4
|
Ortega-Paz L, Talasaz AH, Sadeghipour P, Potpara TS, Aronow HD, Jara-Palomares L, Sholzberg M, Angiolillo DJ, Lip GYH, Bikdeli B. COVID-19-Associated Pulmonary Embolism: Review of the Pathophysiology, Epidemiology, Prevention, Diagnosis, and Treatment. Semin Thromb Hemost 2023; 49:816-832. [PMID: 36223804 DOI: 10.1055/s-0042-1757634] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
COVID-19 is associated with endothelial activation in the setting of a potent inflammatory reaction and a hypercoagulable state. The end result of this thromboinflammatory state is an excess in thrombotic events, in particular venous thromboembolism. Pulmonary embolism (PE) has been of special interest in patients with COVID-19 given its association with respiratory deterioration, increased risk of intensive care unit admission, and prolonged hospital stay. The pathophysiology and clinical characteristics of COVID-19-associated PE may differ from the conventional non-COVID-19-associated PE. In addition to embolic events from deep vein thrombi, in situ pulmonary thrombosis, particularly in smaller vascular beds, may be relevant in patients with COVID-19. Appropriate prevention of thrombotic events in COVID-19 has therefore become of critical interest. Several changes in viral biology, vaccination, and treatment management during the pandemic may have resulted in changes in incidence trends. This review provides an overview of the pathophysiology, epidemiology, clinical characteristics, and risk factors of COVID-19-associated PE. Furthermore, we briefly summarize the results from randomized controlled trials of preventive antithrombotic therapies in COVID-19, focusing on their findings related to PE. We discuss the acute treatment of COVID-19-associated PE, which is substantially similar to the management of conventional non-COVID-19 PE. Ultimately, we comment on the current knowledge gaps in the evidence and the future directions in the treatment and follow-up of COVID-19-associated PE, including long-term management, and its possible association with long-COVID.
Collapse
Affiliation(s)
- Luis Ortega-Paz
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, Florida
| | - Azita H Talasaz
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Sadeghipour
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Clinical Trial Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Tatjana S Potpara
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Intensive Arrhythmia Care, Cardiology Clinic, Clinical Center of Serbia, Belgrade, Serbia
| | - Herbert D Aronow
- Department of Cardiology, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Department of Cardiology, Henry Ford Health, Detroit, Michigan
| | - Luis Jara-Palomares
- Respiratory Unit, Hospital Universitario Virgen del Rocio, Sevilla, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES), Carlos III Health Institute, Madrid, Spain
| | - Michelle Sholzberg
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, Florida
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Behnood Bikdeli
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Yale/YNHH Center for Outcomes Research and Evaluation (CORE), New Haven, Connecticut
- Cardiovascular Research Foundation (CRF), New York, New York
| |
Collapse
|
6
|
Ma X, Liang J, Zhu G, Bhoria P, Shoara AA, MacKeigan DT, Khoury CJ, Slavkovic S, Lin L, Karakas D, Chen Z, Prifti V, Liu Z, Shen C, Li Y, Zhang C, Dou J, Rousseau Z, Zhang J, Ni T, Lei X, Chen P, Wu X, Shaykhalishahi H, Mubareka S, Connelly KA, Zhang H, Rotstein O, Ni H. SARS-CoV-2 RBD and Its Variants Can Induce Platelet Activation and Clearance: Implications for Antibody Therapy and Vaccinations against COVID-19. RESEARCH (WASHINGTON, D.C.) 2023; 6:0124. [PMID: 37223472 PMCID: PMC10202384 DOI: 10.34133/research.0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/28/2023] [Indexed: 10/10/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 virus is an ongoing global health burden. Severe cases of COVID-19 and the rare cases of COVID-19 vaccine-induced-thrombotic-thrombocytopenia (VITT) are both associated with thrombosis and thrombocytopenia; however, the underlying mechanisms remain inadequately understood. Both infection and vaccination utilize the spike protein receptor-binding domain (RBD) of SARS-CoV-2. We found that intravenous injection of recombinant RBD caused significant platelet clearance in mice. Further investigation revealed the RBD could bind platelets, cause platelet activation, and potentiate platelet aggregation, which was exacerbated in the Delta and Kappa variants. The RBD-platelet interaction was partially dependent on the β3 integrin as binding was significantly reduced in β3-/- mice. Furthermore, RBD binding to human and mouse platelets was significantly reduced with related αIIbβ3 antagonists and mutation of the RGD (arginine-glycine-aspartate) integrin binding motif to RGE (arginine-glycine-glutamate). We developed anti-RBD polyclonal and several monoclonal antibodies (mAbs) and identified 4F2 and 4H12 for their potent dual inhibition of RBD-induced platelet activation, aggregation, and clearance in vivo, and SARS-CoV-2 infection and replication in Vero E6 cells. Our data show that the RBD can bind platelets partially though αIIbβ3 and induce platelet activation and clearance, which may contribute to thrombosis and thrombocytopenia observed in COVID-19 and VITT. Our newly developed mAbs 4F2 and 4H12 have potential not only for diagnosis of SARS-CoV-2 virus antigen but also importantly for therapy against COVID-19.
Collapse
Affiliation(s)
- Xiaoying Ma
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Jady Liang
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
| | - Guangheng Zhu
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
| | - Preeti Bhoria
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
| | - Aron A. Shoara
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
| | - Daniel T. MacKeigan
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
| | - Christopher J. Khoury
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Sladjana Slavkovic
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Lisha Lin
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Danielle Karakas
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Ziyan Chen
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Viktor Prifti
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Zhenze Liu
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Yuchong Li
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease,
The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cheng Zhang
- CCOA Therapeutics Inc., Toronto, ON, Canada
- Department of Laboratory Medicine,
The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayu Dou
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Zack Rousseau
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Jiamin Zhang
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Tiffany Ni
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Xi Lei
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
| | - Pingguo Chen
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Xiaoyu Wu
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy,
University of Toronto, Toronto, ON, Canada
| | - Hamed Shaykhalishahi
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
| | - Samira Mubareka
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Medical Microbiology and Infectious Disease,
Sunnybrook Health Science Centre, Toronto, ON, Canada
| | - Kim A. Connelly
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
- Division of Cardiology,
St. Michael's Hospital, Toronto, ON, Canada
| | - Haibo Zhang
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease,
The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Medical Microbiology and Infectious Disease,
Sunnybrook Health Science Centre, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine and Division of Critical Care Medicine,
University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine,
University of Toronto, Toronto, ON, Canada
| | - Ori Rotstein
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery,
University of Toronto, Toronto, ON, Canada
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Jacobson BF, Schapkaitz E, Takalani A, Rowji P, Louw VJ, Opie J, Bekker LG, Garrett N, Goga A, Reddy T, Yende-Zuma N, Sanne I, Seocharan I, Peter J, Robinson M, Collie S, Khan A, Takuva S, Gray G. Vascular thrombosis after single dose Ad26.COV2.S vaccine in healthcare workers in South Africa: open label, single arm, phase 3B study (Sisonke study). BMJ MEDICINE 2023; 2:e000302. [PMID: 37063238 PMCID: PMC10083528 DOI: 10.1136/bmjmed-2022-000302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/23/2023] [Indexed: 04/05/2023]
Abstract
ObjectiveTo assess the rates of vascular thrombotic adverse events in the first 35 days after one dose of the Ad26.COV2.S vaccine (Janssen/Johnson & Johnson) in healthcare workers in South Africa and to compare these rates with those observed in the general population.DesignOpen label, single arm, phase 3B study.SettingSisonke study, South Africa, 17 February to 15 June 2021.ParticipantsThe Sisonke cohort of 477 234 healthcare workers, aged ≥18 years, who received one dose of the Ad26.COV2.S vaccine.Main outcome measuresObserved rates of venous arterial thromboembolism and vaccine induced immune thrombocytopenia and thrombosis in individuals who were vaccinated, compared with expected rates, based on age and sex specific background rates from the Clinical Practice Research Datalink GOLD database (database of longitudinal routinely collected electronic health records from UK primary care practices using Vision general practice patient management software).ResultsMost of the study participants were women (74.9%) and median age was 42 years (interquartile range 33-51). Twenty nine (30.6 per 100 000 person years, 95% confidence interval 20.5 to 44.0) vascular thrombotic events occurred at a median of 14 days (7-29) after vaccination. Of these 29 participants, 93.1% were women, median age 46 (37-55) years, and 51.7% had comorbidities. The observed to expected ratios for cerebral venous sinus thrombosis with thrombocytopenia and pulmonary embolism with thrombocytopenia were 10.6 (95% confidence interval 0.3 to 58.8) and 1.2 (0.1 to 6.5), respectively. Because of the small number of adverse events and wide confidence intervals, no conclusions were drawn between these estimates and the expected incidence rates in the population.ConclusionsVaccine induced immune thrombocytopenia and thrombosis after one dose of the Ad26.COV2.S vaccine was found in only a few patients in this South African population of healthcare workers. These findings are reassuring if considered in terms of the beneficial effects of vaccination against covid-19 disease. These data support the continued use of this vaccine, but surveillance is recommended to identify other incidences of venous and arterial thromboembolism and to improve confidence in the data estimates.Trial registrationClinicalTrials.govNCT04838795.
Collapse
Affiliation(s)
- Barry Frank Jacobson
- Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Elise Schapkaitz
- Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Azwi Takalani
- Hutchinson Centre Research Institute of South Africa (HCRISA), Chris Hani Baragwanath Hospital, Johannesburg, South Africa
| | - Pradeep Rowji
- The Southern African Society of Thrombosis and Haemostasis, Neurology Association of South Africa, Johannesburg, South Africa
| | - Vernon Johan Louw
- Division of Clinical Haematology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Jessica Opie
- Division of Haematology, Department of Pathology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Linda-Gail Bekker
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Ameena Goga
- HIV and Other Infectious Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Paediatrics and Child Health, University of Pretoria, Pretoria, South Africa
| | - Tarylee Reddy
- Biostatistics Research Unit, South African Medical Research Council, Durban, South Africa
| | - Nonhlanhla Yende-Zuma
- Nelson R Mandela School of Medicine, Centre for the AIDS Programme of Research in South Africa, University of KwaZulu Natal, Durban, South Africa
| | - Ian Sanne
- Clinical HIV Research Unit, University of the Witwatersrand Faculty of Sciences, Johannesburg, South Africa
| | - Ishen Seocharan
- Biostatistics Research Unit, South African Medical Research Council, Durban, South Africa
| | - Jonny Peter
- Division of Allergy and Clinical Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | | | | | - Amber Khan
- Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simbarashe Takuva
- School of Health Systems and Public Health, University of Pretoria, Faculty of Health Sciences, Pretoria, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa
| | - Glenda Gray
- HIV and Other Infectious Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|