1
|
Chowdhury S, Kesling M, Collins M, Lopez V, Xue Y, Oliveira G, Friedl V, Bergamaschi A, Haan D, Volkmuth W, Levy S. Analytical Validation of an Early Detection Pancreatic Cancer Test Using 5-Hydroxymethylation Signatures. J Mol Diagn 2024; 26:888-896. [PMID: 39230538 DOI: 10.1016/j.jmoldx.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/13/2024] [Accepted: 06/21/2024] [Indexed: 09/05/2024] Open
Abstract
Early detection of pancreatic cancer has been shown to improve patient survival rates. However, effective early detection tools to detect pancreatic cancer do not currently exist. The Avantect Pancreatic Cancer Test, leveraging the 5-hydroxymethylation [5-hydroxymethylcytosine (5hmC)] signatures in cell-free DNA, was developed and analytically validated to address this unmet need. We report a comprehensive analytical validation study encompassing precision, sample stability, limit of detection, interfering substance studies, and a comparison with an alternative method. The assay performance on an independent case-control patient cohort was previously reported with a sensitivity for early-stage (stage I/II) pancreatic cancer of 68.3% (95% CI, 51.9%-81.9%) and an overall specificity of 96.9% (95% CI, 96.1%-97.7%). Precision studies showed a cancer classification of 100% concordance in biological replicates. The sample stability studies revealed stable assay performance for up to 7 days after blood collection. The limit of detection studies revealed equal results between early- and late-stage cancer samples, emphasizing strong early-stage performance characteristics. Comparisons of concordance of the Avantect assay with the enzymatic methyl sequencing (EM-Seq) method, which measures both methylation (5-methylcytosine) and 5hmC, were >95% for all samples tested. The Avantect Pancreatic Cancer Test showed strong analytical validation in multiple validation studies required for laboratory-developed test accreditation. The comparison of 5hmC versus EM-Seq further validated the 5hmC approach as a robust and reproducible assay.
Collapse
Affiliation(s)
| | | | | | | | - Yuan Xue
- ClearNote Health, San Mateo, California
| | | | | | | | | | | | | |
Collapse
|
2
|
Koukou Z, Panteris E, Manolakos E, Papadopoulos A, Papoulidis I, Relakis K, Sifakis S. Cell‑free fetal DNA at 11‑13 weeks of gestation is not altered in complicated pregnancies. Biomed Rep 2024; 20:69. [PMID: 38495346 PMCID: PMC10941718 DOI: 10.3892/br.2024.1757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/13/2023] [Indexed: 03/19/2024] Open
Abstract
Non-invasive maternal cell-free fetal DNA (cffDNA) is a promising biomarker for screening common genetic syndromes. Alterations in the expression levels of cffDNA in the maternal circulation have been demonstrated in abnormal pregnancies. However, the results are conflicting. The present study aimed to investigate whether cffDNA levels are associated with pregnancy complications. The study group comprised pregnant women who presented with pregnancy complications, such as preterm birth, gestational hypertension, intrauterine growth retardation, gestational diabetes, polyhydramnios, oligohydramnios, vaginal bleeding and placental abruption. The control group comprised women who had a normal pregnancy course. Blood samples were obtained from 500 pregnant women between 11-13 weeks of gestation. cffDNA was amplified, sequenced and analyzed using the next-generation aneuploidy test of a Panorama-Natera kit. Nuchal translucency (NT) thickness as well as pregnancy associated plasma protein-A (PAPP-A) and β-human chorionic gonadotropin (β-hCG) levels were also assessed. Statistical analysis was performed in 494 out of the 500 samples collected with SPSS v.26 using non-parametric methods. The parameters were normalized by the multiples of median (MoM) method. The expression levels of PAPP-A, β-hCG, and the NT mean MoM values were significantly different between the study and control groups (P=0.005, P<0.001 and P=0.007, respectively). However, the expression levels of cffDNA and the mean MoM values were not significantly different between these two groups (P=0.687). The findings of the present study support the conclusion that cffDNA expression is not altered in a series of pregnancy complications. The prognostic value of cffDNA in predicting adverse pregnancy outcomes requires further investigation.
Collapse
Affiliation(s)
- Zoi Koukou
- School of Health Sciences, International Hellenic University (IHU), 57400 Thessaloniki, Greece
- Department of Obstetrics and Gynecology, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - Eleftherios Panteris
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Emmanouel Manolakos
- Access to Genome P.C., Clinical Laboratory Genetics, 11528 Thessaloniki, Greece
| | | | - Ioannis Papoulidis
- Access to Genome P.C., Clinical Laboratory Genetics, 11528 Thessaloniki, Greece
| | - Konstantinos Relakis
- Department of Obstetrics and Gynecology, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - Stavros Sifakis
- Department of Obstetrics and Gynecology, University Hospital of Heraklion, 71500 Heraklion, Greece
- Mitera Maternity Hospital, 71202 Heraklion, Greece
| |
Collapse
|
3
|
Natsumeda M, Shibuma S, Takahashi H, On J, Mouri Y, Tomikawa K, Fujiwara H, Watanabe J, Tsukamoto Y, Okada M, Takeda R, Shimizu H, Takizawa J, Kakita A, Oishi M. Recent advances in liquid biopsy of central nervous system lymphomas: case presentations and review of the literature. Brain Tumor Pathol 2024; 41:85-91. [PMID: 38597999 DOI: 10.1007/s10014-024-00483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Surgical biopsy is the gold standard for diagnosing central nervous system (CNS) lymphomas. However, reliable liquid biopsy methods for diagnosing CNS lymphomas have quickly developed and have been implicated in clinical decision-making. In the current report, we introduce two patients for whom liquid biopsy was essential for diagnosing CNS lymphomas and discuss the rapidly growing applications of this technology.
Collapse
Affiliation(s)
- Manabu Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan.
- Advanced Treatment of Neurological Diseases Branch, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Satoshi Shibuma
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Haruhiko Takahashi
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Jotaro On
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yoshihiro Mouri
- Department of Neurosurgery, Niigata Prefectural Central Hospital, Joetsu, Japan
| | - Kaoru Tomikawa
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hidemoto Fujiwara
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Jun Watanabe
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yoshihiro Tsukamoto
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masayasu Okada
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Rui Takeda
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Jun Takizawa
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Makoto Oishi
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
4
|
Kwon HJ, Yun S, Joo J, Park D, Do WJ, Lee S, Lee MS. Improving the accuracy of noninvasive prenatal testing through size-selection between fetal and maternal cfDNA. Prenat Diagn 2023; 43:1581-1592. [PMID: 37975672 DOI: 10.1002/pd.6464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/30/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVES In general, fetal cfDNA is shorter than maternal cfDNA, and accuracy of noninvasive prenatal testing (NIPT) results can be improved by selecting shorter cfDNA fragments to enrich fetal-derived cfDNA. This study investigated potential improvements in the accuracy of NIPT by performing classification and analysis based on differences in cfDNA size. METHODS We performed paired-end sequencing to identify size ranges of fetal and maternal cfDNA from 62,374 pregnant women. We then developed a size-selection method to isolate and analyze both fetal and maternal cfDNA, defining fetal-derived cfDNA as less than 150 bp and maternal-derived cfDNA as greater than 180 bp. RESULTS By implementing size-selection method, the accuracy of NIPT was improved, resulting in an increase in the overall positive predictive value for all aneuploidies from 89.57% to 97.1%. This was achieved by enriching both fetal and maternal-derived cfDNA, which increased fetal DNA fraction while the number of false positives for all aneuploidies was reduced by more than 70%. CONCLUSIONS We identified the differences in read length between fetal and maternal-derived cfDNA, and selectively enriched both shorter and longer cfDNA fragments for subsequent analysis. Our approach can increase the detection accuracy of NIPT for detecting fetal aneuploidies and reduce the number of false positives caused by maternal chromosomal abnormalities.
Collapse
Affiliation(s)
- Hyuk-Jung Kwon
- R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of Korea
| | - Seonyoung Yun
- R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of Korea
| | - Joungsu Joo
- R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of Korea
| | - Dabin Park
- R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of Korea
| | - Woo-Jung Do
- R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of Korea
| | - Sunghoon Lee
- R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of Korea
| | - Min-Seob Lee
- R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of Korea
- Diagnomics, San Diego, California, USA
| |
Collapse
|
5
|
Telekes A, Horváth A. The Role of Cell-Free DNA in Cancer Treatment Decision Making. Cancers (Basel) 2022; 14:6115. [PMID: 36551600 PMCID: PMC9776613 DOI: 10.3390/cancers14246115] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to evaluate the present status of the use of cell-free DNA and its fraction of circulating tumor DNA (ctDNA) because this year July 2022, an ESMO guideline was published regarding the application of ctDNA in patient care. This review is for clinical oncologists to explain the concept, the terms used, the pros and cons of ctDNA; thus, the technical aspects of the different platforms are not reviewed in detail, but we try to help in navigating the current knowledge in liquid biopsy. Since the validated and adequately sensitive ctDNA assays have utility in identifying actionable mutations to direct targeted therapy, ctDNA may be used for this soon in routine clinical practice and in other different areas as well. The cfDNA fragments can be obtained by liquid biopsy and can be used for diagnosis, prognosis, and selecting among treatment options in cancer patients. A great proportion of cfDNA comes from normal cells of the body or from food uptake. Only a small part (<1%) of it is related to tumors, originating from primary tumors, metastatic sites, or circulating tumor cells (CTCs). Soon the data obtained from ctDNA may routinely be used for finding minimal residual disease, detecting relapse, and determining the sites of metastases. It might also be used for deciding appropriate therapy, and/or emerging resistance to the therapy and the data analysis of ctDNA may be combined with imaging or other markers. However, to achieve this goal, further clinical validations are inevitable. As a result, clinicians should be aware of the limitations of the assays. Of course, several open questions are still under research and because of it cfDNA and ctDNA testing are not part of routine care yet.
Collapse
Affiliation(s)
- András Telekes
- Omnimed-Etosz, Ltd., 81 Széher Rd., 1021 Budapest, Hungary
- Semmelweis University, 26. Üllői Rd., 1085 Budapest, Hungary
| | - Anna Horváth
- Department of Internal Medicine and Haematology, Semmelweis University, 46. Szentkirályi Rd., 1088 Budapest, Hungary
| |
Collapse
|
6
|
Sánchez-Herrero E, Serna-Blasco R, Robado de Lope L, González-Rumayor V, Romero A, Provencio M. Circulating Tumor DNA as a Cancer Biomarker: An Overview of Biological Features and Factors That may Impact on ctDNA Analysis. Front Oncol 2022; 12:943253. [PMID: 35936733 PMCID: PMC9350013 DOI: 10.3389/fonc.2022.943253] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer cells release nucleic acids, freely or associated with other structures such as vesicles into body fluids, including blood. Among these nucleic acids, circulating tumor DNA (ctDNA) has emerged as a minimally invasive biomarker for tumor molecular profiling. However, certain biological characteristics of ctDNA are still unknown. Here, we provide an overview of the current knowledge about ctDNA biological features, including size and structure as well as the mechanisms of ctDNA shedding and clearance, and the physio-pathological factors that determine ctDNA levels. A better understanding of ctDNA biology is essential for the development of new methods that enable the analysis of ctDNA.
Collapse
Affiliation(s)
- Estela Sánchez-Herrero
- Liquid Biopsy Laboratory. Biomedical Sciences Research Institute Puerta de Hierro-Majadahonda, Majadahonda, Spain
- +D Department, Atrys Health, Barcelona, Spain
| | - Roberto Serna-Blasco
- Liquid Biopsy Laboratory. Biomedical Sciences Research Institute Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - Lucia Robado de Lope
- Liquid Biopsy Laboratory. Biomedical Sciences Research Institute Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | | | - Atocha Romero
- Liquid Biopsy Laboratory. Biomedical Sciences Research Institute Puerta de Hierro-Majadahonda, Majadahonda, Spain
- Medical Oncology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
- *Correspondence: Atocha Romero, ; orcid.org/0000-0002-1634-7397
| | - Mariano Provencio
- Liquid Biopsy Laboratory. Biomedical Sciences Research Institute Puerta de Hierro-Majadahonda, Majadahonda, Spain
- Medical Oncology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| |
Collapse
|
7
|
Liu Y, Cheng L, Wang G, Lv J, He Y, Shao PL, Hu R, Xiao H, Tang J, Niu D, Yang J, Tang Z, Xu Z, Liu Y, Li Y, Song K, Wu B, Zhang B. A nano-magnetic size selective cfDNA extraction platform for liquid biopsy with enhanced precision. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1199:123236. [DOI: 10.1016/j.jchromb.2022.123236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
8
|
Fibke C, Giroux S, Caron A, Starks E, Parker JDK, Swanson L, Jouan L, Langlois S, Rouleau G, Rousseau F, Karsan A. Effect of preexamination conditions in a centralized-testing model of non-invasive prenatal screening. Clin Chem Lab Med 2021; 60:183-190. [PMID: 34761647 DOI: 10.1515/cclm-2021-0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/29/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Non-invasive prenatal testing requires the presence of fetal DNA in maternal plasma. Understanding how preexamination conditions affect the integrity of cell-free DNA (cfDNA) and fetal fraction (FF) are a prerequisite for test implementation. Therefore, we examined the adjusted effect that EDTA and Streck tubes have on the cfDNA quantity and FF. METHODS A total of 3,568 maternal blood samples across Canada were collected in either EDTA, or Streck tubes, and processing metrics, maternal body mass index (BMI), gestational age and fetal karyotype and sex were recorded. Plasma samples were sequenced using two different sequencing platforms in separate laboratories. Sequencing data were processed with SeqFF to estimate FF. Linear regression and multivariate imputation by chained equations were used to estimate the adjusted effect of tube type on cfDNA and FF. RESULTS We found a positive association between cfDNA quantity and blood shipment time in EDTA tubes, which is significantly reduced with the use of Streck tubes. Furthermore, we show the storage of plasma at -80 °C is associated with a 4.4% annual relative decrease in cfDNA levels. FF was not associated with collection tube type when controlling for confounding variables. However, FF was positively associated with gestational age and trisomy 21, while negatively associated with BMI, male fetus, trisomy 18, Turners syndrome and triploidy. CONCLUSIONS Preexamination, maternal and fetal variables are associated with cfDNA quantity and FF. The consideration of these variables in future studies may help to reduce the number of pregnant women with inconclusive tests as a result of low FF.
Collapse
Affiliation(s)
- Chad Fibke
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Sylvie Giroux
- CRCHU de Québec - Université Laval, Québec, QC, Canada
| | - André Caron
- CRCHU de Québec - Université Laval, Québec, QC, Canada
| | - Elizabeth Starks
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Jeremy D K Parker
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Lucas Swanson
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Loubna Jouan
- Molecular Diagnostic Laboratory and Division of Medical Genetics, CHU Sainte-Justine, Montreal, QC, Canada
| | - Sylvie Langlois
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Guy Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | | | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Leers MPG. Circulating tumor DNA and their added value in molecular oncology. Clin Chem Lab Med 2021; 58:152-161. [PMID: 31490771 DOI: 10.1515/cclm-2019-0436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022]
Abstract
New methods for molecular diagnosis are now available in oncology thanks to the discovery of circulating tumor DNA molecules in the plasma of cancer patients. By utilizing blood samples, rather than traditional tissue sampling, clinical practice is on the verge of new discoveries from the analysis of cell-free DNA (cfDNA). The method, known as a "liquid biopsy", consists of analyzing therapeutic targets and drug-resistant conferring gene mutations in circulating tumor cells (CTC) and cell-free circulating tumor DNA (ctDNA). These are subsequently released from primary tumors and metastatic deposits into the peripheral blood. The advantages of the method can be observed in the diagnosis, but also in the choice of treatment for solid tumors (e.g. non-small cell lung carcinomas [NSCLC]). In order to interpret the results, an understanding of the biological characteristics of circulating tumor DNA is required. Currently there is no consensus as to how a liquid biopsy should be conducted. In this review, we will assess the pros of ctDNA as analytes in peripheral blood samples and its impact on clinical applications in solid tumors and hematological malignancies. We will also address practical issues facing clinical implementation, such as pre-analytical factors. Moreover, we will emphasize the open questions that remain when considering the current state of personalized medicine and targeted therapy.
Collapse
Affiliation(s)
- Math P G Leers
- Department of Clinical Chemistry and Hematology, Zuyderland Medical Center Sittard-Geleen, Dr. H. Van der Hoffplein 1, P.O. Box 5500, 6130 MB Sittard, The Netherlands
| |
Collapse
|
10
|
Koessler T, Paradiso V, Piscuoglio S, Nienhold R, Ho L, Christinat Y, Terracciano LM, Cathomas G, Wicki A, McKee TA, Nouspikel T. Reliability of liquid biopsy analysis: an inter-laboratory comparison of circulating tumor DNA extraction and sequencing with different platforms. J Transl Med 2020; 100:1475-1484. [PMID: 32616816 DOI: 10.1038/s41374-020-0459-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 01/11/2023] Open
Abstract
Liquid biopsy, the analysis of circulating tumor DNA (ctDNA), is a promising tool in oncology, especially in personalized medicine. Although its main applications currently focus on selection and adjustment of therapy, ctDNA may also be used to monitor residual disease, establish prognosis, detect relapses, and possibly screen at-risk individuals. CtDNA represents a small and variable proportion of circulating cell-free DNA (ccfDNA) which is itself present at a low concentration in normal individuals and so analyzing ctDNA is technically challenging. Various commercial systems have recently appeared on the market, but it remains difficult for practitioners to compare their performance and to determine whether they yield comparable results. As a first step toward establishing national guidelines for ctDNA analyses, four laboratories in Switzerland joined a comparative exercise to assess ccfDNA extraction and ctDNA analysis by sequencing. Extraction was performed using six distinct methods and yielded ccfDNA of equally high quality, suitable for sequencing. Sequencing of synthetic samples containing predefined amounts of eight mutations was performed on three different systems, with similar results. In all four laboratories, mutations were easily identified down to 1% allele frequency, whereas detection at 0.1% proved challenging. Linearity was excellent in all cases and while molecular yield was superior with one system this did not impact on sensitivity. This study also led to several additional conclusions: First, national guidelines should concentrate on principles of good laboratory practice rather than recommend a particular system. Second, it is essential that laboratories thoroughly validate every aspect of extraction and sequencing, in particular with respect to initial amount of DNA and average sequencing depth. Finally, as software proved critical for mutation detection, laboratories should validate the performance of variant callers and underlying algorithms with respect to various types of mutations.
Collapse
Affiliation(s)
- Thibaud Koessler
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Viola Paradiso
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Salvatore Piscuoglio
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Visceral surgery research laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ronny Nienhold
- Institute of Pathology, Cantonal Hospital Basel-Land, Liestal, Switzerland
| | - Liza Ho
- Clinical Pathology Service, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Yann Christinat
- Clinical Pathology Service, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Luigi M Terracciano
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Gieri Cathomas
- Visceral surgery research laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Andreas Wicki
- Department of Oncology & Hematology, Medical University Clinic, Cantonal Hospital Basel-Land, Liestal, and University of Basel, Basel, Switzerland
| | - Thomas A McKee
- Clinical Pathology Service, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Thierry Nouspikel
- Medical Genetics, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
11
|
Ahmadi MH, Amirizadeh N, Rabiee M, Rahimi-Sharbaf F, Pourfathollah AA. Noninvasive Fetal Sex Determination by Real-Time PCR and TaqMan Probes. Rep Biochem Mol Biol 2020; 9:315-323. [PMID: 33649725 DOI: 10.29252/rbmb.9.3.315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Noninvasive fetal sex determination by analyzing Y chromosome-specific sequences is very useful in the management of cases related to sex-linked genetic diseases. The aim of this study was to establish a non-invasive fetal sex determination test using Real-Time PCR and specific probes. Methods The study was a prospective observational cohort study conducted from August 2018 to September 2019. Venous blood samples were collected from 25 Iranian pregnant women at weeks 7 to 25 of gestation. Cell-free DNA (cfDNA) was isolated from the plasma of samples and fetal sex was determined by SRY gene analysis using the Real-Time PCR technique. In the absence of SRY detection, the presence of fetal DNA was investigated using cfDNA treated with BstUI enzyme and PCR for the epigenetic marker RASSF1A. Results Of the total samples analyzed, 48% were male and 52% female. The RASSF1A assay performed on SRY negative cases also confirmed the presence of cell-free fetal DNA. Genotype results were in full agreement with neonate gender, and the accuracy of noninvasive fetal sex determination was 100%. Conclusion Fetal sex determination using the strategy applied in this study is noninvasive and highly accurate and can be exploited in the management of sex-linked genetic diseases.
Collapse
Affiliation(s)
- Mohammad Hossein Ahmadi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Naser Amirizadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Maryam Rabiee
- Department of Obstetrics and Gynecology, Shahed University, Tehran, Iran
| | - Fatemeh Rahimi-Sharbaf
- Department of Perinatology, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
van der Leest P, Boonstra PA, ter Elst A, van Kempen LC, Tibbesma M, Koopmans J, Miedema A, Tamminga M, Groen HJM, Reyners AKL, Schuuring E. Comparison of Circulating Cell-Free DNA Extraction Methods for Downstream Analysis in Cancer Patients. Cancers (Basel) 2020; 12:E1222. [PMID: 32414097 PMCID: PMC7281769 DOI: 10.3390/cancers12051222] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022] Open
Abstract
Circulating cell-free DNA (ccfDNA) may contain DNA originating from the tumor in plasma of cancer patients (ctDNA) and enables noninvasive cancer diagnosis, treatment predictive testing, and response monitoring. A recent multicenter evaluation of workflows by the CANCER-ID consortium using artificial spiked-in plasma showed significant differences and consequently the importance of carefully selecting ccfDNA extraction methods. Here, the quantity and integrity of extracted ccfDNA from the plasma of cancer patients were assessed. Twenty-one cancer patient-derived cell-free plasma samples were selected to compare the Qiagen CNA, Maxwell RSC ccfDNA plasma, and Zymo manual quick ccfDNA kit. High-volume citrate plasma samples collected by diagnostic leukapheresis from six cancer patients were used to compare the Qiagen CNA (2 mL) and QIAamp MinElute ccfDNA kit (8 mL). This study revealed similar integrity and similar levels of amplified short-sized fragments and tumor-specific mutants comparing the CNA and RSC kits. However, the CNA kit consistently showed the highest yield of ccfDNA and short-sized fragments, while the RSC and ME kits showed higher variant allelic frequencies (VAFs). Our study pinpoints the importance of standardizing preanalytical conditions as well as consensus on defining the input of ccfDNA to accurately detect ctDNA and be able to compare results in a clinical routine practice, within and between clinical studies.
Collapse
Affiliation(s)
- Paul van der Leest
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Pieter A. Boonstra
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.A.B.); (A.K.L.R.)
| | - Arja ter Elst
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Léon C. van Kempen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Marco Tibbesma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Jill Koopmans
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Anneke Miedema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| | - Menno Tamminga
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.T.); (H.J.M.G.)
| | - Harry J. M. Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.T.); (H.J.M.G.)
| | - Anna K. L. Reyners
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.A.B.); (A.K.L.R.)
| | - Ed Schuuring
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (P.v.d.L.); (A.t.E.); (L.C.v.K.); (M.T.); (J.K.); (A.M.)
| |
Collapse
|
13
|
Ungerer V, Bronkhorst AJ, Holdenrieder S. Preanalytical variables that affect the outcome of cell-free DNA measurements. Crit Rev Clin Lab Sci 2020; 57:484-507. [DOI: 10.1080/10408363.2020.1750558] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Abel J. Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| |
Collapse
|
14
|
Clausen FB, Barrett AN, Advani HV, Choolani M, Dziegiel MH. Impact of long-term storage of plasma and cell-free DNA on measured DNA quantity and fetal fraction. Vox Sang 2020; 115:586-594. [PMID: 32342989 DOI: 10.1111/vox.12923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Optimal sample storage conditions are essential for non-invasive prenatal testing of cell-free fetal and total DNA. We investigated the effect of long-term storage of plasma samples and extracted cfDNA using qPCR. MATERIALS AND METHODS Fetal and total cfDNA yield and fetal fraction were calculated before and after storage of plasma for 0-6 years at -25°C. Dilution experiments were performed to investigate PCR inhibition. Extraction with or without proteinase K was used to examine protein dissociation. Storage of extracted cfDNA was investigated by testing aliquots immediately, and after 18 months and 3 years of storage at -25°C. RESULTS We observed a marked increase in the levels of amplifiable fetal and total DNA in plasma stored for 2-3 years, and fetal fraction was slightly decreased after 3 years of storage. cfDNA detection was independent of proteinase K during DNA extraction in plasma samples stored >2 years, indicating a loss of proteins from DNA over time, which was likely to account for the observed increase in DNA yields. Measured fetal and total DNA quantities, as well as fetal fraction, increased in stored, extracted cfDNA. CONCLUSION Fetal and total cell-free DNA is readily detectable in plasma after long-term storage at -25°C. However, substantial variation in measured DNA quantities and fetal fraction means caution may be required when using stored plasma and extracted cfDNA for test development or validation purposes.
Collapse
Affiliation(s)
- Frederik Banch Clausen
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Angela N Barrett
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Henna V Advani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Morten Hanefeld Dziegiel
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Abstract
Abstract
It is well documented that in the chain from sample to the result in a clinical laboratory, the pre-analytical phase is the weakest and most vulnerable link. This also holds for the use and analysis of extracellular nucleic acids. In this short review, we will summarize and critically evaluate the most important steps of the pre-analytical phase, i.e. the choice of the best control population for the patients to be analyzed, the actual blood draw, the choice of tubes for blood drawing, the impact of delayed processing of blood samples, the best method for getting rid of cells and debris, the choice of matrix, i.e. plasma vs. serum vs. other body fluids, and the impact of long-term storage of cell-free liquids on the outcome. Even if the analysis of cell-free nucleic acids has already become a routine application in the area of non-invasive prenatal screening (NIPS) and in the care of cancer patients (search for resistance mutations in the EGFR gene), there are still many unresolved issues of the pre-analytical phase which need to be urgently tackled.
Collapse
Affiliation(s)
- Michael Fleischhacker
- DRK Kliniken Berlin Mitte , Klinik für Innere Medizin – Pneumologie und Schlafmedizin , Drontheimer Str. 39 – 40 , 13359 Berlin , Germany
| | - Bernd Schmidt
- DRK Kliniken Berlin Mitte , Klinik für Innere Medizin – Pneumologie und Schlafmedizin , Berlin , Germany
| |
Collapse
|
16
|
Greytak SR, Engel KB, Parpart-Li S, Murtaza M, Bronkhorst AJ, Pertile MD, Moore HM. Harmonizing Cell-Free DNA Collection and Processing Practices through Evidence-Based Guidance. Clin Cancer Res 2020; 26:3104-3109. [PMID: 32122922 DOI: 10.1158/1078-0432.ccr-19-3015] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/25/2019] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
Circulating cell-free DNA (cfDNA) is rapidly transitioning from discovery research to an important tool in clinical decision making. However, the lack of harmonization of preanalytic practices across institutions may compromise the reproducibility of cfDNA-derived data and hamper advancements in cfDNA testing in the clinic. Differences in cellular genomic contamination, cfDNA yield, integrity, and fragment length have been attributed to different collection tube types and anticoagulants, processing delays and temperatures, tube agitation, centrifugation protocols and speeds, plasma storage duration and temperature, the number of freeze-thaw events, and cfDNA extraction and quantification methods, all of which can also ultimately impact subsequent downstream analysis. Thus, there is a pressing need for widely applicable standards tailored for cfDNA analysis that include all preanalytic steps from blood draw to analysis. The NCI's Biorepositories and Biospecimen Research Branch has developed cfDNA-specific guidelines that are based upon published evidence and have been vetted by a panel of internationally recognized experts in the field. The guidelines include optimal procedures as well as acceptable alternatives to facilitate the generation of evidence-based protocols by individual laboratories and institutions. The aim of the document, which is entitled "Biospecimen Evidence-based Best Practices for Cell-free DNA: Biospecimen Collection and Processing," is to improve the accuracy of cfDNA analysis in both basic research and the clinic by improving and harmonizing practices across institutions.
Collapse
Affiliation(s)
| | | | | | - Muhammed Murtaza
- Center for Noninvasive Diagnostics, Translational Genomics Research Institute, Phoenix, Arizona
| | | | - Mark D Pertile
- Victorian Clinical Genetics Services (VCGS), Parkville, Australia
| | - Helen M Moore
- Biorepositories and Biospecimen Research Branch, NCI, Bethesda, Maryland.
| |
Collapse
|
17
|
Watanabe J, Natsumeda M, Okada M, Kobayashi D, Kanemaru Y, Tsukamoto Y, Oishi M, Kakita A, Fujii Y. High Detection Rate of MYD88 Mutations in Cerebrospinal Fluid From Patients With CNS Lymphomas. JCO Precis Oncol 2019; 3:1-13. [DOI: 10.1200/po.18.00308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Biopsy is the gold standard for the diagnosis of primary CNS lymphoma (PCNSL). However, surgical biopsy has problems of morbidity related to hemorrhagic complications and false-negative findings, so safer and more reliable diagnostic methods are required. The aim of this study is to detect the MYD88 mutation, an important driver mutation, in the cerebrospinal fluid (CSF) of patients with CNS lymphoma. PATIENTS AND METHODS Twenty-six patients with CNS lymphoma (20 primary CNS lymphoma and six CNS relapse from systemic lymphoma) were studied. We extracted cell-free DNA (cfDNA) from CSF by lumbar puncture. cfDNA was extracted from 1 mL of CSF, and Sanger sequencing and droplet digital polymerase chain reaction (ddPCR) were performed. Furthermore, we performed DNA sequencing of MYD88 in 21 cases with available surgically obtained formalin-fixed paraffin-embedded (FFPE) tissue and compared the results. RESULTS The median cfDNA amount extracted from 1 mL CSF was 219 ng/mL (25th to 75th percentile, 129 to 333 ng/mL). MYD88 mutations were detected from CSF in 76.9% (20 of 26 cases), and L265P in exon 5 was the most frequent mutation in 19 out of 20 (95.0%) cases. S219C in exon 3 was detected in one case. In four patients, MYD88 mutation was confirmed by ddPCR but not by Sanger sequencing. In all 21 cases with sufficient FFPE tissue for DNA analysis, the detection of MYD88 mutation from cfDNA was consistent with those of tumor-derived DNA from FFPE tissue. CONCLUSION This pilot study provided evidence that the somatic driver mutation MYD88 can be reliably detected by combination of Sanger sequencing and ddPCR in the cfDNA taken from 1 mL of CSF in patients with CNS lymphomas.
Collapse
|
18
|
Goggs R. Effect of sample type on plasma concentrations of cell-free DNA and nucleosomes in dogs. Vet Rec Open 2019; 6:e000357. [PMID: 31673376 PMCID: PMC6802997 DOI: 10.1136/vetreco-2019-000357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/20/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022] Open
Abstract
Cell-free DNA (cfDNA) and nucleosomes are two biomarkers of cell death and neutrophil extracellular trap formation that are increased in dogs with sepsis, immune-mediated haemolytic anaemia, cancer and following trauma and have diagnostic and prognostic values. cfDNA and nucleosomes are typically measured in plasma samples using DNA-specific fluorophores and ELISA assays, respectively, but their concentrations may be affected by pre-analytical variables such as sample type. The present study aimed to investigate the influence of sample type on the plasma cfDNA and nucleosome concentrations of a heterogeneous group of dogs presenting to an emergency room. Triplicate samples were collected into K2-ethylenediamine tetraacetic acid, 3.2% citrate and a specialised DNA stabilisation tube (Streck BCT), processed rapidly and frozen for batch analysis. Biomarker concentrations were compared between sample types by calculation of Spearman’s correlation coefficients, and with Deming regression, Bland-Altman plots and the Friedman test. Overall, biomarker concentrations were highly correlated between the three sample types. The most concordant results were obtained using citrate samples and the DNA stabilisation tube. Matched cfDNA concentrations between the different sample types were significantly different but there was no significant difference between the nucleosome concentrations in any of the sample types. The present study suggests that cfDNA and nucleosomes can be successfully measured in various sample types, but distinct sample types do not produce interchangeable results. This argues for use of a consistent sample type within studies and suggests standardisation may be useful for the field.
Collapse
Affiliation(s)
- Robert Goggs
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| |
Collapse
|
19
|
Sesé M, Somoza R, Maestu I, Ureste MM, Sanchez A, Cordoba JF, Sansano I, Venturas G, Ramón Y Cajal S, Hernández-Losa J. Validation of Cell-Free DNA Collection Tubes for Determination of EGFR Mutation Status in Liquid Biopsy from NSCLC Patients. Oncol Ther 2019; 7:131-139. [PMID: 32699985 PMCID: PMC7360002 DOI: 10.1007/s40487-019-00099-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Precision medicine has revolutionized the understanding and treatment of cancer by identifying subsets of patients who are amenable to specific treatments according to their molecular characteristics, as exemplified by epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC). Although tissue biopsy is the gold standard for determining molecular alterations in tumors, its limitations have prompted the development of new techniques for studying tumor biomarkers in liquid biopsies, such as mutation analysis in cell-free DNA (cfDNA). cfDNA analysis can accurately determine tumor progression and prognosis and more effectively identify appropriate targeted therapies. However, cfDNA is vulnerable, particularly during plasma sample shipping. OBJECTIVE We compared the cell- and DNA-stabilizing properties of cell-free DNA blood collection tubes (BCTs) with those of the traditional shipping method (frozen plasma) for EGFR mutation testing using the cobas® EGFR Mutation Test v2 in a prospective cohort of 49 patients from three different Spanish hospitals. METHODS In total, 98 NSCLC samples, two from each patient, were studied; five of the 49 cases were considered invalid by cobas® with one of the two shipping methods analyzed. After excluding these samples, we analyzed 88 samples from 44 patients. Considering the current methodology (frozen plasma) for sending samples as the gold standard, we evaluated the sensitivity and specificity of cfDNA BCT shipment. RESULTS The global agreement between the two methods was 95.4%, with 100% sensitivity and 94.6% specificity for the cfDNA BCTs. cfDNA BCTs had a positive predictive value of 81.8% and negative predictive value of 100%. CONCLUSION cfDNA BCTs have the same sensitivity for EGFR mutation analysis in liquid biopsy as the current methodology and very high specificity. They also have some additional advantages in terms of collection and further shipment. Therefore, cfDNA BCTs can be perfectly incorporated into the routine practice for EGFR mutation determination. FUNDING Roche Farma S.A., Spain.
Collapse
Affiliation(s)
- Marta Sesé
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Rosa Somoza
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Inmaculada Maestu
- Department of Medical Oncology, Hospital Universitario Doctor Peset, Valencia, Spain
| | - Maria Martín Ureste
- Department of Medical Oncology, Hospital Universitario Doctor Peset, Valencia, Spain
| | - Alfredo Sanchez
- Department of Medical Oncology, Consorci Hospitalari Provincial de Castelló, Castellón, Spain
| | - Juan Felipe Cordoba
- Department of Medical Oncology, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Irene Sansano
- Department of Pathology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Griselda Venturas
- Department of Pathology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Santiago Ramón Y Cajal
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Pathology, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Javier Hernández-Losa
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain. .,Department of Pathology, Hospital Universitari Vall d'Hebron, Barcelona, Spain. .,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain.
| |
Collapse
|
20
|
Abstract
The study of cell-free DNA (cfDNA) is often challenging due to genomic DNA contamination, low concentration, and high fragmentation. Therefore, it is important to optimize pre-analytical and analytical procedures in order to maximize the performance of cfDNA-based analyses.In this chapter, we report the most common methods for the correct collection, centrifugation, storage, and DNA isolation from cell-free biological sources such as plasma, urines, cerebrospinal fluid, and pleural effusion fluid.
Collapse
Affiliation(s)
- Filippo Martignano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.
| |
Collapse
|
21
|
Koessler T, Addeo A, Nouspikel T. Implementing circulating tumor DNA analysis in a clinical laboratory: A user manual. Adv Clin Chem 2019; 89:131-188. [PMID: 30797468 DOI: 10.1016/bs.acc.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liquid biopsy, the analysis of cell-free circulating tumor DNA (ctDNA), is becoming one of the most promising tools in oncology. It has already shown its usefulness in selecting and modulating therapy via remote analysis of the tumor genome and holds important promises in cancer therapy and management, such as assessing the success of key therapeutic steps, monitoring residual disease, early detection of relapses, and establishing prognosis. Yet, ctDNA analysis is technically challenging and its implementation in the laboratory raises multiple strategic and practical issues. As for oncology clinics, integration of this novel test in well-established therapeutic protocols can also pose numerous questions. The current review is intended as a field guide for (1) diagnostic laboratories wishing to implement, validate and possibly accredit ctDNA testing and (2) clinical oncologists interested in integrating the various applications of liquid biopsies in their daily practice. We provide advice and practical recommendations based on our own experience with the technical validations of these methods and on a review of the current literature, with a focus toward gastro-intestinal, lung and breast cancers.
Collapse
Affiliation(s)
- Thibaud Koessler
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Alfredo Addeo
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Thierry Nouspikel
- Service of Medical Genetics, Diagnostics Department, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
22
|
Fernando MR, Jiang C, Krzyzanowski GD, Somer-Shely T, Ryan WL. A novel approach to stabilize fetal cell-free DNA fraction in maternal blood samples for extended period of time. PLoS One 2018; 13:e0208508. [PMID: 30521613 PMCID: PMC6283530 DOI: 10.1371/journal.pone.0208508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/19/2018] [Indexed: 02/04/2023] Open
Abstract
This study was undertaken to evaluate a novel method for stabilizing and preserving the original proportion of cell-free fetal DNA (cffDNA) in maternal blood for extended periods of time without using crosslinking agents, such as formaldehyde, which compromise DNA integrity and extraction efficiency. Blood was drawn from pregnant donors into K3EDTA and Blood Exo DNA ProTeck® (ProTeck) tubes. Blood drawn into both tubes were aliquoted and stored at three different temperatures. At indicated times sample aliquots were processed for cell-free DNA (cfDNA) extraction. Plasma cfDNA and cffDNA quantified by droplet digital PCR (ddPCR) assay which amplify RASSF1A gene promoter region. ProTeck reagent is formaldehyde free and inhibits blood cell metabolism in blood samples during storage. Cell-free DNA concentration increased over time in blood plasma stored in K3EDTA tubes at 4, 22 and 30°C. Blood stored in ProTeck tubes, cfDNA concentration was stable at 4, 22 and 30°C for 21, 28 and 7 days, respectively. In K3EDTA tubes cffDNA proportion decreases steadily over time whereas in ProTeck tubes cffDNA proportion remained stable. This novel technology stabilizes cffDNA proportion in maternal blood samples at 4, 22 and 30°C for 21, 28 and 7 days, respectively.
Collapse
Affiliation(s)
- M. Rohan Fernando
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha NE, United States of America
- Department of Research and Development, CFGenome Omaha NE, United States of America
- * E-mail:
| | - Chao Jiang
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha NE, United States of America
| | - Gary D. Krzyzanowski
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha NE, United States of America
- Department of Research and Development, CFGenome Omaha NE, United States of America
| | - Tifany Somer-Shely
- Methodist Physicians Clinic Women’s Center, Elkhorn, NE, United States of America
| | - Wayne L. Ryan
- Department of Research and Development, CFGenome Omaha NE, United States of America
| |
Collapse
|
23
|
Gyanchandani R, Kvam E, Heller R, Finehout E, Smith N, Kota K, Nelson JR, Griffin W, Puhalla S, Brufsky AM, Davidson NE, Lee AV. Whole genome amplification of cell-free DNA enables detection of circulating tumor DNA mutations from fingerstick capillary blood. Sci Rep 2018; 8:17313. [PMID: 30470782 PMCID: PMC6251935 DOI: 10.1038/s41598-018-35470-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/01/2018] [Indexed: 12/25/2022] Open
Abstract
The ability to measure mutations in plasma cell-free DNA (cfDNA) has the potential to revolutionize cancer surveillance and treatment by enabling longitudinal monitoring not possible with solid tumor biopsies. However, obtaining sufficient quantities of cfDNA remains a challenge for assay development and clinical translation; consequently, large volumes of venous blood are typically required. Here, we test proof-of-concept for using smaller volumes via fingerstick collection. Matched venous and fingerstick blood were obtained from seven patients with metastatic breast cancer. Fingerstick blood was separated at point-of-care using a novel paper-based concept to isolate plasma centrifuge-free. Patient cfDNA was then analyzed with or without a new method for whole genome amplification via rolling-circle amplification (WG-RCA). We identified somatic mutations by targeted sequencing and compared the concordance of mutation detection from venous and amplified capillary samples by droplet-digital PCR. Patient mutations were detected with 100% concordance after WG-RCA, although in some samples, allele frequencies showed greater variation likely due to differential amplification or primer inaccessibility. These pilot findings provide physiological evidence that circulating tumor DNA is accessible by fingerstick and sustains presence/absence of mutation detection after whole-genome amplification. Further refinement may enable simpler and less-invasive methods for longitudinal or theranostic surveillance of metastatic cancer.
Collapse
Affiliation(s)
- Rekha Gyanchandani
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, PA, 15213, USA.,Western Oncolytics, 265 William Pitt Way, Pittsburgh, PA, 15238, USA
| | - Erik Kvam
- GE Global Research, One Research Circle, Niskayuna, NY, 12309, USA.
| | - Ryan Heller
- GE Global Research, One Research Circle, Niskayuna, NY, 12309, USA.,QIAGEN, 100 Cummings Center, Beverly, MA, 01915, USA
| | - Erin Finehout
- GE Global Research, One Research Circle, Niskayuna, NY, 12309, USA.,Terumo BCT, 10811 Collins Ave, Lakewood, CO, 80215, USA
| | - Nicholas Smith
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Karthik Kota
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - John R Nelson
- GE Global Research, One Research Circle, Niskayuna, NY, 12309, USA
| | - Weston Griffin
- GE Global Research, One Research Circle, Niskayuna, NY, 12309, USA
| | - Shannon Puhalla
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Adam M Brufsky
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Nancy E Davidson
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, PA, 15213, USA.,Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA, 98109, USA
| | - Adrian V Lee
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
24
|
Risberg B, Tsui DWY, Biggs H, Ruiz-Valdepenas Martin de Almagro A, Dawson SJ, Hodgkin C, Jones L, Parkinson C, Piskorz A, Marass F, Chandrananda D, Moore E, Morris J, Plagnol V, Rosenfeld N, Caldas C, Brenton JD, Gale D. Effects of Collection and Processing Procedures on Plasma Circulating Cell-Free DNA from Cancer Patients. J Mol Diagn 2018; 20:883-892. [PMID: 30165204 PMCID: PMC6197164 DOI: 10.1016/j.jmoldx.2018.07.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/06/2018] [Accepted: 07/26/2018] [Indexed: 01/26/2023] Open
Abstract
Circulating tumor DNA (ctDNA) offers new opportunities for noninvasive cancer management. Detecting ctDNA in plasma is challenging because it constitutes only a minor fraction of the total cell-free DNA (cfDNA). Pre-analytical factors affect cfDNA levels contributed from leukocyte lysis, hence the ability to detect low-frequency mutant alleles. This study investigates the effects of the delay in processing, storage temperatures, different blood collection tubes, centrifugation protocols, and sample shipment on cfDNA levels. Peripheral blood (n = 231) from cancer patients (n = 62) were collected into K3EDTA or Cell-free DNA BCT tubes and analyzed by digital PCR, targeted amplicon, or shallow whole-genome sequencing. To assess pre-analytic effects, plasma was processed under different conditions after 0, 6, 24, 48, 96 hours, and 1 week at room temperature or 4°C, or using different centrifugation protocols. Digital PCR showed that cfDNA levels increased gradually with time in K3EDTA tubes, but were stable in BCT tubes. K3EDTA samples stored at 4°C showed less variation than room temperature storage, but levels were elevated compared with BCT. A second centrifugation at 3000 × g gave similar cfDNA yields compared with higher-speed centrifugation. Next-generation sequencing showed negligible differences in background error or copy number changes between K3EDTA and BCT, or following shipment in BCT. This study provides insights into the effects of sample processing on ctDNA analysis.
Collapse
Affiliation(s)
- Bente Risberg
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, University of Cambridge, Cambridge, United Kingdom; Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Norway; Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Dana W Y Tsui
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Major Centre, Cambridge, United Kingdom.
| | - Heather Biggs
- Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Andrea Ruiz-Valdepenas Martin de Almagro
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Major Centre, Cambridge, United Kingdom
| | - Sarah-Jane Dawson
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, University of Cambridge, Cambridge, United Kingdom; Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom; Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Charlotte Hodgkin
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Linda Jones
- Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Christine Parkinson
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Anna Piskorz
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Major Centre, Cambridge, United Kingdom
| | - Francesco Marass
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Major Centre, Cambridge, United Kingdom
| | - Dineika Chandrananda
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Major Centre, Cambridge, United Kingdom
| | - Elizabeth Moore
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Major Centre, Cambridge, United Kingdom
| | - James Morris
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Major Centre, Cambridge, United Kingdom
| | - Vincent Plagnol
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Nitzan Rosenfeld
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Major Centre, Cambridge, United Kingdom
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Major Centre, Cambridge, United Kingdom; Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom; Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - James D Brenton
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Major Centre, Cambridge, United Kingdom; Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Davina Gale
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Major Centre, Cambridge, United Kingdom.
| |
Collapse
|
25
|
Fettke H, Kwan EM, Azad AA. Cell-free DNA in cancer: current insights. Cell Oncol (Dordr) 2018; 42:13-28. [PMID: 30367445 DOI: 10.1007/s13402-018-0413-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The field of liquid biopsies in oncology is rapidly expanding, with the application of cell-free circulating tumour DNA (ctDNA) showing promise in this era of precision medicine. Compared with traditional clinical and radiographic tumour monitoring methods, the analysis of ctDNA provides a minimally-invasive and technically feasible approach to assess temporal and spatial molecular evolutions of the tumour landscape. The constantly advancing technological platforms available for ctDNA extraction and analysis allow greater analytical sensitivities than ever before. The potential translational impact of ctDNA as a blood-based biomarker for the identification, characterization and monitoring of cancer has been demonstrated in numerous proof-of-concept studies, with ctDNA analysis beginning to be applied clinically across multiple facets of oncology. CONCLUSIONS In this review we discuss the biology, recent advancements, technical considerations and clinical implications of ctDNA in the context of cancer, and highlight important challenges and future directions for the integration of ctDNA into standardised patient care.
Collapse
Affiliation(s)
- Heidi Fettke
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia.
| | - Edmond M Kwan
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia.,Department of Medical Oncology, Monash Health, Melbourne, Australia
| | - Arun A Azad
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia.,Department of Medical Oncology, Monash Health, Melbourne, Australia
| |
Collapse
|
26
|
Grölz D, Hauch S, Schlumpberger M, Guenther K, Voss T, Sprenger-Haussels M, Oelmüller U. Liquid Biopsy Preservation Solutions for Standardized Pre-Analytical Workflows-Venous Whole Blood and Plasma. CURRENT PATHOBIOLOGY REPORTS 2018; 6:275-286. [PMID: 30595972 PMCID: PMC6290703 DOI: 10.1007/s40139-018-0180-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Liquid biopsy analyses based on circulating cell-free nucleic acids, circulating tumor cells or other diseased cells from organs, and exosomes or other microvesicles in blood offer new means for non-invasive diagnostic applications. The main goal of this review is to explain the importance of preserving whole blood specimens after blood draw for use as liquid biopsies, and to summarize preservation solutions that are currently available. RECENT FINDINGS Despite the great potential of liquid biopsies for diagnostics and disease management, besides non-invasive prenatal testing (NIPT), only a few liquid biopsy applications are fully implemented for routine in vitro diagnostic testing. One major barrier is the lack of standardized pre-analytical workflows, including the collection of consistent quality blood specimens and the generation of good-quality plasma samples therefrom. Broader use of liquid biopsies in clinical routine applications therefore requires improved pre-analytical procedures to enable high-quality specimens to obtain unbiased analyte profiles (DNA, RNA, proteins, etc.) as they are in the patient's body. SUMMARY A growing number of stabilizing reagents and dedicated blood collection tubes are available for the post-collection preservation of circulating cell-free DNA (ccfDNA) profiles in whole blood. In contrast, solutions for the preservation of circulating tumor cells (CTC) that enable both, enumeration and molecular analyses are rare. Solutions for extracellular vesicle (EV) populations, including exosomes, do not yet exist.
Collapse
Affiliation(s)
- Daniel Grölz
- QIAGEN GmbH, Research & Development, QIAGEN Strasse 1, 40724 Hilden, Germany
| | - Siegfried Hauch
- QIAGEN GmbH, Research & Development, QIAGEN Strasse 1, 40724 Hilden, Germany
| | | | - Kalle Guenther
- QIAGEN GmbH, Research & Development, QIAGEN Strasse 1, 40724 Hilden, Germany
| | - Thorsten Voss
- QIAGEN GmbH, Research & Development, QIAGEN Strasse 1, 40724 Hilden, Germany
| | | | - Uwe Oelmüller
- QIAGEN GmbH, Research & Development, QIAGEN Strasse 1, 40724 Hilden, Germany
| |
Collapse
|
27
|
Zhao Y, Li Y, Chen P, Li S, Luo J, Xia H. Performance comparison of blood collection tubes as liquid biopsy storage system for minimizing cfDNA contamination from genomic DNA. J Clin Lab Anal 2018; 33:e22670. [PMID: 30191594 DOI: 10.1002/jcla.22670] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/03/2018] [Accepted: 08/14/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The ratio of target cfDNA in total plasma is low. The abundant gDNA background resulting from blood cell lysis caused by improper operation has become a major obstacle to accurately measure cfDNA. In this study, we investigated the storage capacity of three blood cell collection tubes (BCTs) in the prevention of genomic DNA contamination caused by white blood cell rupture and evaluated their performance when they were utilized combining with highly sensitive mutation detection technology. METHODS Blood samples were drawn from six healthy blood donors and stored in three types of BCTs (BD K2 -EDTA tube, Roche tube, and Streck tube). Plasma samples were isolated at specific time points (day 0, day 3, day 7, and day 14) for content analysis. RESULTS Roche BCT was more capable for preventing cfDNA contamination caused by white blood cell disruption within 14 days, comparing with BD K2 -EDTA tube and Streck tube. Severe white blood cell lysis and gDNA contamination were found in the BD tube. The impacts of Roche and Streck tubes on the quantity and complexity of next-generation sequencing (NGS) libraries did not differ significantly within 3 days, satisfying most of our daily demands. In addition, the rupture of WBC was not synchronized with hemolysis in BCTs. CONCLUSION This study showed that capacities of blood collection tubes differed considerably in preservation of blood samples. Therefore, suitable blood collection devices should be selected to minimize gDNA contamination and to standardize blood samples processing for achieving more accurate and reliable clinical analysis of cfDNA.
Collapse
Affiliation(s)
- Yunlong Zhao
- Department of Cardiothoracic Surgery, First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Yingjie Li
- Department of Cardiothoracic Surgery, First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Ping Chen
- Department of Cardiothoracic Surgery, First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Shaojun Li
- Department of Cardiothoracic Surgery, First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Jian Luo
- Burning Rock Biotech, Guangzhou, China
| | - Hui Xia
- Department of Cardiothoracic Surgery, First Affiliated Hospital of PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Evaluation of pre-analytical factors affecting plasma DNA analysis. Sci Rep 2018; 8:7375. [PMID: 29743667 PMCID: PMC5943304 DOI: 10.1038/s41598-018-25810-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Pre-analytical factors can significantly affect circulating cell-free DNA (cfDNA) analysis. However, there are few robust methods to rapidly assess sample quality and the impact of pre-analytical processing. To address this gap and to evaluate effects of DNA extraction methods and blood collection tubes on cfDNA yield and fragment size, we developed a multiplexed droplet digital PCR (ddPCR) assay with 5 short and 4 long amplicons targeting single copy genomic loci. Using this assay, we compared 7 cfDNA extraction kits and found cfDNA yield and fragment size vary significantly. We also compared 3 blood collection protocols using plasma samples from 23 healthy volunteers (EDTA tubes processed within 1 hour and Cell-free DNA Blood Collection Tubes processed within 24 and 72 hours) and found no significant differences in cfDNA yield, fragment size and background noise between these protocols. In 219 clinical samples, cfDNA fragments were shorter in plasma samples processed immediately after venipuncture compared to archived samples, suggesting contribution of background DNA by lysed peripheral blood cells. In summary, we have described a multiplexed ddPCR assay to assess quality of cfDNA samples prior to downstream molecular analyses and we have evaluated potential sources of pre-analytical variation in cfDNA studies.
Collapse
|
29
|
Gorgannezhad L, Umer M, Islam MN, Nguyen NT, Shiddiky MJA. Circulating tumor DNA and liquid biopsy: opportunities, challenges, and recent advances in detection technologies. LAB ON A CHIP 2018; 18:1174-1196. [PMID: 29569666 DOI: 10.1039/c8lc00100f] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cell-free DNA (cfDNA) refers to short fragments of acellular nucleic acids detectable in almost all body fluids, including blood, and is involved in various physiological and pathological phenomena such as immunity, coagulation, aging, and cancer. In cancer patients, a fraction of hematogenous cfDNA originates from tumors, termed circulating tumor DNA (ctDNA), and may carry the same mutations and genetic alterations as those of a primary tumor. Thus, ctDNA potentially provides an opportunity for noninvasive assessment of cancer. Recent advances in ctDNA analysis methods will potentially lead to the development of a liquid biopsy tool for the diagnosis, prognosis, therapy response monitoring, and tracking the rise of new mutant sub-clones in cancer patients. Over the past few decades, cancer-specific mutations in ctDNA have been detected using a variety of untargeted methods such as digital karyotyping, personalized analysis of rearranged ends (PARE), whole-genome sequencing of ctDNA, and targeted approaches such as conventional and digital PCR-based methods and deep sequencing-based technologies. More recently, several chip-based electrochemical sensors have been developed for the analysis of ctDNA in patient samples. This paper aims to comprehensively review the diagnostic, prognostic, and predictive potential of ctDNA as a minimally invasive liquid biopsy for cancer patients. We also present an overview of current advances in the analytical sensitivity and accuracy of ctDNA analysis methods as well as biological and technical challenges, which need to be resolved for the integration of ctDNA analysis into routine clinical practice.
Collapse
Affiliation(s)
- Lena Gorgannezhad
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad Umer
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Md Nazmul Islam
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|
30
|
Kumar M, Choudhury Y, Ghosh SK, Mondal R. Application and optimization of minimally invasive cell-free DNA techniques in oncogenomics. Tumour Biol 2018; 40:1010428318760342. [PMID: 29484962 DOI: 10.1177/1010428318760342] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The conventional method of measuring biomarkers in malignant tissue samples has already given subversive growth in cancer diagnosis, prognosis, and therapy selection. However, the regression and heterogeneity associated with tumor tissue biopsy have urged for the development of an alternative approach. Considering the limitations, cell-free DNA has emerged as a surrogate alternative, facilitating preoperative chemoradiotherapy (p < 0.0001) treatment response in rectal cancer and detection of biomarker in lung cancer. This potential of cell-free DNA in several other cancers has yet to be explored based on clinical relevance by optimizing the preanalytical factors. This review has highlighted the crucial parameters from blood collection to cell-free DNA analysis that has a significant impact on the accuracy and reliability of clinical data. The quantity of cell-free DNA is also a limiting factor. Therefore, a proper preanalytical factor for blood collection, its stability, centrifugation speed, and plasma storage condition are to be optimized for developing cancer-specific biomarkers useful for clinical purpose. Liquid biopsy-based origin of cell-free DNA has revolutionized the area of cancer research. Lack of preanalytical and analytical procedures may be considered for identification of novel biomarkers through next-generation sequencing of tumor-originated cell-free DNA in contradiction to tissue biopsy for cancer-specific biomarkers.
Collapse
Affiliation(s)
- Manish Kumar
- 1 Department of Biotechnology, Assam University, Silchar, India
| | | | - Sankar Kumar Ghosh
- 1 Department of Biotechnology, Assam University, Silchar, India.,2 University of Kalyani, Kalyani, India
| | - Rosy Mondal
- 3 Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
31
|
van Boeckel SR, Davidson DJ, Norman JE, Stock SJ. Cell-free fetal DNA and spontaneous preterm birth. Reproduction 2017; 155:R137-R145. [PMID: 29269517 PMCID: PMC5812054 DOI: 10.1530/rep-17-0619] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
Abstract
Inflammation is known to play a key role in preterm and term parturition. Cell-free fetal DNA (cff-DNA) is present in the maternal circulation and increases with gestational age and some pregnancy complications (e.g. preterm birth, preeclampsia). Microbial DNA and adult cell-free DNA can be pro-inflammatory through DNA-sensing mechanisms such as Toll-like receptor 9 and the Stimulator of Interferon Genes (STING) pathway. However, the pro-inflammatory properties of cff-DNA, and the possible effects of this on pregnancy and parturition are unknown. Clinical studies have quantified cff-DNA levels in the maternal circulation in women who deliver preterm and women who deliver at term and show an association between preterm labor and higher cff-DNA levels in the 2nd, 3rd trimester and at onset of preterm birth symptoms. Together with potential pro-inflammatory properties of cff-DNA, this rise suggests a potential mechanistic role in the pathogenesis of spontaneous preterm birth. In this review, we discuss the evidence linking cff-DNA to adverse pregnancy outcomes, including preterm birth, obtained from preclinical and clinical studies.
Collapse
Affiliation(s)
- Sara R van Boeckel
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive HealthUniversity of Edinburgh, QMRI, Edinburgh, UK
| | - Donald J Davidson
- MRC Centre for Inflammation ResearchUniversity of Edinburgh, QMRI, Edinburgh, UK
| | - Jane E Norman
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive HealthUniversity of Edinburgh, QMRI, Edinburgh, UK
| | - Sarah J Stock
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive HealthUniversity of Edinburgh, QMRI, Edinburgh, UK
| |
Collapse
|
32
|
|
33
|
Barrett AN, Xiong L, Tan TZ, Advani HV, Hua R, Laureano-Asibal C, Soong R, Biswas A, Nagarajan N, Choolani M. Measurement of fetal fraction in cell-free DNA from maternal plasma using a panel of insertion/deletion polymorphisms. PLoS One 2017; 12:e0186771. [PMID: 29084245 PMCID: PMC5662091 DOI: 10.1371/journal.pone.0186771] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/07/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Cell-free DNA from maternal plasma can be used for non-invasive prenatal testing for aneuploidies and single gene disorders, and also has applications as a biomarker for monitoring high-risk pregnancies, such as those at risk of pre-eclampsia. On average, the fractional cell-free fetal DNA concentration in plasma is approximately 15%, but can vary from less than 4% to greater than 30%. Although quantification of cell-free fetal DNA is straightforward in the case of a male fetus, there is no universal fetal marker; in a female fetus measurement is more challenging. We have developed a panel of multiplexed insertion/deletion polymorphisms that can measure fetal fraction in all pregnancies in a simple, targeted sequencing reaction. METHODS A multiplex panel of primers was designed for 35 indels plus a ZFX/ZFY amplicon. cfDNA was extracted from plasma from 157 pregnant women, and maternal genomic DNA was extracted for 20 of these samples for panel validation. Sixty-one samples from pregnancies with a male fetus were subjected to whole genome sequencing on the Ion Proton sequencing platform, and fetal fraction derived from Y chromosome counts was compared to fetal fraction measured using the indel panel. A total of 157 cell-free DNA samples were sequenced using the indel panel, and informativity was assessed, along with the proportion of fetal DNA. RESULTS Using gDNA we optimised the indel panel, removing amplicons giving rise to PCR bias. Good correlation was found between fetal fraction using indels and using whole genome sequencing of the Y chromosome (Spearmans r = 0.69). A median of 12 indels were informative per sample. The indel panel was informative in 157/157 cases (mean fetal fraction 14.4% (±0.58%)). CONCLUSIONS Using our targeted next generation sequencing panel we can readily assess the fetal DNA percentage in male and female pregnancies.
Collapse
Affiliation(s)
- Angela N. Barrett
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail: (AB); (MC)
| | - Li Xiong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Gynecology & Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Tuan Z. Tan
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Henna V. Advani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rui Hua
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Gynecology & Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Cecille Laureano-Asibal
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Richie Soong
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail: (AB); (MC)
| |
Collapse
|
34
|
Luk AWS, Ma Y, Ding PN, Young FP, Chua W, Balakrishnar B, Dransfield DT, Souza PD, Becker TM. CTC-mRNA (AR-V7) Analysis from Blood Samples-Impact of Blood Collection Tube and Storage Time. Int J Mol Sci 2017; 18:ijms18051047. [PMID: 28498319 PMCID: PMC5454959 DOI: 10.3390/ijms18051047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 12/29/2022] Open
Abstract
Circulating tumour cells (CTCs) are an emerging resource for monitoring cancer biomarkers. New technologies for CTC isolation and biomarker detection are increasingly sensitive, however, the ideal blood storage conditions to preserve CTC-specific mRNA biomarkers remains undetermined. Here we tested the preservation of tumour cells and CTC-mRNA over time in common anticoagulant ethylene-diamine-tetra-acetic acid (EDTA) and acid citrate dextrose solution B (Citrate) blood tubes compared to preservative-containing blood tubes. Blood samples spiked with prostate cancer cells were processed after 0, 24, 30, and 48 h storage at room temperature. The tumour cell isolation efficiency and the mRNA levels of the prostate cancer biomarkers androgen receptor variant 7 (AR-V7) and total AR, as well as epithelial cell adhesion molecule (EpCAM) were measured. Spiked cells were recovered across all storage tube types and times. Surprisingly, tumour mRNA biomarkers were readily detectable after 48 h storage in EDTA and Citrate tubes, but not in preservative-containing tubes. Notably, AR-V7 expression was detected in prostate cancer patient blood samples after 48 h storage in EDTA tubes at room temperature. This important finding presents opportunities for measuring AR-V7 expression from clinical trial patient samples processed within 48 h-a much more feasible timeframe compared to previous recommendations.
Collapse
Affiliation(s)
- Alison W S Luk
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St., Liverpool, NSW 2170, Australia.
| | - Yafeng Ma
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St., Liverpool, NSW 2170, Australia.
| | - Pei N Ding
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St., Liverpool, NSW 2170, Australia.
- Department of Medical Oncology, Liverpool Hospital, Elizabeth St & Goulburn St, Liverpool, NSW 2170, Australia.
- Western Sydney University Clinical School, Elizabeth St, Liverpool, NSW 2170, Australia.
| | - Francis P Young
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St., Liverpool, NSW 2170, Australia.
- South Western Clinical School, University of New South Wales, Goulburn St., Liverpool, NSW 2170, Australia.
| | - Wei Chua
- Department of Medical Oncology, Liverpool Hospital, Elizabeth St & Goulburn St, Liverpool, NSW 2170, Australia.
| | - Bavanthi Balakrishnar
- Department of Medical Oncology, Liverpool Hospital, Elizabeth St & Goulburn St, Liverpool, NSW 2170, Australia.
| | - Daniel T Dransfield
- Tokai Pharmaceuticals, Inc., 255 State Street, 6th Floor, Boston, MA 0210, USA.
| | - Paul de Souza
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St., Liverpool, NSW 2170, Australia.
- Department of Medical Oncology, Liverpool Hospital, Elizabeth St & Goulburn St, Liverpool, NSW 2170, Australia.
- Western Sydney University Clinical School, Elizabeth St, Liverpool, NSW 2170, Australia.
- South Western Clinical School, University of New South Wales, Goulburn St., Liverpool, NSW 2170, Australia.
| | - Therese M Becker
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St., Liverpool, NSW 2170, Australia.
- Western Sydney University Clinical School, Elizabeth St, Liverpool, NSW 2170, Australia.
- South Western Clinical School, University of New South Wales, Goulburn St., Liverpool, NSW 2170, Australia.
| |
Collapse
|
35
|
The In Vitro Stability of Circulating Tumour DNA. PLoS One 2016; 11:e0168153. [PMID: 27959945 PMCID: PMC5154581 DOI: 10.1371/journal.pone.0168153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/26/2016] [Indexed: 01/06/2023] Open
Abstract
Objective DNA from apoptotic cancer cells, present in the circulation, has the potential to facilitate genomic profiling and disease monitoring. However, only low fractions of total cell-free DNA originates from cancer cells, limiting the applicability of circulating tumour DNA (ctDNA). Optimal sample processing is consequently of uttermost importance. Therefore, we evaluated the in vitro stability of ctDNA. Experimental design Blood was collected in 10 ml EDTA or Streck tubes. Three conditions (EDTA and Streck tubes in room temperature, EDTA tubes at five degrees) and four time points (plasma harvested from blood aliquots of each 10 ml tube in a time series up to 24 h) were investigated. Each condition was evaluated in five metastatic prostate cancer patients. Subsequently, three additional patients were collected enabling investigation of the in vitro stability in EDTA tubes up to 48 h. Methods The in vitro stability of ctDNA was interrogated by low-pass whole genome sequencing which allows for the identification of somatic copy-number alterations (CNAs). In silico simulations demonstrated that non-parametric testing could detect a 1% contamination by white blood cell DNA. Mutational profiling was performed by targeted, in-solution based hybridization capture and subsequent sequencing. The allelic fraction of individual mutations was used as an estimate of the in vitro stability. Results Somatic CNAs were detected in all patients. Surprisingly, the ctDNA levels at zero hours were not significantly different to 24 or 48 hour in vitro incubation in any investigated condition. Subsequently, mutational profiling corroborated the conclusions from the CNA analysis. Conclusions The stability of ctDNA simplifies logistics without the requirement of immediate processing or applying fixatives to prevent white blood cell lysis.
Collapse
|
36
|
Comparative analysis of circulating tumor DNA stability In K3EDTA, Streck, and CellSave blood collection tubes. Clin Biochem 2016; 49:1354-1360. [DOI: 10.1016/j.clinbiochem.2016.03.012] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/09/2016] [Accepted: 03/07/2016] [Indexed: 12/24/2022]
|
37
|
Medina Diaz I, Nocon A, Mehnert DH, Fredebohm J, Diehl F, Holtrup F. Performance of Streck cfDNA Blood Collection Tubes for Liquid Biopsy Testing. PLoS One 2016; 11:e0166354. [PMID: 27832189 PMCID: PMC5104415 DOI: 10.1371/journal.pone.0166354] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
Objectives Making liquid biopsy testing widely available requires a concept to ship whole blood at ambient temperatures while retaining the integrity of the cell-free DNA (cfDNA) population and stability of blood cells to prevent dilution of circulating tumor DNA (ctDNA) with wild-type genomic DNA. The cell- and DNA-stabilizing properties of Streck Cell-Free DNA BCT blood collection tubes (cfDNA BCTs) were evaluated to determine if they can be utilized in combination with highly sensitive mutation detection technologies. Methods Venous blood from healthy donors or patients with advanced colorectal cancer (CRC) was collected in cfDNA BCTs and standard K2EDTA tubes. Tubes were stored at different temperatures for various times before plasma preparation and DNA extraction. The isolated cfDNA was analyzed for overall DNA yield of short and long DNA fragments using qPCR as well as for mutational changes using BEAMing and Plasma Safe-Sequencing (Safe-SeqS). Results Collection of whole blood from healthy individuals in cfDNA BCTs and storage for up to 5 days at room temperature did not affect the DNA yield and mutation background levels (n = 60). Low-frequency mutant DNA spiked into normal blood samples as well as mutant circulating tumor DNA in blood samples from CRC patients collected in cfDNA BCTs were reliably detected after 3 days of storage at room temperature. However, blood samples stored at ≤ 10°C and at 40°C for an extended period of time showed elevated normal genomic DNA levels and an abnormally large cellular plasma interface as well as lower plasma volumes. Conclusion Whole blood shipped in cfDNA BCTs over several days can be used for downstream liquid biopsy testing using BEAMing and Safe-SeqS. Since the shipping temperature is a critical factor, special care has to be taken to maintain a defined room temperature range to obtain reliable mutation testing results.
Collapse
Affiliation(s)
- Inga Medina Diaz
- Research and Development, Sysmex Inostics GmbH, Hamburg, Germany
| | - Annette Nocon
- Research and Development, Sysmex Inostics GmbH, Hamburg, Germany
| | | | | | - Frank Diehl
- Research and Development, Sysmex Inostics GmbH, Hamburg, Germany
- * E-mail:
| | - Frank Holtrup
- Research and Development, Sysmex Inostics GmbH, Hamburg, Germany
| |
Collapse
|
38
|
Bronkhorst AJ, Aucamp J, Pretorius PJ. Cell-free DNA: Preanalytical variables. Clin Chim Acta 2015; 450:243-53. [DOI: 10.1016/j.cca.2015.08.028] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/17/2015] [Accepted: 08/30/2015] [Indexed: 12/11/2022]
|
39
|
Toro PV, Erlanger B, Beaver JA, Cochran RL, VanDenBerg DA, Yakim E, Cravero K, Chu D, Zabransky DJ, Wong HY, Croessmann S, Parsons H, Hurley PJ, Lauring J, Park BH. Comparison of cell stabilizing blood collection tubes for circulating plasma tumor DNA. Clin Biochem 2015; 48:993-8. [PMID: 26234639 DOI: 10.1016/j.clinbiochem.2015.07.097] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Circulating plasma DNA is being increasingly used for biomedical and clinical research as a substrate for genetic testing. However, cell lysis can occur hours after venipuncture when using standard tubes for blood collection, leading to an increase in contaminating cellular DNA that may hinder analysis of circulating plasma DNA. Cell stabilization agents can prevent cellular lysis for several days, reducing the need for immediate plasma preparation after venipuncture, thereby facilitating the ease of blood collection and sample preparation for clinical research. However, the majority of cell stabilizing reagents have not been formally tested for their ability to preserve circulating plasma tumor DNA. DESIGN & METHODS In this study, we compared the properties of two cell stabilizing reagents, the cell-free DNA BCT tube and the PAXgene tube, by collecting blood samples from metastatic breast cancer patients and measuring genome equivalents of plasma DNA by droplet digital PCR. We compared wild type PIK3CA genome equivalents and also assayed for two PIK3CA hotspot mutations, E545K and H1047R. RESULTS Our results demonstrate that blood stored for 7 days in BCT tubes did not show evidence of cell lysis, whereas PAXgene tubes showed an order of magnitude increase in genome equivalents, indicative of considerable cellular lysis. CONCLUSIONS We conclude that BCT tubes can prevent lysis and cellular release of genomic DNA of blood samples from cancer patients when stored at room temperature, and could therefore be of benefit for blood specimen collections in clinical trials.
Collapse
Affiliation(s)
- Patricia Valda Toro
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bracha Erlanger
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julia A Beaver
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rory L Cochran
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dustin A VanDenBerg
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Yakim
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Cravero
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Chu
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel J Zabransky
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hong Yuen Wong
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Croessmann
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heather Parsons
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paula J Hurley
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Brady Urologic Institute, Department of Urology, USA
| | - Josh Lauring
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ben Ho Park
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Whiting School of Engineering, Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
40
|
Unexplained False Negative Results in Noninvasive Prenatal Testing: Two Cases Involving Trisomies 13 and 18. Case Rep Genet 2015; 2015:926545. [PMID: 26137330 PMCID: PMC4475527 DOI: 10.1155/2015/926545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/26/2015] [Indexed: 12/27/2022] Open
Abstract
Noninvasive prenatal testing (NIPT) validation studies show high sensitivity and specificity for detection of trisomies 13, 18, and 21. False negative cases have rarely been reported. We describe a false negative case of trisomy 13 and another of trisomy 18 in which NIPT was commercially marketed directly to the clinician. Both cases came to our attention because a fetal anatomy scan at 20 weeks of gestation revealed multiple anomalies. Karyotyping of cultured amniocytes showed nonmosaic trisomies 13 and 18, respectively. Cytogenetic investigation of cytotrophoblast cells from multiple placental biopsies showed a low proportion of nontrisomic cells in each case, but this was considered too small for explaining the false negative NIPT result. The discordant results also could not be explained by early gestational age, elevated maternal weight, a vanishing twin, or suboptimal storage or transport of samples. The root cause of the discrepancies could, therefore, not be identified. The couples involved experienced difficulties in accepting the unexpected and late-adverse outcome of their pregnancy. We recommend that all parties involved in caring for couples who choose NIPT should collaborate to clarify false negative results in order to unravel possible biological causes and to improve the process of patient care from initial counseling to communication of the result.
Collapse
|
41
|
Fleischhacker M, Schmidt B. Extracellular Nucleic Acids and Cancer. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2015. [DOI: 10.1007/978-94-017-9168-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Günel T, Hosseini MK, Gümüşoğlu E, Zeybek G, Dölekçap İ, Kalelioğlu İ, Benian A, Ermiş H, Aydınlı K. Current approaches on non-invasive prenatal diagnosis: Prenatal genomics, transcriptomics, personalized fetal diagnosis. Turk J Obstet Gynecol 2014; 11:233-241. [PMID: 28913027 PMCID: PMC5558368 DOI: 10.4274/tjod.26817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 07/26/2014] [Indexed: 12/27/2022] Open
Abstract
Recent developments in molecular genetics improved our knowledge on fetal genome and physiology. Novel scientific innovations in prenatal diagnosis have accelerated in the last decade changing our vision immensely. Data obtained from fetal genomic studies brought new insights to fetal medicine and by the advances in fetal DNA and RNA sequencing technology novel treatment strategies has evolved. Non-invasive prenatal diagnosis found ground in genetics and the results are widely studied in scientific arena. When Lo and colleges proved fetal genetic material can be extracted from maternal plasma and fetal DNA can be isolated from maternal serum, the gate to many exciting discoveries was open. Microarray technology and advances in sequencing helped fetal diagnosis as well as other areas of medicine. Today it is a very crucial prerequisite for physicians practicing prenatal diagnosis to have a profound knowledge in genetics. Prevailing practical use and application of fetal genomic tests in maternal and fetal medicine mandates obstetricians to update their knowledge in genetics. The purpose of this review is to assist physicians to understand and update their knowledge in fetal genetic testing from maternal blood, individualized prenatal counseling and advancements on the subject by sharing our experiences as İstanbul University Fetal Nucleic Acid Research Group.
Collapse
Affiliation(s)
- Tuba Günel
- İstanbul University, Faculty of Science, Department of Molecular Biology and Genetics, İstanbul, Turkey
| | - Mohammad Kazem Hosseini
- İstanbul University, Faculty of Science, Department of Molecular Biology and Genetics, İstanbul, Turkey
| | - Ece Gümüşoğlu
- İstanbul University, Faculty of Science, Department of Molecular Biology and Genetics, İstanbul, Turkey
| | - Görkem Zeybek
- Çanakkale Provincial State Hospital, Clinic of General Obstetrics and Gynecology, Çanakkale, Turkey
| | - İsmail Dölekçap
- İstanbul University, Faculty of Science, Department of Molecular Biology and Genetics, İstanbul, Turkey
| | - İbrahim Kalelioğlu
- İstanbul University İstanbul Faculty of Medicine, Department of Gynecology, İstanbul, Turkey
| | - Ali Benian
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Gynecology, İstanbul, Turkey
| | - Hayri Ermiş
- İstanbul University İstanbul Faculty of Medicine, Department of Gynecology, İstanbul, Turkey
| | | |
Collapse
|
43
|
Thung DT, Beulen L, Hehir-Kwa J, Faas BH. Implementation of whole genome massively parallel sequencing for noninvasive prenatal testing in laboratories. Expert Rev Mol Diagn 2014; 15:111-24. [PMID: 25347354 DOI: 10.1586/14737159.2015.973857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Noninvasive prenatal testing (NIPT) for fetal aneuploidies using cell-free fetal DNA in maternal plasma has revolutionized the field of prenatal care and methods using massively parallel sequencing are now being implemented almost worldwide. Substantial progress has been made from initially testing for (an)euploidies of chromosomes 13, 18 and 21, to testing for sex chromosome (an)euploidies, additional autosomal aneuploidies as well as partial deletions and duplications genome-wide. Although NIPT is associated with significantly reduced risks for the fetus in comparison to existing invasive prenatal diagnostic methods, it presents several implementation challenges. Here, we review key issues potentially influencing NIPT and illustrate them using both data from literature and in-house data.
Collapse
|
44
|
Barrett AN, Thadani HA, Laureano-Asibal C, Ponnusamy S, Choolani M. Stability of cell-free DNA from maternal plasma isolated following a single centrifugation step. Prenat Diagn 2014; 34:1283-8. [DOI: 10.1002/pd.4468] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/19/2014] [Accepted: 07/21/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Angela N. Barrett
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| | - Henna A. Thadani
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| | - Cecille Laureano-Asibal
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| | - Sukumar Ponnusamy
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| |
Collapse
|
45
|
Quantification of cell-free DNA in normal and complicated pregnancies: overcoming biological and technical issues. PLoS One 2014; 9:e101500. [PMID: 24987984 PMCID: PMC4079713 DOI: 10.1371/journal.pone.0101500] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/09/2014] [Indexed: 11/23/2022] Open
Abstract
The characterization of cell-free DNA (cfDNA) originating from placental trophoblast in maternal plasma provides a powerful tool for non-invasive diagnosis of fetal and obstetrical complications. Due to its placental origin, the specific epigenetic features of this DNA (commonly known as cell-free fetal DNA) can be utilized in creating universal ‘fetal’ markers in maternal plasma, thus overcoming the limitations of gender- or rhesus-specific ones. The goal of this study was to compare the performance of relevant approaches and assays evaluating the amount of cfDNA in maternal plasma throughout gestation (7.2–39.5 weeks). Two fetal- or placental- specific duplex assays (RPP30/SRY and RASSF1A/β-Actin) were applied using two technologies, real-time quantitative PCR (qPCR) and droplet digital PCR (ddPCR). Both methods revealed similar performance parameters within the studied dynamic range. Data obtained using qPCR and ddPCR for these assays were positively correlated (total cfDNA (RPP30): R = 0.57, p = 0.001/placental cfDNA (SRY): R = 0.85, p<0.0001; placental cfDNA (RASSF1A): R = 0.75, p<0.0001). There was a significant correlation in SRY and RASSF1A results measured with qPCR (R = 0.68, p = 0.013) and ddPCR (R = 0.56, p = 0.039). Different approaches also gave comparable results with regard to the correlation of the placental cfDNA concentration with gestational age and pathological outcome. We conclude that ddPCR is a practical approach, adaptable to existing qPCR assays and well suited for analysis of cell-free DNA in plasma. However, it may need further optimization to surpass the performance of qPCR.
Collapse
|
46
|
|
47
|
Chadud CS, Araujo Júnior E, Martinhago CD, Andari VCM, Tedesco GD, Bussamra LCS, Aoki T. Assessment of free fetal DNA concentration in maternal plasma during the first trimester of pregnancy: comparative study between EDTA and PPT tubes - pilot study. J Matern Fetal Neonatal Med 2014; 28:172-6. [PMID: 24670236 DOI: 10.3109/14767058.2014.908843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To compare ethylenediamine tetraacetic acid (EDTA) tubes and plasma preparation tubes (PPT) for evaluating maternal plasma during the first trimester of pregnancy. METHODS A cross-sectional study was conducted on 24 male fetuses in women between 6 and 14 weeks of pregnancy. Blood samples (10 mL) were collected and stored in EDTA and PPT tubes. Subsequently, the samples were centrifuged and sent for free fetal DNA extraction by means of the polymerase chain reaction (PCR) technique. The reactions were performed in a real time PCR machine for detecting the amplification products. The genome region chosen for performing the PCR reactions was a target specific for the Y chromosome, in which the DYS-14 marker was amplified only when the DNA was of male sex. The free fetal DNA concentration was given by the threshold cycle (TC). To compare the tubes, the paired Student t-test was used. RESULTS The mean gestational age was 11.08 ± 2.30 weeks (range: 6-14). The mean TC for PPT was 30.08 ± 1.05 (range: 27.08-32.61) and for EDTA, 30.23 ± 0.96 (range: 28.01-32.09), but without statistical significance (p=0.357). CONCLUSION We did not observe any statistically significant difference in free fetal DNA concentration between the EDTA and PPT tubes.
Collapse
Affiliation(s)
- Carolina Schneider Chadud
- Department of Obstetrics and Gynecology, Medical College Sciences of Santa Casa of São Paulo (FCMSCSP) , São Paulo-SP , Brazil
| | | | | | | | | | | | | |
Collapse
|
48
|
Qin J, Alt JR, Hunsley BA, Williams TL, Fernando MR. Stabilization of circulating tumor cells in blood using a collection device with a preservative reagent. Cancer Cell Int 2014; 14:23. [PMID: 24602297 PMCID: PMC3995911 DOI: 10.1186/1475-2867-14-23] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 02/28/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The enumeration and characterization of circulating tumor cells (CTCs) in the blood of cancer patients is useful for cancer prognostic and treatment monitoring purposes. The number of CTCs present in patient blood is very low; thus, robust technologies have been developed to enumerate and characterize CTCs in patient blood samples. One of the challenges to the clinical utility of CTCs is their inherent fragility, which makes these cells very unstable during transportation and storage of blood samples. In this study we investigated Cell-Free DNA BCT™ (BCT), a blood collection device, which stabilizes blood cells in a blood sample at room temperature (RT) for its ability to stabilize CTCs at RT for an extended period of time. METHODS Blood was drawn from each donor into K3EDTA tube, CellSave tube and BCT. Samples were then spiked with breast cancer cells (MCF-7), transported and stored at RT. Spiked cancer cells were counted using the Veridex CellSearch™ system on days 1 and 4. The effect of storage on the stability of proteins and nucleic acids in the spiked cells isolated from K3EDTA tube and BCT was determined using fluorescence staining and confocal laser scanning microscopy. RESULTS MCF-7 cell recovery significantly dropped when transported and stored in K3EDTA tubes. However, in blood collected into CellSave tubes and BCTs, the MCF-7 cell count was stable up to 4 days at RT. Epithelial cell adhesion molecule (EpCAM) and cytokeratin (CK) in MCF-7 cells isolated from BCTs was stable at RT for up to 4 days, whereas in MCF-7 cells isolated from K3EDTA blood showed reduced EpCAM and CK protein expression. Similarly, BCTs stabilized c-fos and cyclin D1 mRNAs as compared to K3EDTA tubes. CONCLUSION Cell-Free DNA™ BCT blood collection device preserves and stabilizes CTCs in blood samples for at least 4 days at RT. This technology may facilitate the development of new non-invasive diagnostic and prognostic methodologies for CTC enumeration as well as characterization.
Collapse
Affiliation(s)
- Jianbing Qin
- R&D Division, Streck, Inc,, 7002 S 109 Street, La Vista, NE 68128, USA.
| | | | | | | | | |
Collapse
|
49
|
Lench N, Barrett A, Fielding S, McKay F, Hill M, Jenkins L, White H, Chitty LS. The clinical implementation of non-invasive prenatal diagnosis for single-gene disorders: challenges and progress made. Prenat Diagn 2014; 33:555-62. [PMID: 23592512 DOI: 10.1002/pd.4124] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, we have witnessed the rapid translation into clinical practice of non-invasive prenatal testing for the common aneuploidies, most notably within the United States and China. This represents a lucrative market with testing being driven by companies developing and offering their services. These tests are currently aimed at women with high/medium-risk pregnancies identified by serum screening and/or ultrasound scanning. Uptake has been impressive, albeit limited to the commercial sector. However, non-invasive prenatal diagnosis (NIPD) for single-gene disorders has attracted less interest, no doubt because this represents a much smaller market opportunity and in the majority of cases has to be provided on a bespoke, patient or disease-specific basis. The methods and workflows are labour-intensive and not readily scalable. Nonetheless, there exists a significant need for NIPD of single-gene disorders, and the continuing advances in technology and data analysis should facilitate the expansion of the NIPD test repertoire. Here, we review the progress that has been made to date, the different methods and platform technologies, the technical challenges, and assess how new developments may be applied to extend testing to a wider range of genetic disorders.
Collapse
Affiliation(s)
- Nicholas Lench
- NE Thames Regional Genetics Service, Great Ormond Street Hospital for Children, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Effects of a novel cell stabilizing reagent on DNA amplification by PCR as compared to traditional stabilizing reagents. Acta Histochem 2014; 116:55-60. [PMID: 23810682 DOI: 10.1016/j.acthis.2013.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 11/23/2022]
Abstract
Stabilization of nucleated blood cells by cell stabilizing reagent (BCT reagent) present in the Cell-Free DNA BCT blood collection device and consequent prevention of cell-free DNA contamination by cellular DNA during sample storage and shipping have previously been reported. This study was conducted to investigate the effect of this novel cell stabilizing reagent on DNA amplification by PCR as compared to traditional cell stabilizing reagents, formaldehyde and glutaraldehyde. A 787 bp long DNA fragment from human glyceraldehydes-3-phosphate dehydrogenase (GAPDH) gene was amplified by PCR and used as model system. DNA samples and blood samples were treated with BCT reagent, 0.1% formaldehyde or 0.1% glutaraldehyde at room temperature. DNA amplification was studied using conventional and real-time quantitative PCR. Results indicate that exposure of DNA to the BCT reagent for up to 14 days had no effect on DNA amplification by PCR as compared to the untreated control DNA. However, there was statistically significant decrease in DNA amplification in the DNA samples treated with formaldehyde and glutaraldehyde. We conclude that the BCT reagent used in Cell-Free DNA BCT blood collection device to prevent cell-free DNA contamination by cellular DNA had no effect on DNA amplification by PCR.
Collapse
|