Onge
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Alain R Bataille
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Daniel Sinnett
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Wood BL, Devidas M, Summers RJ, Chen Z, Asselin B, Rabin KR, Zweidler-McKay PA, Winick NJ, Borowitz MJ, Carroll WL, Raetz EA, Loh ML, Hunger SP, Dunsmore KP, Teachey DT, Winter SS. Prognostic significance of ETP phenotype and minimal residual disease in T-ALL: a Children's Oncology Group study. Blood 2023; 142:2069-2078. [PMID: 37556734 PMCID: PMC10862241 DOI: 10.1182/blood.2023020678] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
The early thymic precursor (ETP) immunophenotype was previously reported to confer poor outcome in T-cell acute lymphoblastic leukemia (T-ALL). Between 2009 and 2014, 1256 newly diagnosed children and young adults enrolled in Children's Oncology Group (COG) AALL0434 were assessed for ETP status and minimal residual disease (MRD) using flow cytometry at a central reference laboratory. The subject phenotypes were categorized as ETP (n = 145; 11.5%), near-ETP (n = 209; 16.7%), or non-ETP (n = 902; 71.8%). Despite higher rates of induction failure for ETP (6.2%) and near-ETP (6.2%) than non-ETP (1.2%; P < .0001), all 3 groups showed excellent 5-year event-free survival (EFS) and overall survival (OS): ETP (80.4% ± 3.9% and 86.8 ± 3.4%, respectively), near-ETP (81.1% ± 3.3% and 89.6% ± 2.6%, respectively), and non-ETP (85.3% ± 1.4% and 90.0% ± 1.2%, respectively; P = .1679 and P = .3297, respectively). There was no difference in EFS or OS for subjects with a day-29 MRD <0.01% vs 0.01% to 0.1%. However, day-29 MRD ≥0.1% was associated with inferior EFS and OS for patients with near-ETP and non-ETP, but not for those with ETP. For subjects with day-29 MRD ≥1%, end-consolidation MRD ≥0.01% was a striking predictor of inferior EFS (80.9% ± 4.1% vs 52.4% ± 8.1%, respectively; P = .0001). When considered as a single variable, subjects with all 3 T-ALL phenotypes had similar outcomes and subjects with persistent postinduction disease had inferior outcomes, regardless of their ETP phenotype. This clinical trial was registered at AALL0434 as #NCT00408005.
Collapse
Affiliation(s)
- Brent L. Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, Saint Jude Children's Research Hospital, Memphis, TN
| | - Ryan J. Summers
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA
- Department of Pediatrics, Emory University, Atlanta, GA
| | - Zhiguo Chen
- Department of Biostatistics, University of Florida, Gainesville, FL
| | - Barbara Asselin
- Department of Pediatrics, University of Rochester, Rochester, NY
| | - Karen R. Rabin
- Pediatric Hematology/Oncology, Baylor College of Medicine/Dan L Duncan Comprehensive Cancer Center, Houston, TX
| | | | - Naomi J. Winick
- Pediatric Hematology and Oncology, UT Southwestern/Simmons Cancer Center-Dallas, Dallas, TX
| | - Michael J. Borowitz
- Department of Pathology, Johns Hopkins University/Sidney Kimmel Cancer Center, Baltimore, MD
| | - William L. Carroll
- Department of Pediatrics and Pathology, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, Hassenfeld Children's Center, New York, NY
| | - Elizabeth A. Raetz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY
| | - Mignon L. Loh
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | - Stephen P. Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia, and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kimberly P. Dunsmore
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA
| | - David T. Teachey
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia, and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stuart S. Winter
- Cancer and Blood Disorders Program, Children’s Minnesota, Minneapolis, MN
| |
Collapse
|
12
|
Samardžić-Predojević J, Đurđević-Banjac B, Malčić-Zanić D. Influence of Minimal Residual Disease at Day 15 of Induction Therapy on Survival of Children with Acute Lymphoblastic Leukemia. Acta Med Acad 2023; 52:153-160. [PMID: 38407081 PMCID: PMC10945324 DOI: 10.5644/ama2006-124.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024] Open
Abstract
OBJECTIVE The aim of the study was to evaluate the impact of minimal residual disease (MRD) on day 15 of induction therapy (d15) on the treatment outcome in children with acute lymphoblastic leukemia (ALL). MATERIALS AND METHODS The study included 74 patients (1-18 years) with ALL, who were treated at the Pediatric Clinic of the University Clinical Center Banja Luka from January 2011 to May 2021. All patients were treated according to ALL IC-BFM 2009 protocol. MRD on bone marrow was assessed d15, using the multiparameter flow cytometry method (FCM). RESULTS Of all, 59.46% of patients had MRD d15 0.1-10%, MRD<0.1% had 18.92% of patients, and 21.62% had MRD >10%. Patients with the lowest MRD had the highest 5-year overall survival (OS) and event-free survival (89.5% and 91% respectively) and the lowest cumulative risk for relapse or death (9.7% and 8.1%), in contrast to patients with MRD>10% in whom OS was 80.0%, and the risk of recurrence is 20%. Predicted MRD d15 was significantly associated with prednisone response assessed in the peripheral blood on day 8 (P<0.001) and statistically significantly positive correlation (r=0.498; P<0.001) was found. CONCLUSION MRD measurement d15 has a great prognostic significance for patients in the standard and high risk groups, but not for patients in the intermediate risk group. The introduction of additional testing is necessary for better identification of patients with an increased risk of disease recurrence.
Collapse
Affiliation(s)
- Jelica Samardžić-Predojević
- Children's Hospital, University Clinical Centre of the Republic of Srpska, Banja Luka, Republic of Srpska, Bosnia and Herzegovina; Faculty of medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Biljana Đurđević-Banjac
- Children's Hospital, University Clinical Centre of the Republic of Srpska, Banja Luka, Republic of Srpska, Bosnia and Herzegovina; Faculty of medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Dragana Malčić-Zanić
- Children's Hospital, University Clinical Centre of the Republic of Srpska, Banja Luka, Republic of Srpska, Bosnia and Herzegovina; Faculty of medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| |
Collapse
|
13
|
Paolino J, Dimitrov B, Winger BA, Sandoval-Perez A, Rangarajan AV, Ocasio-Martinez N, Tsai HK, Li Y, Robichaud AL, Khalid D, Hatton C, Gillani R, Polonen P, Dilig A, Gotti G, Kavanagh J, Adhav AA, Gow S, Tsai J, Li YD, Ebert BL, Van Allen EM, Bledsoe J, Kim AS, Tasian SK, Cooper SL, Cooper TM, Hijiya N, Sulis ML, Shukla NN, Magee JA, Mullighan CG, Burke MJ, Luskin MR, Mar BG, Jacobson MP, Harris MH, Stegmaier K, Place AE, Pikman Y. Integration of Genomic Sequencing Drives Therapeutic Targeting of PDGFRA in T-Cell Acute Lymphoblastic Leukemia/Lymphoblastic Lymphoma. Clin Cancer Res 2023; 29:4613-4626. [PMID: 37725576 PMCID: PMC10872648 DOI: 10.1158/1078-0432.ccr-22-2562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 05/22/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL) or lymphoblastic lymphoma (T-LBL) have limited therapeutic options. Clinical use of genomic profiling provides an opportunity to identify targetable alterations to inform therapy. EXPERIMENTAL DESIGN We describe a cohort of 14 pediatric patients with relapsed or refractory T-ALL enrolled on the Leukemia Precision-based Therapy (LEAP) Consortium trial (NCT02670525) and a patient with T-LBL, discovering alterations in platelet-derived growth factor receptor-α (PDGFRA) in 3 of these patients. We identified a novel mutation in PDGFRA, p.D842N, and used an integrated structural modeling and molecular biology approach to characterize mutations at D842 to guide therapeutic targeting. We conducted a preclinical study of avapritinib in a mouse patient-derived xenograft (PDX) model of FIP1L1-PDGFRA and PDGFRA p.D842N leukemia. RESULTS Two patients with T-ALL in the LEAP cohort (14%) had targetable genomic alterations affecting PDGFRA, a FIP1-like 1 protein/PDGFRA (FIP1L1-PDGFRA) fusion and a novel mutation in PDGFRA, p.D842N. The D842N mutation resulted in PDGFRA activation and sensitivity to tested PDGFRA inhibitors. In a T-ALL PDX model, avapritinib treatment led to decreased leukemia burden, significantly prolonged survival, and even cured a subset of mice. Avapritinib treatment was well tolerated and yielded clinical benefit in a patient with refractory T-ALL. CONCLUSIONS Refractory T-ALL has not been fully characterized. Alterations in PDGFRA or other targetable kinases may inform therapy for patients with refractory T-ALL who otherwise have limited treatment options. Clinical genomic profiling, in real time, is needed for fully informed therapeutic decision making.
Collapse
Affiliation(s)
- Jonathan Paolino
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
| | - Boris Dimitrov
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Beth Apsel Winger
- Department of Pediatrics, Division of Hematology/Oncology, Benioff Children’s Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Angelica Sandoval-Perez
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Amith Vikram Rangarajan
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | | | | | - Yuting Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Delan Khalid
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Charlie Hatton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Riaz Gillani
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
| | - Petri Polonen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Giacomo Gotti
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Julia Kavanagh
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Asmani A. Adhav
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Sean Gow
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jonathan Tsai
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Yen Der Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Jacob Bledsoe
- Department of Pathology, Boston Children’s Hospital, Boston, MA
| | - Annette S. Kim
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Sarah K. Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, and Department of Pediatrics and Abramson Cancer Center at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stacy L. Cooper
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Todd M. Cooper
- Seattle Children's Hospital, Cancer and Blood Disorders Center, Seattle, WA
| | - Nobuko Hijiya
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Irving Medical Center, New York, NY
| | - Maria Luisa Sulis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neerav N. Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jeffrey A. Magee
- Division of Pediatric Hematology/Oncology, Washington University/St. Louis Children's Hospital, St. Louis, MO
| | | | - Michael J. Burke
- Medical College of Wisconsin, Children’s Hospital of Wisconsin, Milwaukee, WI
| | - Marlise R. Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | | | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Andrew E. Place
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
14
|
De Bie J, Quessada J, Tueur G, Lefebvre C, Luquet I, Toujani S, Cuccuini W, Lafage-Pochitaloff M, Michaux L. Cytogenetics in the management of T-cell acute lymphoblastic leukemia (T-ALL): Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103431. [PMID: 38016418 DOI: 10.1016/j.retram.2023.103431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Molecular analysis is the hallmark of T-cell acute lymphoblastic leukemia (T-ALL) categorization. Several T-ALL sub-groups are well recognized based on the aberrant expression of specific transcription factors. This recently resulted in the implementation of eight provisional T-ALL entities into the novel 2022 International Consensus Classification, albeit not into the updated World Health Organization classification system. Despite this extensive molecular characterization, cytogenetic analysis remains the backbone of T-ALL diagnosis in many countries as chromosome banding analysis and fluorescence in situ hybridization are relatively inexpensive techniques to obtain results of diagnostic, prognostic and therapeutic interest. Here, we provide an overview of recurrent chromosomal abnormalities detectable in T-ALL patients and propose guidelines regarding their detection. By referring in parallel to the more general molecular classification approach, we hope to offer a diagnostic framework useful in a broad clinical genetic setting.
Collapse
Affiliation(s)
- Jolien De Bie
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France; CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli Calmettes, Marseille 13009, France
| | - Giulia Tueur
- Laboratoire d'hématologie, Hôpital Avicenne, AP-HP, Bobigny 93000, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble 38000, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, CHU Toulouse (IUCT-O), Toulouse 31000, France
| | - Saloua Toujani
- Service de Cytogénétique et Biologie Cellulaire, CHU de Rennes, Rennes 35033, France
| | - Wendy Cuccuini
- Laboratoire d'Hématologie, Unité de Cytogénétique, Hôpital Saint-Louis, AP-HP, Paris 75010, France
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium; Katholieke Universiteit Leuven, Leuven 3000, Belgium.
| |
Collapse
|
15
|
Prockop S, Wachter F. The current landscape: Allogeneic hematopoietic stem cell transplant for acute lymphoblastic leukemia. Best Pract Res Clin Haematol 2023; 36:101485. [PMID: 37611999 DOI: 10.1016/j.beha.2023.101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 08/25/2023]
Abstract
One of the consistent features in development of hematopoietic stem cell transplant (HCT) for Acute Lymphoblastic Leukemia (ALL) is the rapidity with which discoveries in the laboratory are translated into innovations in clinical care. Just a few years after murine studies demonstrated that rescue from radiation induced marrow failure is mediated by cellular not humoral factors, E. Donnall Thomas reported on the transfer of bone marrow cells into irradiated leukemia patients. This was followed quickly by the first descriptions of Graft versus Leukemia (GvL) effect and Graft versus Host Disease (GvHD). Despite the pivotal nature of these findings, early human transplants were uniformly unsuccessful and identified the challenges that continue to thwart transplanters today - leukemic relapse, regimen related toxicity, and GvHD. While originally only an option for young, fit patients with a matched family donor, expansion of the donor pool to include unrelated donors, umbilical cord blood units, and more recently the growing use of haploidentical donors have all made transplant a more accessible therapy for patients with ALL. Novel agents for conditioning, prevention and treatment of GvHD have improved outcomes and investigators continue to develop novel treatment strategies that balance regimen related toxicity with disease control. Our evolving understanding of how to prevent and treat GvHD and how to prevent relapse are incorporated into novel clinical trials that are expected to further improve outcomes. Here we review current considerations and future directions for both adult and pediatric patients undergoing HCT for ALL, including indication for transplant, donor selection, cytoreductive regimens, and outcomes.
Collapse
Affiliation(s)
- Susan Prockop
- Pediatric Stem Cell Transplant Program, DFCI/BCH Center for Cancer and Blood Disorders, Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States.
| | - Franziska Wachter
- Pediatric Stem Cell Transplant Program, DFCI/BCH Center for Cancer and Blood Disorders, Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States.
| |
Collapse
|
16
|
Ashry MSE, Radwan E, Abdellateif MS, Arafah O, Hassan NM. Clinical features, laboratory characteristics, and outcome of ETP and TCRA/D aberrations in pediatric patients with T-acute lymphoblastic leukemia. J Egypt Natl Canc Inst 2023; 35:17. [PMID: 37303010 DOI: 10.1186/s43046-023-00176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/06/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy with few accepted prognostic factors that limit the efficiency of therapy. The aim of the current study was to assess the clinical and laboratory features of T-cell receptor (TCR) aberrations and early T-cell precursor (ETP) subtype as well as their outcome to therapy. METHODS Sixty-three newly diagnosed pediatric T-ALL patients were assessed for the ETP status using immunophenotyping. Screening of TCRA/D aberrations was done by fluorescent in situ hybridization (FISH). The data were correlated to the patients' clinical features, response to treatment, and survival rates. RESULTS Seven patients (11%) had ETP-ALL. The ETP-ALL patients were older (P = 0.013), presented with lower white blood cell (WBC) count (P = 0.001) and lower percentage of peripheral blood (PB) blast cells (P = 0.037), more likely to have hyperdiploid karyotype (P = 0.009), and had been associated with TCRA/D gene amplification (P = 0.014) compared to other T-ALL patients. Of note, the same associations had been significantly observed in patients with TCRA/D gene amplification. Patients with TCRA/D amplification frequently coincided with TCRβ aberrations (P = 0.025). TCR-β aberrations were significantly associated with negative MRD at the end of induction compared to TCR-β-negative patients. There was a nonsignificant trend of ETP-positive cases to have lower overall survival (OS) (P = 0.06). Patients with TCR aberrations had no significant differences regarding disease-free survival (DFS) or OS rates compared to those with normal TCR. CONCLUSION ETP-ALL patients tend to have increased mortalities. There was no significant impact of TCR aberrations on the survival rates of the patients.
Collapse
Affiliation(s)
- Mona S El Ashry
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Enas Radwan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Omar Arafah
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Sato A, Hatta Y, Imai C, Oshima K, Okamoto Y, Deguchi T, Hashii Y, Fukushima T, Hori T, Kiyokawa N, Kato M, Saito S, Anami K, Sakamoto T, Kosaka Y, Suenobu S, Imamura T, Kada A, Saito AM, Manabe A, Kiyoi H, Matsumura I, Koh K, Watanabe A, Miyazaki Y, Horibe K. Nelarabine, intensive L-asparaginase, and protracted intrathecal therapy for newly diagnosed T-cell acute lymphoblastic leukaemia in children and young adults (ALL-T11): a nationwide, multicenter, phase 2 trial including randomisation in the very high-risk group. Lancet Haematol 2023:S2352-3026(23)00072-8. [PMID: 37167992 DOI: 10.1016/s2352-3026(23)00072-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND T-cell acute lymphoblastic leukaemia has distinct biological characteristics and a poorer prognosis than B-cell precursor acute lymphoblastic leukaemia. This trial aimed to reduce the rate of radiation and haematopoietic stem-cell transplantation (HSCT) while improving outcomes by adding nelarabine, intensified L-asparaginase, and protracted intrathecal therapy in the Berlin-Frankfurt-Münster (BFM)-type treatment. METHODS In this nationwide, multicenter, phase 2 trial, we enrolled patients with newly diagnosed T-cell acute lymphoblastic leukaemia (age <25 years at diagnosis) conducted by Japan Children's Cancer Group and Japan Adult Leukemia Study Group. Patients were stratified into standard-risk, high-risk, and very-high-risk groups according to prednisolone response, CNS status, and end-of-consolidation minimal residual disease. We used the Associazione Italiana di Ematologia Oncologia Pediatrica (AIEOP)-BFM-ALL 2000-backbone chemotherapy. Nelarabine (650 mg/m2 per day for 5 days) was given to high-risk and very high-risk patients. All patients received, until the measurement of end-of-consolidation minimal residual disease, an identical therapy schedule, which included the prednisolone pre-phase remission induction therapy with dexamethasone (10 mg/m2 per day, for 3 weeks [for patients <10 years] or for 2 weeks including a 7-day off interval [for patients ≥10 years]) instead of prednisolone, and consolidation therapy added with Escherichia coli-derived L-asparaginase. On the basis of the stratification, patients received different intensities of treatment; L-asparaginase-intensified standard BFM-type therapy for standard risk and nelarabine-added high risk BFM-type therapy for high risk. In the very high-risk group, patients were randomly assigned (1:1) to group A (BFM-based block therapy) and group B (another block therapy, including high-dose dexamethasone) stratified by hospital, age (≥18 years or <18 years), and end-of-induction bone marrow blast percentage of M1 (<5%) or M2 (≥5%, <25%)+M3 (≥25%). Cranial radiotherapy was limited to patients with overt CNS disease at diagnosis (CNS3; >5 white blood cells per μL with blasts) and patients with no evidence of CNS disease received protracted triple intrathecal therapy. Only very high-risk patients were scheduled to receive HSCT. The primary endpoint was 3-year event-free survival for the entire cohort and the proportion of patients with disappearance of minimal residual disease between randomly assigned groups A and B in the very high-risk group. Secondary endpoints were overall survival, remission induction rate, and occurrence of adverse events. 3 years after the completion of patient accrual, a primary efficacy analysis was performed in the full analysis set and the per-protocol set. This study is registered with the Japan Registry of Clinical Trials, jRCTs041180145. FINDINGS Between Dec 1, 2011, and Nov 30, 2017, of 349 eligible patients (median age 9 years [IQR 6-13]), 238 (68%) were male, and 28 (8%) patients had CNS3 status. 168 (48%) patients were stratified as standard risk, 103 (30%) as high risk, 39 (11%) as very high risk, and 39 (11%) as no risk (patients who had off protocol treatment before risk assessment. The composite complete remission (complete remission plus complete remission in suppression) rate after remission induction therapy was 89% (298 of 335 patients). HSCT was performed in 35 (10%) of 333 patients. With a median follow-up of 5·2 years (IQR 3·6-6·7), 3-year event-free survival was 86·4% (95% CI 82·3-89·7%) and 3-year overall survival was 91·3% (87·7-93·8%). The proportion of minimal residual disease disappearance was 0·86 (12 of 14 patients; 95% CI 0·57-0·98) in group A and 0·50 (6 of 12 patients, 0·21-0·79) in group B. Grade 3 peripheral motor neuropathy was seen in 11 (3%) of 349 patients and sensory neuropathy was seen in 6 (2%) patients. The most common grade 3 or worse adverse event was febrile neutropenia (294 [84%] of 349 patients). Treatment-related death occurred in three patients due to sepsis, gastric perforation, or intracranial haemorrhage during remission induction. INTERPRETATION The ALL-T11 protocol produced encouraging outcomes with acceptable toxicities despite limited cranial radiotherapy and HSCT use. FUNDING Ministry of Health, Labor and Welfare of Japan, and Japan Agency for Medical Research and Development. TRANSLATION For the Japanese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital, Sendai, Japan.
| | - Yoshihiro Hatta
- Department of Hematology and Rheumatology, Nihon University Itabashi Hospital, Tokyo, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Koichi Oshima
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Yasuhiro Okamoto
- Department of Pediatrics, Kagoshima University Hospital, Kagoshima, Japan
| | - Takao Deguchi
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yoshiko Hashii
- Department of Pediatrics, Osaka University, Osaka, Japan
| | - Takashi Fukushima
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Toshinori Hori
- Department of Pediatrics, Aichi Medical University Hospital, Aich, Japan
| | - Nobutaka Kiyokawa
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Motohiro Kato
- Department of Pediatrics, The University of Tokyo, Tokyo, Japan
| | - Shoji Saito
- Department of Pediatrics, Shinshu University Hospital, Matsumoto, Japan
| | - Kenichi Anami
- Department of Medical Oncology, Hematology, and Infectious Diseases, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tatsuhiro Sakamoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology/Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Souichi Suenobu
- Department of Pediatrics, Oita University Hospital, Oita, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, University Hospital Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Kada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Arata Watanabe
- Department of Pediatrics, Nakadori General Hospital, Akita, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| |
Collapse
|
18
|
Mootoosamy C, Kondyli M, Serfaty SA, Tremblay DÉ, Gagné V, Ribère M, Laverdière C, Leclerc JM, Sinnett D, Tran TH, Krajinovic M. IL16 and factor V gene variations are associated with asparaginase-related thrombosis in childhood acute lymphoblastic leukemia patients. Pharmacogenomics 2023; 24:199-206. [PMID: 36946317 DOI: 10.2217/pgs-2022-0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Aim: We previously conducted exome-wide association study in acute lymphoblastic leukemia patients and identified association of five SNPs with asparaginase-related thrombosis. Here we aimed to replicate these findings in an independent patient cohort and through analyses in vitro. Patients & methods: SNPs located in IL16, MYBBP1A, PKD2L1, RIN3 and MPEG1 genes were analyzed in patients receiving Dana-Farber Cancer Institute acute lymphoblastic leukemia treatment protocols 05-001 and 11-001. Thrombophilia-related variations were also analysed. Results: IL16 rs11556218 conferred higher risk of thrombosis and higher in vitro sensitivity to asparaginase. The association was modulated by the treatment protocol, risk group and immunophenotype. A crosstalk between factor V Leiden, non-O blood groups and higher risk of thrombosis was also seen. Conclusion: IL16 and factor V Leiden variations are implicated in asparaginase-related thrombosis.
Collapse
Affiliation(s)
- Covida Mootoosamy
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada
- Department of Pharmacology & Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Maria Kondyli
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada
| | - Sophie Annaelle Serfaty
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada
- Department of Pharmacology & Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - David-Étienne Tremblay
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada
| | - Vincent Gagné
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada
| | - Maïté Ribère
- Department of Biological Sciences, Faculty of Art & Science, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Caroline Laverdière
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Jean-Marie Leclerc
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Daniel Sinnett
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Thai Hoa Tran
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Maja Krajinovic
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Department of Pharmacology & Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
| |
Collapse
|
19
|
Xue YJ, Wang Y, Lu AD, Jia YP, Zuo YX, Ding MM, Zeng HM, Zhang LP. Clinical analysis of pediatric T-cell acute lymphoblastic leukemia using the MRD-oriented strategy system. CLINICAL LYMPHOMA MYELOMA AND LEUKEMIA 2023:S2152-2650(23)00110-6. [PMID: 37080879 DOI: 10.1016/j.clml.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Pediatric T-cell acute lymphoblastic leukemia (T-ALL) has historically been associated with a poor prognosis. However, prognostic indicators and methods of treatment used for T-ALL remain controversial. A total of 136 children newly diagnosed with T-ALL between 2005 and 2018 were consecutively enrolled in this study. We assessed the effect of different prognostic factors, such as clinical characteristics, minimal residual disease (MRD), and the role of transplantation in postremission treatment, as the outcomes. Compared with B-ALL patients, patients with T-ALL are generally older, more likely to be male and have a higher white blood cell count. The complete remission (CR) rate was 95.6%, while the 5-year overall survival (OS), event-free survival (EFS), and cumulative incidence of relapse (CIR) were 74.3 ± 3.7%, 71.3 ± 3.9%, and 24.4 ± 3.8%, respectively. In the multivariate analysis, day 33 MRD ≥0.1% and hyperleukocytosis were associated with a significantly worse prognosis in the whole group. Transplantation resulted in a significant survival advantage, compared with chemotherapy, for high-risk (HR) patients (5-year CIR: 15.6 ± 10.2% vs. 55.6 ± 11.7%, P = .029). The prognosis of children with T-ALL was poor, and the MRD on day 33 was found to be an important predictive factor of clinical outcome at our center.
Collapse
Affiliation(s)
- Yu-Juan Xue
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Yu Wang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Ai-Dong Lu
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Yue-Ping Jia
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Ying-Xi Zuo
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Ming-Ming Ding
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Hui-Min Zeng
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China.
| | - Le-Ping Zhang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China.
| |
Collapse
|
20
|
Outcomes of adult patients with early T-cell precursor (ETP) acute lymphoblastic leukemia/lymphoma (ALL) and non-ETP T-ALL. Int J Hematol 2023; 117:738-747. [PMID: 36757523 DOI: 10.1007/s12185-023-03546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Early T-cell precursor (ETP) acute lymphoblastic leukemia/lymphoma (ALL) is generally considered to be a high-risk subtype. We retrospectively analyzed the clinical outcomes of adult patients diagnosed with ETP-ALL or other T-cell ALL (non-ETP T-ALL). The subjects were 82 patients (ETP-ALL: n = 18, non-ETP T-ALL: n = 64) for whom relevant immunophenotype data needed for classification were available. ETP-ALL patients were older (median age, 50.5 vs. 33.5 years, P = 0.042) and had less mediastinal involvement (27.8 vs. 73.4%, P < 0.001). The rate of complete remission (CR) with the first induction therapy was significantly lower in the ETP group (33.3 vs. 64.0%, P = 0.03), but the CR rate within 2 cycles of chemotherapy did not differ significantly (61.1 vs. 76.6%, P = 0.232). The 3-year overall survival (OS) rate was also similar in both groups (43.2 vs. 45.8%, P = 0.992). The ETP phenotype had no impact on survival in the transplant group or the non-transplant group. A multivariate analysis identified the male sex as a poor prognostic factor (HR: 4.43, P < 0.01), but not the immunophenotype of ETP. The prognosis for adult patients with ETP-ALL was comparable to that of non-ETP T-ALL patients. However, further studies aimed at improving the remission rate for ETP-ALL are needed.
Collapse
|
21
|
Kato M. Recent progress in pediatric lymphoblastic leukemia. Int J Hematol 2023; 117:155-161. [PMID: 36456860 DOI: 10.1007/s12185-022-03501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
The probability of long-term survival for children with lymphoblastic leukemia has improved dramatically over recent decades, mainly owing to advances in genomic analysis techniques, which have improved our understanding of the nature of leukemic cells and prognostic prediction based on the evaluation of precise treatment response. Risk-adjusted chemotherapy based on these advances has simultaneously reduced relapse rates and minimized complications. In addition, recent genomic analyses have deepened our understanding of the pathogenesis of leukemia and revealed the involvement of germline variations in the clinical course of leukemia treatment. Additionally, advances in minimal residual disease assays and the introduction of immunotherapy are expected to further improve therapeutic analyses. Further advances in clinical and translational research are anticipated to improve survival to 100% in a healthy state.
Collapse
Affiliation(s)
- Motohiro Kato
- Department of Pediatrics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
22
|
Summers RJ, Teachey DT. SOHO State of the Art Updates and Next Questions | Novel Approaches to Pediatric T-cell ALL and T-Lymphoblastic Lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:718-725. [PMID: 35941070 PMCID: PMC9644234 DOI: 10.1016/j.clml.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
While outcomes for children with T-cell acute lymphoblastic leukemia (T-ALL) and T-lymphoblastic lymphoma (T-LL) have improved significantly with contemporary therapy, outcomes for patients with relapsed or refractory (r/r) disease remain dismal. Improved risk stratification and the incorporation of novel therapeutics have the potential to improve outcomes further in T-ALL/T-LL by limiting relapse risk and improving salvage rates for those with r/r disease. In this review we will discuss the challenges and new opportunities for improved risk stratification in T-ALL and T-LL. We will further discuss the recent incorporation of the novel therapeutics nelarabine and bortezomib into front-line therapy for children with T-ALL and T-LL. Finally, we will address new classes of targeted small molecule inhibitors, immunotherapeutics, and chimeric antigen receptor T-cell therapies under investigation in r/r T-ALL and T-LL.
Collapse
Affiliation(s)
- Ryan J Summers
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322 USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - David T Teachey
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
23
|
Toson B, Fortes IS, Roesler R, Andrade SF. Targeting Akt/PKB in pediatric tumors: A review from preclinical to clinical trials. Pharmacol Res 2022; 183:106403. [PMID: 35987481 DOI: 10.1016/j.phrs.2022.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
The serine/threonine kinase Akt is a major player in the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and its modulation impacts multiple cellular processes such as growth, proliferation, and survival. Several abnormalities in this pathway have been documented over the years, and these alterations were shown to have great implications in tumorigenesis and resistance to chemotherapy. Thus, multiple Akt inhibitors have been developed and tested in adult tumors, and some of them are currently undergoing phase I, II, and III clinical trials for distinct cancers that arise during adulthood. Despite that, the impact of these inhibitors is still not fully understood in pediatric tumors, and Akt-specific targeting seems to be a promising approach to treat children affected by cancers. This review summarizes recent available evidence of Akt inhibitors in pediatric cancers, from both preclinical and clinical studies. In short, we demonstrate the impact that Akt inhibition provides in tumorigenesis, and we suggest targeting the PI3K/Akt/mTOR signaling pathway, alone or in combination with other inhibitors, is a feasible tool to achieve better outcomes in pediatric tumors.
Collapse
Affiliation(s)
- Bruno Toson
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Isadora S Fortes
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Saulo F Andrade
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil.
| |
Collapse
|
24
|
Fisch AS, Church AJ. Special Considerations in the Molecular Diagnostics of Pediatric Neoplasms. Clin Lab Med 2022; 42:349-365. [DOI: 10.1016/j.cll.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
A Novel Case of Concurrent T-cell and Early T-cell Precursor Lymphoblastic Lymphoma in an Adolescent Female. J Pediatr Hematol Oncol 2022; 44:e550-e553. [PMID: 34310470 DOI: 10.1097/mph.0000000000002257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022]
Abstract
In the context of an evolving understanding of early T-cell precursor (ETP) lymphoma and leukemia, we present a case of concurrent T-cell lymphoblastic lymphoma and ETP lymphoma in an adolescent female. To our knowledge, this represents the first reported case of both lymphoblastic lymphoma and ETP lymphoma as distinct and conjoined components of the same neoplasm. As an exception to current literature, our patient had a strictly lymphomatous ETP component with no leukemic manifestation. Her ETP component remained viable following induction, supporting ETP resistance to chemotherapy. The patient remains in remission 4 years postallogeneic matched sibling donor bone marrow transplant.
Collapse
|
26
|
Haploidentical hematopoietic stem cell transplantation may improve long-term survival for children with high-risk T-cell acute lymphoblastic leukemia in first complete remission. Chin Med J (Engl) 2022; 135:940-949. [PMID: 35730372 PMCID: PMC9276285 DOI: 10.1097/cm9.0000000000001999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background: The role of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in children with high-risk (HR) T-cell acute lymphoblastic leukemia (T-ALL) in first complete remission (CR1) is still under evaluation. Moreover, relapse is the main factor affecting survival. This study aimed to explore the effect of allo-HSCT (especially haploidentical HSCT [haplo-HSCT]) on improving survival and reducing relapse for HR childhood T-ALL in CR1 and the prognostic factors of childhood T-ALL in order to identify who could benefit from HSCT. Methods: A total of 74 newly diagnosed pediatric T-ALL patients between January 1, 2012 and June 30, 2018 were enrolled in this retrospective study. Patients were stratified into the low-risk chemotherapy cohort (n = 16), HR chemotherapy cohort (n = 31), and HR transplant cohort (n = 27). Characteristics, survival outcomes, and prognostic factors of all patients were then analyzed. Results: Patient prognosis in the HR chemotherapy cohort was significantly worse than that in the low-risk chemotherapy cohort (5year overall survival [OS]: 58.5% vs. 100%, P = 0.003; 5-year event-free survival [EFS]: 54.1% vs. 83.4%, P = 0.010; 5-year cumulative incidence of relapse [CIR]: 45.2% vs. 6.3%, P = 0.011). In HR patients, allo-HSCT improved the 5-year EFS and CIR compared to that of chemotherapy (5-year EFS: 80.1% vs. 54.1%, P = 0.041; 5-year CIR: 11.6% vs. 45.2%, P = 0.006). The 5-year OS was higher in the HR transplant cohort than that in the HR chemotherapy cohort (81.0% vs. 58.5%, P = 0.084). Minimal residual disease re-emergence was an independent risk factor for 5-year OS, EFS, and CIR; age ≥10 years was an independent risk factor for OS and EFS; and high white blood cell count was an independent risk factor for EFS and CIR. Conclusion: Allo-HSCT, especially haplo-HSCT, could effectively reduce relapse of children with HR T-ALL in CR1.
Collapse
|
27
|
Whole-transcriptome analysis in acute lymphoblastic leukemia: a report from the DFCI ALL Consortium Protocol 16-001. Blood Adv 2021; 6:1329-1341. [PMID: 34933343 PMCID: PMC8864659 DOI: 10.1182/bloodadvances.2021005634] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/27/2021] [Indexed: 11/25/2022] Open
Abstract
RNA-seq is feasible in the context of a prospective clinical trial for de novo ALL within a clinically sensitive turnaround time. RNA-seq identified several genetic alterations not detected by conventional methods that confer potential prognostic and therapeutic impact.
The molecular hallmark of childhood acute lymphoblastic leukemia (ALL) is characterized by recurrent, prognostic genetic alterations, many of which are cryptic by conventional cytogenetics. RNA sequencing (RNA-seq) is a powerful next-generation sequencing technology that can simultaneously identify cryptic gene rearrangements, sequence mutations and gene expression profiles in a single assay. We examined the feasibility and utility of incorporating RNA-seq into a prospective multicenter phase 3 clinical trial for children with newly diagnosed ALL. The Dana-Farber Cancer Institute ALL Consortium Protocol 16-001 enrolled 173 patients with ALL who consented to optional studies and had samples available for RNA-seq. RNA-seq identified at least 1 alteration in 157 patients (91%). Fusion detection was 100% concordant with results obtained from conventional cytogenetic analyses. An additional 56 gene fusions were identified by RNA-seq, many of which confer prognostic or therapeutic significance. Gene expression profiling enabled further molecular classification into the following B-cell ALL (B-ALL) subgroups: high hyperdiploid (n = 36), ETV6-RUNX1/-like (n = 31), TCF3-PBX1 (n = 7), KMT2A-rearranged (KMT2A-R; n = 5), intrachromosomal amplification of chromosome 21 (iAMP21) (n = 1), hypodiploid (n = 1), Philadelphia chromosome (Ph)-positive/Ph-like (n = 16), DUX4-R (n = 11), PAX5 alterations (PAX5 alt; n = 11), PAX5 P80R (n = 1), ZNF384-R (n = 4), NUTM1-R (n = 1), MEF2D-R (n = 1), and others (n = 10). RNA-seq identified 141 nonsynonymous mutations in 93 patients (54%); the most frequent were RAS-MAPK pathway mutations. Among 79 patients with both low-density array and RNA-seq data for the Philadelphia chromosome-like gene signature prediction, results were concordant in 74 patients (94%). In conclusion, RNA-seq identified several clinically relevant genetic alterations not detected by conventional methods, which supports the integration of this technology into front-line pediatric ALL trials. This trial was registered at www.clinicaltrials.gov as #NCT03020030.
Collapse
|
28
|
Sin CF, Man PHM. Early T-Cell Precursor Acute Lymphoblastic Leukemia: Diagnosis, Updates in Molecular Pathogenesis, Management, and Novel Therapies. Front Oncol 2021; 11:750789. [PMID: 34912707 PMCID: PMC8666570 DOI: 10.3389/fonc.2021.750789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022] Open
Abstract
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is a distinct subtype of T lymphoblastic leukemia (T-ALL) identified in 2009, due to its unique immunophenotypic and genomic profile. The outcome of patients was poor in earlier studies, and they were prone to have induction failure, with more frequent relapse/refractory disease. Recent advances had been made in discoveries of genetic aberrations and molecular pathogenesis of ETP-ALL. However, the diagnosis and management of ETP-ALL is still challenging. There are limited choices of novel therapies so far. In this review article, it highlighted the diagnostic issue of ETP-ALL, pitfall in diagnosis, and strategy of accurate diagnosis. The review also summarized current understanding of molecular mechanism of leukemogenesis. The emerging role of risk-adapted therapy and allogenic stem cell transplant in optimizing the outcome of patients with ETP-ALL was discussed. Finally, some potential novel therapies were proposed based on the current understanding of molecular pathogenesis.
Collapse
Affiliation(s)
- Chun-fung Sin
- Department of Pathology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
29
|
Multiparametric Flow Cytometry for MRD Monitoring in Hematologic Malignancies: Clinical Applications and New Challenges. Cancers (Basel) 2021; 13:cancers13184582. [PMID: 34572809 PMCID: PMC8470441 DOI: 10.3390/cancers13184582] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In hematologic cancers, Minimal Residual Disease (MRD) monitoring, using either molecular (PCR) or immunophenotypic (MFC) diagnostics, allows the identification of rare cancer cells, readily detectable either in the bone marrow or in the peripheral blood at very low levels, far below the limit of classic microscopy. In this paper, we outlined the state-of-the-art of MFC-based MRD detection in different hematologic settings, highlighting main recommendations and new challenges for using such method in patients with acute leukemias or chronic hematologic neoplasms. The combination of new molecular technologies with advanced flow cytometry is progressively allowing clinicians to design a personalized therapeutic path, proportionate to the biological aggressiveness of the disease, in particular by using novel immunotherapies, in view of a modern decision-making process, based on precision medicine. Abstract Along with the evolution of immunophenotypic and molecular diagnostics, the assessment of Minimal Residual Disease (MRD) has progressively become a keystone in the clinical management of hematologic malignancies, enabling valuable post-therapy risk stratifications and guiding risk-adapted therapeutic approaches. However, specific prognostic values of MRD in different hematological settings, as well as its appropriate clinical uses (basically, when to measure it and how to deal with different MRD levels), still need further investigations, aiming to improve standardization and harmonization of MRD monitoring protocols and MRD-driven therapeutic strategies. Currently, MRD measurement in hematological neoplasms with bone marrow involvement is based on advanced highly sensitive methods, able to detect either specific genetic abnormalities (by PCR-based techniques and next-generation sequencing) or tumor-associated immunophenotypic profiles (by multiparametric flow cytometry, MFC). In this review, we focus on the growing clinical role for MFC-MRD diagnostics in hematological malignancies—from acute myeloid and lymphoblastic leukemias (AML, B-ALL and T-ALL) to chronic lymphocytic leukemia (CLL) and multiple myeloma (MM)—providing a comparative overview on technical aspects, clinical implications, advantages and pitfalls of MFC-MRD monitoring in different clinical settings.
Collapse
|
30
|
Wang ZD, Wang YW, Xu LP, Zhang XH, Wang Y, Chen H, Chen YH, Wang FR, Han W, Sun YQ, Yan CH, Tang FF, Mo XD, Wang YZ, Liu YR, Liu KY, Huang XJ, Chang YJ. Predictive Value of Dynamic Peri-Transplantation MRD Assessed By MFC Either Alone or in Combination with Other Variables for Outcomes of Patients with T-Cell Acute Lymphoblastic Leukemia. Curr Med Sci 2021; 41:443-453. [PMID: 34185250 DOI: 10.1007/s11596-021-2390-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
We performed a retrospective analysis to investigate dynamic peri-hematopoietic stem cell transplantation (HSCT) minimal/measurable residual disease (MRD) on outcomes in patients with T-cell acute lymphoblastic leukemia (T-ALL). A total of 271 patients were enrolled and classified into three groups: unchanged negative MRD pre- and post-HSCT group (group A), post-MRD non-increase group (group B), and post-MRD increase group (group C). The patients in group B and group C experienced a higher cumulative incidence of relapse (CIR) (42% vs. 71% vs. 16%, P<0.001) and lower leukemia-free survival (LFS) (46% vs. 21% vs. 70%, P<0.001) and overall survival (OS) (50% vs. 28% vs. 72%, P<0.001) than in group A, but there was no significant difference in non-relapse mortality (NRM) among three groups (14% vs. 12% vs. 8%, P=0.752). Multivariate analysis showed that dynamic peri-HSCT MRD was associated with CIR (HR=2.392, 95% CI, 1.816-3.151, P<0.001), LFS (HR=1.964, 95% CI, 1.546-2.496, P<0.001) and OS (HR=1.731, 95% CI, 1.348-2.222, P<0.001). We also established a risk scoring system based on dynamic peri-HSCT MRD combined with remission status pre-HSCT and onset of chronic graft-versus-host disease (GVHD). This risk scoring system could better distinguish CIR (c=0.730) than that for pre-HSCT MRD (c=0.562), post-HSCT MRD (c=0.616) and pre- and post-MRD dynamics (c=0.648). Our results confirm the outcome predictive value of dynamic peri-HSCT MRD either alone or in combination with other variables for patients with T-ALL.
Collapse
Affiliation(s)
- Zhi-Dong Wang
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Yue-Wen Wang
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Lan-Ping Xu
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Yu Wang
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Huan Chen
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Yu-Hong Chen
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Feng-Rong Wang
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Wei Han
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Yu-Qian Sun
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Chen-Hua Yan
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Fei-Fei Tang
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Xiao-Dong Mo
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Ya-Zhe Wang
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Yan-Rong Liu
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Kai-Yan Liu
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Xiao-Jun Huang
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 100005, China.,Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Ying-Jun Chang
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.
| |
Collapse
|
31
|
Saito T, Wei Y, Wen L, Srinivasan C, Wolthers BO, Tsai CY, Harris MH, Stevenson K, Byersdorfer C, Oparaji JA, Fernandez C, Mukherjee A, Abu-El-Haija M, Agnihotri S, Schmiegelow K, Showalter MR, Fogle PW, McCulloch S, Contrepois K, Silverman LB, Ding Y, Husain SZ. Impact of acute lymphoblastic leukemia induction therapy: findings from metabolomics on non-fasted plasma samples from a biorepository. Metabolomics 2021; 17:64. [PMID: 34175981 PMCID: PMC11446541 DOI: 10.1007/s11306-021-01814-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/15/2021] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Acute lymphoblastic leukemia (ALL) is among the most common cancers in children. With improvements in combination chemotherapy regimens, the overall survival has increased to over 90%. However, the current challenge is to mitigate adverse events resulting from the complex therapy. Several chemotherapies intercept cancer metabolism, but little is known about their collective role in altering host metabolism. OBJECTIVES We profiled the metabolomic changes in plasma of ALL patients initial- and post- induction therapy. METHODS We exploited a biorepository of non-fasted plasma samples derived from the Dana Farber Cancer Institute ALL Consortium; these samples were obtained from 50 ALL patients initial- and post-induction therapy. Plasma metabolites and complex lipids were analyzed by high resolution tandem mass spectrometry and differential mobility tandem mass spectrometry. Data were analyzed using a covariate-adjusted regression model with multiplicity adjustment. Pathway enrichment analysis and co-expression network analysis were performed to identify unique clusters of molecules. RESULTS More than 1200 metabolites and complex lipids were identified in the total of global metabolomics and lipidomics platforms. Over 20% of those molecules were significantly altered. In the pathway enrichment analysis, lipids, particularly phosphatidylethanolamines (PEs), were identified. Network analysis indicated that the bioactive fatty acids, docosahexaenoic acid (DHA)-containing (22:6) triacylglycerols (TAGs), were decreased in the post-induction therapy. CONCLUSION Metabolomic profiling in ALL patients revealed a large number of alterations following induction chemotherapy. In particular, lipid metabolism was substantially altered. The changes in metabolites and complex lipids following induction therapy could provide insight into the adverse events experienced by ALL patients.
Collapse
Affiliation(s)
- Toshie Saito
- Department of Pediatrics, Stanford University, 750 Welch Road, Palo Alto, CA, 94304, USA
| | - Yue Wei
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Li Wen
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chaitanya Srinivasan
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin O Wolthers
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Cheng-Yu Tsai
- Department of Pediatrics, Stanford University, 750 Welch Road, Palo Alto, CA, 94304, USA
| | - Marian H Harris
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Kristen Stevenson
- Department of Data Sciences at Dana-Farber Cancer Institute, Boston, MA, USA
| | - Craig Byersdorfer
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Christian Fernandez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amitava Mukherjee
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maisam Abu-El-Haija
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sameer Agnihotri
- School of Medicine, Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Kevin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Lewis B Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Ying Ding
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sohail Z Husain
- Department of Pediatrics, Stanford University, 750 Welch Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
32
|
Kondyli M, Tremblay DÉ, Rezgui A, Serfaty SA, Gagné V, Ribère M, Laverdière C, Leclerc JM, Tran TH, Sinnett D, Krajinovic M. Human Leucocyte Antigen alleles associated with asparaginase hypersensitivity in childhood Acute Lymphoblastic Leukemia patients treated with Pegylated asparaginase within Dana Farber Cancer Institute treatment protocols. Leuk Res 2021; 109:106650. [PMID: 34198115 DOI: 10.1016/j.leukres.2021.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Maria Kondyli
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - David-Étienne Tremblay
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, Canada; Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Canada
| | - Aziz Rezgui
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Sophie Annaelle Serfaty
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, Canada; Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Canada
| | - Vincent Gagné
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Maïté Ribère
- Department of Biological Sciences, Faculty of Art and Science, University of Montreal, Canada
| | - Caroline Laverdière
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, Canada; Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Jean-Marie Leclerc
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, Canada; Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Thai Hoa Tran
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, Canada; Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Daniel Sinnett
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, Canada; Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Maja Krajinovic
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, Canada; Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Canada.
| |
Collapse
|