1
|
Jiang W, Wang J, Lin R, Chen R, Chen W, Xie X, Hsiung KL, Chen HY. Machine learning-based non-destructive terahertz detection of seed quality in peanut. Food Chem X 2024; 23:101675. [PMID: 39157662 PMCID: PMC11327472 DOI: 10.1016/j.fochx.2024.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Rapid identification of peanut seed quality is crucial for public health. In this study, we present a terahertz wave imaging system using a convolutional neural network (CNN) machine learning approach. Terahertz waves are capable of penetrating the seed shell to identify the quality of peanuts without causing any damage to the seeds. The specificity of seed quality on terahertz wave images is investigated, and the image characteristics of five different qualities are summarized. Terahertz wave images are digitized and used for training and testing of convolutional neural networks, resulting in a high model accuracy of 98.7% in quality identification. The trained THz-CNNs system can accurately identify standard, mildewed, defective, dried and germinated seeds, with an average detection time of 2.2 s. This process does not require any sample preparation steps such as concentration or culture. Our method swiftly and accurately assesses shelled seed quality non-destructively.
Collapse
Affiliation(s)
- Weibin Jiang
- College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 35002, Taiwan
| | - Jun Wang
- College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Ruiquan Lin
- College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Riqing Chen
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Wencheng Chen
- College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Xin Xie
- College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Kan-Lin Hsiung
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 35002, Taiwan
| | - Hsin-Yu Chen
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 35002, Taiwan
| |
Collapse
|
2
|
Chen M, Wen J, Qiu Y, Gao X, Zhang J, Lin Y, Wu Z, Lin X, Zhu A. Combining Multiple Omics with Molecular Dynamics Reveals SCP2-Mediated Cytotoxicity Effects of Aflatoxin B1 in SW480 Cells. Toxins (Basel) 2024; 16:375. [PMID: 39330833 PMCID: PMC11435460 DOI: 10.3390/toxins16090375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Aflatoxins belong to a class of mycotoxins, among which aflatoxin B1 (AFB1) has detrimental effects on the health of both animals and humans. It is associated with long-term exposure-induced carcinogenicity, hepatotoxicity, renal toxicity, neurotoxicity, and immunosuppressive properties, resulting in a variety of diseases. The intestine is the first barrier for human exposure to AFB1, but limited investigations have been conducted to clarify the underlying mechanisms of intestinal cytotoxicity. The mechanism of AFB1-induced cytotoxicity was investigated in this study using an integrated approach combining transcriptome, proteome, and metabolome analysis along with molecular dynamics simulation. After exposing SW480 cells to 50 μM AFB1 for 72 h, the transcriptome, proteome, and metabolome exhibited significant enrichment in pathways associated with oxidative stress, fatty acid and lipid metabolism, and glutathione metabolism. The experimental results demonstrated that AFB1 significantly reduces SW480 cells viability, and induces oxidative stress, calcium overload, mitochondrial damage, and lipid metabolism disorders.
Collapse
Affiliation(s)
- Mengting Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - Jiaxin Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - Yiyan Qiu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
- Jimei District Center for Disease Control and Prevention, Xiamen 361022, China
| | - Xinyue Gao
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - Jian Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Yifan Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - Zekai Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - Xiaohuang Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
| | - An Zhu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350108, China
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| |
Collapse
|
3
|
Samokhvalov AV, Mironova AA, Eremin SA, Zherdev AV, Dzantiev BB. Polycations as Aptamer-Binding Modulators for Sensitive Fluorescence Anisotropy Assay of Aflatoxin B1. SENSORS (BASEL, SWITZERLAND) 2024; 24:3230. [PMID: 38794084 PMCID: PMC11125339 DOI: 10.3390/s24103230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Fluorescence induced by the excitation of a fluorophore with plane-polarized light has a different polarization depending on the size of the fluorophore-containing reagent and the rate of its rotation. Based on this effect, many analytical systems have been implemented in which an analyte contained in a sample and labeled with a fluorophore (usually fluorescein) competes to bind to antibodies. Replacing antibodies in such assays with aptamers, low-cost and stable oligonucleotide receptors, is complicated because binding a fluorophore to them causes a less significant change in the polarization of emissions. This work proposes and characterizes the compounds of the reaction medium that improve analyte binding and reduce the mobility of the aptamer-fluorophore complex, providing a higher analytical signal and a lower detection limit. This study was conducted on aflatoxin B1 (AFB1), a ubiquitous toxicant contaminating foods of plant origins. Eight aptamers specific to AFB1 with the same binding site and different regions stabilizing their structures were compared for affinity, based on which the aptamer with 38 nucleotides in length was selected. The polymers that interact reversibly with oligonucleotides, such as poly-L-lysine and polyethylene glycol, were tested. It was found that they provide the desired reduction in the depolarization of emitted light as well as high concentrations of magnesium cations. In the selected optimal medium, AFB1 detection reached a limit of 1 ng/mL, which was 12 times lower than in the tris buffer commonly used for anti-AFB1 aptamers. The assay time was 30 min. This method is suitable for controlling almond samples according to the maximum permissible levels of their contamination by AFB1. The proposed approach could be applied to improve other aptamer-based analytical systems.
Collapse
Affiliation(s)
- Alexey V. Samokhvalov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.S.); (A.A.M.); (A.V.Z.)
| | - Alena A. Mironova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.S.); (A.A.M.); (A.V.Z.)
| | - Sergei A. Eremin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.S.); (A.A.M.); (A.V.Z.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.S.); (A.A.M.); (A.V.Z.)
| |
Collapse
|
4
|
Okechukwu VO, Adelusi OA, Kappo AP, Njobeh PB, Mamo MA. Aflatoxins: Occurrence, biosynthesis, mechanism of action and effects, conventional/emerging detection techniques. Food Chem 2024; 436:137775. [PMID: 37866099 DOI: 10.1016/j.foodchem.2023.137775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Aflatoxins (AFs) are toxic secondary metabolites prevalent in various food and agricultural products, posing significant challenges to global food safety. The detection and quantification of AFs through high-precision analytical techniques are crucial in mitigating AF contamination levels and associated health risks. Variousmethods,including conventional and emerging techniques, have been developed for detecting and quantifyingAFsinfood samples. This review provides an in-depth analysis of the global occurrence of AF in food commodities, covering their biosynthesis, mode of action, and effects on humans and animals. Additionally, the review discusses different conventional strategies, including chromatographic and immunochemical approaches, for AF quantification and identification in food samples. Furthermore, emerging AF detection strategies, such as solid-state gas sensors and electronic nose technologies, along with their applications, limitations, and future perspectives, were reviewed. Sample purification, along with their respective advantages and limitations, are also discussed herein.
Collapse
Affiliation(s)
- Viola O Okechukwu
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, South Africa
| | - Oluwasola A Adelusi
- Department of Biotechnology and Food Technology, PO Box 17011, Doornfontein Campus, University of Johannesburg, South Africa
| | - Abidemi P Kappo
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, South Africa
| | - Patrick B Njobeh
- Department of Biotechnology and Food Technology, PO Box 17011, Doornfontein Campus, University of Johannesburg, South Africa
| | - Messai A Mamo
- Department of Chemical Sciences, PO Box 2028, Doornfontein Campus, University of Johannesburg, South Africa.
| |
Collapse
|
5
|
Yuan Y, Li M, Qiu X. Chicken CYP1A5 is able to hydroxylate aflatoxin B 1 to aflatoxin M 1. Toxicon 2024; 239:107625. [PMID: 38244865 DOI: 10.1016/j.toxicon.2024.107625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Aflatoxin B1 (AFB1), a naturally-occurring mycotoxin, can cause severe toxicological and carcinogenic effects in livestock and humans. Given that the chicken is one of the most important food-producing animals, knowledge regarding AFB1 metabolism and enzymes responsible for AFB1 transformation in the chicken has important implications for chicken production and food safety. Previously, we have successfully expressed chicken CYP1A5 and CYP3A37 monooxygenases in E. coli, and reconstituted them into a functional CYP system consisting of CYP1A5 or CYP3A37, CPR and cytochrome b5. In this study, we aimed to investigate the roles of CYP1A5 and CYP3A37 in the bioconversion of AFB1 to AFM1. Our results showed that chicken CYP1A5 was able to hydroxylate AFB1 to AFM1. The formation of AFM1 followed the typical Michaelis-Menten kinetics. The kinetics parameters of Vmax and Km were determined as 0.83 ± 0.039 nmol/min/nmol P450 and 26.9 ± 4.52 μM respectively. Docking simulations further revealed that AFB1 adopts a "side-on" conformation in chicken CYP1A5, facilitating the hydroxylation of the C9a atom and the production of AFM1. On the other hand, AFB1 assumes a "face-on" conformation in chicken CYP3A37, leading to the displacement of the C9a atom from the heme iron and explaining the lack of AFM1 hydroxylation activity. The results demonstrate that chicken CYP1A5 possesses efficient hydroxylase activity towards AFB1 to form AFM1.
Collapse
Affiliation(s)
- Yiyang Yuan
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong Province, China.
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
6
|
Meng X, Sang M, Guo Q, Li Z, Zhou Q, Sun X, Zhao W. Target-Induced Electrochemical Sensor Based on Foldable Aptamer and MoS 2@MWCNTs-PEI for Enhanced Detection of AFB1 in Peanuts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16422-16431. [PMID: 37934460 DOI: 10.1021/acs.langmuir.3c02216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Herein, a sensitive and selective electrochemical sensor based on aptamer folding was constructed to detect aflatoxin B1 (AFB1) in peanuts. Specifically, polyethylenimine-functionalized multiwalled carbon nanotubes modified with molybdenum disulfide (MoS2@MWCNTs-PEI) were used as the electrode matrix to enable a large specific surface area, which were characterized by the Randles-Sevcik equation. Additionally, AuNPs were used to immobilize the aptamer via the Au-S covalent bond and provide a favorable microenvironment for signal enhancement. Methylene blue (MB) was modified at the proximal 3' termini of the aptamer as the capture probe, while the signal transduction of the sensor was obtained through changes in conformation and position of MB induced by the binding between AFB1 and the probe. Changes in spatial conformation could be recorded by electrochemical methods more readily. This electrochemical aptasensor demonstrated remarkable sensitivity to AFB1 with an extensive detection range (1 pg/mL to 100 ng/mL) and a lower limit detection (1.0 × 10-3 ng/mL). Moreover, using the constructed aptasensor, AFB1 was identified successfully in peanut samples, with recoveries ranging from 95.83 to 107.53%, illustrating its potential use in determining AFB1 in food.
Collapse
Affiliation(s)
- Xiaoya Meng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Maosheng Sang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Qi Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zhongyu Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Quanlong Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Wenping Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| |
Collapse
|
7
|
Chen W, Luo H, Zhong Z, Wei J, Wang Y. The safety of Chinese medicine: A systematic review of endogenous substances and exogenous residues. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154534. [PMID: 36371955 DOI: 10.1016/j.phymed.2022.154534] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Safety and toxicity have become major challenges in the internationalization of Chinese medicine. Inspite of its wide application, security problems of Chinese medicine still occur from time to time, raising widespread concerns about its safety. Most of the studies either only partially discussed the intrinsic toxicities or extrinsic harmful residues in Chinese medicine, or briefly described detoxification and attenuation methods. It is necessary to systematically discuss Chinese medicine's extrinsic and intrinsic toxic components and corresponding toxicity detoxification or detection methods as a whole. PURPOSE This review comprehensively summarizes various toxic components in Chinese medicine from intrinsic and extrinsic. Then the corresponding methods for detoxification or detection of toxicity are highlighted. It is expected to provide a reference for safeguards for developing and using Chinese medicine. METHODS A literature search was conducted in the databases, including PubMed, Web of Science,Wan-fang database, and the China National Knowledge Infrastructure (CNKI). Keywords used were safety, toxicity, intrinsic toxicities, extrinsic harmful residues, alkaloids, terpene and macrolides, saponins, toxic proteins, toxic crystals, minerals, heavy metals, pesticides, mycotoxins, sulfur dioxide, detoxification, detection, processing (Paozhi), compatibility (Peiwu), Chinese medicine, etc., and combinations of these keywords. All selected articles were from 2006 to 2022, and each was assessed critically for our exclusion criteria. Studies describe the classification of toxic components of Chinese medicine, the toxic effects and mechanisms of Chinese medicine, and the corresponding methods for detoxification or detection of toxicity. RESULTS The toxic components of Chinese medicines can be classified as intrinsic toxicities and extrinsic harmful residues. Firstly, we summarized the intrinsic toxicities of Chinese medicine, the adverse effects and toxicity mechanisms caused by these components. Next, we focused on the detoxification or attenuation methods for intrinsic toxicities of Chinese medicine. The other main part discussed the latest progress in analytical strategies for exogenous hazardous substances, including heavy metals, pesticides, and mycotoxins. Beyond reviewing mainstream instrumental methods, we also introduced the emerging biochip, biosensor and immuno-based techniques. CONCLUSION In this review, we provide an overall assessment of the recent progress in endogenous toxins and exogenous hazardous substances concerning Chinese medicine, which is expected to render deeper insights into the safety of Chinese medicine.
Collapse
Affiliation(s)
- Wenyue Chen
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Luo
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Jinchao Wei
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
8
|
Liu Z, Xue J, Chen L, Ma L, Yang H, Zhang Y, Miao M. A signal-off aptamer sensor based on competition with complementary DNA and click polymerization for electrochemical detection of AFB1. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Wang F, Li Z, Jia H, Lu R, Zhang S, Pan C, Zhang Z. An ultralow concentration of Al-MOFs for turn-on fluorescence detection of aflatoxin B 1 in tea samples. Food Chem 2022; 383:132389. [PMID: 35180600 DOI: 10.1016/j.foodchem.2022.132389] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/09/2022] [Accepted: 02/06/2022] [Indexed: 11/04/2022]
Abstract
A turn-on fluorescent sensing platform based on an ultralow concentration of Al-metal organic frameworks for the detection of aflatoxin B1 has been developed for the first time. This fluorescence turn-on sensor exhibits the largest fluorescence enhancement (or quenching) constant value of 179404 M-1 among all luminescence-based chemical sensors reported till date. Moreover, the sensor afforded a rapid detection of aflatoxin B1, with a linear response in the concentration range of 0.05-9.61 μM and a low detection limit of 11.67 ppb. Additionally, the fabricated sensor showed good repeatability, reproducibility, stability, and selectivity. Most importantly, the practical application of this sensor has been demonstrated by detecting aflatoxin B1 in complex tea samples with low relative standard deviation (≤7.72%; n = 3) and satisfactory recoveries. In summary, the proposed method has great potential as a simple, sensitive and selective strategy for monitoring aflatoxin B1 in food samples.
Collapse
Affiliation(s)
- Fuxiang Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Zuopeng Li
- Institute of Applied Chemistry, Shanxi Datong University, No. 5 Xingyun Street, Datong 037009, China
| | - Hongping Jia
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Runhua Lu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Sanbing Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| | - Canping Pan
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Zhiqiang Zhang
- Shanghai Uzong Industrial Co. Ltd, Chunshen Road 2525#, Minhang District, Shanghai 201104, China
| |
Collapse
|
10
|
Cao W, Yu P, Yang K, Cao D. Aflatoxin B1: metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicol Mech Methods 2021; 32:395-419. [PMID: 34930097 DOI: 10.1080/15376516.2021.2021339] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aflatoxins are a class of carcinogenic mycotoxins produced by Aspergillus fungi, which are widely distributed in nature. Aflatoxin B1 (AFB1) is the most toxic of these compounds and its metabolites have a variety of biological activities, including acute toxicity, teratogenicity, mutagenicity and carcinogenicity, which has been well-characterized to lead to the development of hepatocellular carcinoma (HCC) in humans and animals. This review focuses on the metabolism of AFB1, including epoxidation and DNA adduction, as it concerns the initiation of cancer and the underlying mechanisms. In addition to DNA adduction, inflammation and oxidative stress caused by AFB1 can also participate in the occurrence of cancer. Therefore, the main carcinogenic mechanism of AFB1 related ROS is summarized. This review also describes recent reports of AFB1 exposures in occupational settings. It is hoped that people will pay more attention to occupational health, in order to reduce the incidence of cancer caused by occupational exposure.
Collapse
Affiliation(s)
- Weiya Cao
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - Pan Yu
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - KePeng Yang
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - Dongli Cao
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| |
Collapse
|
11
|
Wang S, Yang X, Liu F, Wang X, Zhang X, He K, Wang H. Comprehensive Metabolomic Analysis Reveals Dynamic Metabolic Reprogramming in Hep3B Cells with Aflatoxin B1 Exposure. Toxins (Basel) 2021; 13:toxins13060384. [PMID: 34072178 PMCID: PMC8229485 DOI: 10.3390/toxins13060384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) infection and aflatoxin B1 (AFB1) exposure have been recognized as independent risk factors for the occurrence and development of hepatocellular carcinoma (HCC), but their combined impacts and the potential metabolic mechanisms remain poorly characterized. Here, a comprehensive non-targeted metabolomic study was performed following AFB1 exposed to Hep3B cells at two different doses: 16 μM and 32 μM. The metabolites were identified and quantified by an ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)-based strategy. A total of 2679 metabolites were identified, and 392 differential metabolites were quantified among three groups. Pathway analysis indicated that dynamic metabolic reprogramming was induced by AFB1 and various pathways changed significantly, including purine and pyrimidine metabolism, hexosamine pathway and sialylation, fatty acid synthesis and oxidation, glycerophospholipid metabolism, tricarboxylic acid (TCA) cycle, glycolysis, and amino acid metabolism. To the best of our knowledge, the alteration of purine and pyrimidine metabolism and decrease of hexosamine pathways and sialylation with AFB1 exposure have not been reported. The results indicated that our metabolomic strategy is powerful to investigate the metabolome change of any stimulates due to its high sensitivity, high resolution, rapid separation, and good metabolome coverage. Besides, these findings provide an overview of the metabolic mechanisms of the AFB1 combined with HBV and new insight into the toxicological mechanism of AFB1. Thus, targeting these metabolic pathways may be an approach to prevent carcinogen-induced cancer, and these findings may provide potential drug targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | | | | | - Kun He
- Correspondence: (K.H.); (H.W.); Tel.: +86-10-6693-0306 (K.H.); +86-10-6693-0342 (H.W.); Fax: +86-10-6818-6281 (K.H. & H.W.)
| | - Hongxia Wang
- Correspondence: (K.H.); (H.W.); Tel.: +86-10-6693-0306 (K.H.); +86-10-6693-0342 (H.W.); Fax: +86-10-6818-6281 (K.H. & H.W.)
| |
Collapse
|
12
|
Wang C, Zhang L, Luo J, Qin J, Jiang J, Qin L, Zhao Z, Yang S, Yang M. Development of a sensitive indirect competitive enzyme-linked immunosorbent assay for high-throughput detection and risk assessment of aflatoxin B 1 in animal-derived medicines. Toxicon 2021; 197:99-105. [PMID: 33865888 DOI: 10.1016/j.toxicon.2021.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 01/06/2023]
Abstract
Animal-derived medicine is an important part of traditional Chinese medicine (TCM). Studies have shown that many animal-derived medicinal products are susceptible to contaminate of aflatoxins, nevertheless, the rapid detection for animal-derived medicine is prone to be ignored. Here we developed a sensitive indirect competitive enzyme-linked immunosorbent assay (icELISA) for rapid screening of aflatoxin B1 (AFB1) in ground beetle, cockroach, silkworm and earthworm. The sensitivity of the icELISA method was significantly enhanced. The IC50 for the four animal-derived medicinal samples ranged from 0.092 to 0.135 ng mL-1; the limit of detection (LOD) was 0.008-0.020 ng mL-1. To obtain high accuracy, the extraction solution and time were evaluated. By using this method, a total of 138 samples were investigated, and the detection rates of AFB1 in ground beetle and earthworm samples were 26.6% and 16.7%, respectively. The result was validated by liquid chromatography combined with tandem mass spectrometry, and an excellent correlation was observed between the two datasets, with a R2 value of 0.999. Our results indicate that the proposed method can be used for the rapid detection of AFB1 in animal-derived medicine. Furthermore, the quantitative risk assessment was conducted for ground beetle and earthworm based on the results, demonstrating that the intake of AFB1 in ground beetle had a slight threat to the risk of cancer.
Collapse
Affiliation(s)
- Changjian Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Laboratory of Cultivation and Breeding of Medicinal Plants, National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jiaan Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jiayi Jiang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Lu Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zhigao Zhao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Laboratory of Cultivation and Breeding of Medicinal Plants, National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Shihai Yang
- Laboratory of Cultivation and Breeding of Medicinal Plants, National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China.
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
13
|
Hua Z, Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, Li W, Li W, Lu C, Liu Y. Contamination of Aflatoxins Induces Severe Hepatotoxicity Through Multiple Mechanisms. Front Pharmacol 2021; 11:605823. [PMID: 33505311 PMCID: PMC7830880 DOI: 10.3389/fphar.2020.605823] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Aflatoxins (AFs) are commonly contaminating mycotoxins in foods and medicinal materials. Since they were first discovered to cause “turkey X” disease in the United Kingdom in the early 1960s, the extreme toxicity of AFs in the human liver received serious attention. The liver is the major target organ where AFs are metabolized and converted into extremely toxic forms to engender hepatotoxicity. AFs influence mitochondrial respiratory function and destroy normal mitochondrial structure. AFs initiate damage to mitochondria and subsequent oxidative stress. AFs block cellular survival pathways, such as autophagy that eliminates impaired cellular structures and the antioxidant system that copes with oxidative stress, which may underlie their high toxicities. AFs induce cell death via intrinsic and extrinsic apoptosis pathways and influence the cell cycle and growth via microribonucleic acids (miRNAs). Furthermore, AFs induce the hepatic local inflammatory microenvironment to exacerbate hepatotoxicity via upregulation of NF-κB signaling pathway and inflammasome assembly in the presence of Kupffer cells (liver innate immunocytes). This review addresses the mechanisms of AFs-induced hepatotoxicity from various aspects and provides background knowledge to better understand AFs-related hepatoxic diseases.
Collapse
Affiliation(s)
- Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Weifeng Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|