1
|
Ramirez-Hincapie S, Giri V, Keller J, Kamp H, Haake V, Richling E, van Ravenzwaay B. Influence of pregnancy and non-fasting conditions on the plasma metabolome in a rat prenatal toxicity study. Arch Toxicol 2021; 95:2941-2959. [PMID: 34327559 DOI: 10.1007/s00204-021-03105-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022]
Abstract
The current parameters for determining maternal toxicity (e.g. clinical signs, food consumption, body weight development) lack specificity and may underestimate the extent of effects of test compounds on the dams. Previous reports have highlighted the use of plasma metabolomics for an improved and mechanism-based identification of maternal toxicity. To establish metabolite profiles of healthy pregnancies and evaluate the influence of food consumption as a confounding factor, metabolite profiling of rat plasma was performed by gas- and liquid-chromatography-tandem mass spectrometry techniques. Metabolite changes in response to pregnancy, food consumption prior to blood sampling (non-fasting) as well as the interaction of both conditions were studied. In dams, both conditions, non-fasting and pregnancy, had a marked influence on the plasma metabolome and resulted in distinct individual patterns of changed metabolites. Non-fasting was characterized by increased plasma concentrations of amino acids and diet related compounds and lower levels of ketone bodies. The metabolic profile of pregnant rats was characterized by lower amino acids and glucose levels and higher concentrations of plasma fatty acids, triglycerides and hormones, capturing the normal biochemical changes undergone during pregnancy. The establishment of metabolic profiles of pregnant non-fasted rats serves as a baseline to create metabolic fingerprints for prenatal and maternal toxicity studies.
Collapse
Affiliation(s)
- S Ramirez-Hincapie
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - V Giri
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - J Keller
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - H Kamp
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - V Haake
- BASF Metabolome Solution GmbH, Berlin, Germany
| | - E Richling
- Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - B van Ravenzwaay
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany.
| |
Collapse
|
2
|
NIPT Technique Based on the Use of Long Chimeric DNA Reads. Genes (Basel) 2020; 11:genes11060590. [PMID: 32466452 PMCID: PMC7349339 DOI: 10.3390/genes11060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 11/17/2022] Open
Abstract
Non-invasive prenatal testing (NIPT) for aneuploidy on Chromosomes 21 (T21), 18 (T18) and 13 (T13) is actively used in clinical practice around the world. One of the limitations of the wider implementation of this test is the high cost of the analysis itself, as high-throughput sequencing is still relatively expensive. At the same time, there is an increasing trend in the length of reads yielded by sequencers. Since extracellular DNA is short, in the order of 140–160 bp, it is not possible to effectively use long reads. The authors used high-performance sequencing of cell-free DNA (cfDNA) libraries that went through additional stages of enzymatic fragmentation and random ligation of the resulting products to create long chimeric reads. The authors used a controlled set of samples to analyze a set of cfDNA samples from pregnant women with a high risk of fetus aneuploidy according to the results of the first trimester screening and confirmed by invasive karyotyping of the fetus using laboratory and analytical approaches developed by the authors. They evaluated the sensitivity, specificity, PPV (positive predictive value), and NPV (negative predictive value) of the results. The authors developed a technique for constructing long chimeric reads from short cfDNA fragments and validated the test using a control set of extracellular DNA samples obtained from pregnant women. The obtained sensitivity and specificity parameters of the NIPT developed by the authors corresponded to the approaches proposed earlier (99.93% and 99.14% for T21; 100% and 98.34% for T18; 100% and 99.17% for T13, respectively).
Collapse
|
3
|
Korostin DO, Plakhina DA, Belova VA. Noninvasive prenatal testing: the aspects of its introduction into clinical practice. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The last couple of years have witnessed the rapid development of prenatal molecular-based screening for fetal aneuploidies that utilizes the analysis of cell-free DNA circulating in the bloodstream of a pregnant woman. The present review looks at the potential and limitations of such testing and the possible causes of false-positive and false-negative results. The review also describes the underlying principles of data acquisition and analysis the testing involves. In addition, we talk about the opinions held by the expert community and some aspects of legislation on the use of noninvasive prenatal testing (NIPT) in clinical practice in the countries where NIPT is much more widespread than in Russia.
Collapse
Affiliation(s)
- D. O. Korostin
- Pirogov Russian National Research Medical University, Moscow, Russia; Genotek Ltd., Moscow, Russia
| | | | - V. A. Belova
- Pirogov Russian National Research Medical University, Moscow, Russia; Genotek Ltd., Moscow, Russia
| |
Collapse
|
4
|
Non-invasive prenatal testing for fetal sex determination: is ultrasound still relevant? Eur J Obstet Gynecol Reprod Biol 2013; 171:197-204. [DOI: 10.1016/j.ejogrb.2013.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/12/2013] [Accepted: 09/03/2013] [Indexed: 11/19/2022]
|
5
|
Dundar M, Uzak AS, Erdogan M, Akbarova Y. Prediction, prevention and personalisation of medication for the prenatal period: genetic prenatal tests for both rare and common diseases. EPMA J 2011. [PMID: 23199148 PMCID: PMC3405382 DOI: 10.1007/s13167-011-0080-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genetic testing usually helps physicians to determine possible genetic diseases in unborn babies, genetic disorders of patients and the carriers who might pass the mutant gene on to their children. They are performed on blood, tissues or other body fluids. In recent years, the screening tests and diagnostic tests have improved quickly and, as a result, the risks of pregnancy can be determined more commonly and physicians can diagnose several genetic disorders in the prenatal period. Detecting the abnormalities in utero enables correct management of the pregnancy, prenatal and postnatal medical care, and it is also important for making well informed decisions about continuing or terminating a pregnancy. Besides the improvements of conventional invasive diagnostic tests, the discovery of circulating cell-free foetal nucleic acids in maternal plasma has developed a new point of view for non-invasive prenatal diagnosis recently.
Collapse
|
6
|
Geifman-Holtzman O, Ober Berman J. Prenatal diagnosis: update on invasive versus noninvasive fetal diagnostic testing from maternal blood. Expert Rev Mol Diagn 2009; 8:727-51. [PMID: 18999924 DOI: 10.1586/14737159.8.6.727] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The modern obstetrics care includes noninvasive prenatal diagnosis testing such as first trimester screening performed between 11 and 14 weeks' gestation and second trimester screening performed between 15 and 20 weeks. In these screening tests, biochemical markers are measured in the maternal blood with or without ultrasound for fetal nuchal translucency with reported accuracy of up to 90%. Invasive procedures, including amniocentesis or chorionic villi sampling, are used to achieve over 99% accuracy. During these procedures direct fetal material is examined and, therefore, these tests are highly accurate with the caveat of a small risk for pregnancy loss. Much research now focuses on other noninvasive highly accurate and risk-free tests that will identify fetal material in the maternal blood. Fetal cells and fetal DNA/RNA provide fetal information but are hard to find in an overwhelming background of maternal cells and in the absence of specific fetal cell markers. The most experience has been accumulated with fetal rhesus and fetal sex determination from maternal blood, with an accuracy of up to 100% by using gene sequences that are absent from maternal blood. Although not clinically applicable yet, fetal cells, fetal DNA/RNA and fetal proteomics in combination with cutting edge technology are described to prenatally diagnose aneuploidies and single-gene disorders.
Collapse
Affiliation(s)
- Ossie Geifman-Holtzman
- Division of Reproductive Genetics and Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Temple University School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|
7
|
Vodicka R, Vrtel R, Dusek L, Prochazka M, Schneiderova E, Vrbicka D, Krejcirikova E, Dhaifalah I, Santava A, Santavy J. Refined fluorescent STR quantification of cell-free fetal DNA during pregnancy in physiological and Down syndrome fetuses. Prenat Diagn 2008; 28:425-33. [PMID: 18395872 DOI: 10.1002/pd.1996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Cell-free fetal (cff) DNA analysis by short tandem repeats (STR) has the advantage of better recognizing the different genotypes. However, quantitative examination by quantitative fluorescent (QF) polymerase chain reaction (PCR) by STRs is limited to only a rough approximation. This project focuses on a more precise calculation of the relative cff DNA amount tested in the STRs' loci. METHODS The cff DNA was analyzed in 363 samples from 258 pregnant women with physiological fetuses in different stages of pregnancy (from 4-37 gestational weeks) separately in three STRs [D21S1435, D21S1446 and PentaD (pD)] and also by gonosomal sequences amelogenin gene, X/Y-linked/testis specific protein, Y-linked (AMELX/Y/TSPY). Seventeen samples of cff DNA from fetuses with Down syndrome (DS) were compared. We optimized the refined quantitative fluorescent (RQF) PCR for STRs in a particular locus. RESULTS AND CONCLUSIONS The cff DNA detection rate was 74% in at least one of the STRs. The efficiency decreased from shorter to longer PCR fragments. All three STR and gonosomal loci proved an increase in cff DNA during pregnancy. The stutter variability rate is greatest in short STR fragments and decreases as the STR fragments increase in length. Results showed that DS samples had a significantly higher amount of cff DNA.
Collapse
Affiliation(s)
- Radek Vodicka
- Department of Clinical Genetics and Fetal Medicine, University Hospital Olomouc, I.P Pavlova 6, 775 20 Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Finning KM, Chitty LS. Non-invasive fetal sex determination: impact on clinical practice. Semin Fetal Neonatal Med 2008; 13:69-75. [PMID: 18243829 DOI: 10.1016/j.siny.2007.12.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prenatal fetal sex determination is undertaken in women at high risk of serious genetic disorders affecting a specific sex. Traditionally, this is undertaken by invasive testing, usually chorionic villus sampling, which carries a risk of miscarriage of around 1%. The identification of cell-free fetal DNA in the maternal circulation has allowed the development of 'non-invasive prenatal diagnostic tests', which permit fetal sex determination without risk to the pregnancy.
Collapse
Affiliation(s)
- Kirstin M Finning
- International Blood Group Reference Laboratory, Southmead Road, Bristol, UK
| | | |
Collapse
|
9
|
Hyett JA, Gardener G, Stojilkovic-Mikic T, Finning KM, Martin PG, Rodeck CH, Chitty LS. Reduction in diagnostic and therapeutic interventions by non-invasive determination of fetal sex in early pregnancy. Prenat Diagn 2007; 25:1111-6. [PMID: 16231296 DOI: 10.1002/pd.1284] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study reviews our clinical experience of non-invasive techniques for early sex determination. It assesses the effectiveness of these techniques at reducing invasive prenatal testing for X-linked genetic disease or for ambiguous development of the external genitalia. METHODS A prospective cohort study of 30 pregnancies was referred to a tertiary unit for prenatal diagnosis. Fetal gender was determined using two non-invasive techniques: analysis of free fetal DNA (ffDNA) in maternal plasma and ultrasound visualisation. The results were compared to fetal gender determined by invasive testing or at birth. RESULTS Fetal gender was accurately determined by analysis of ffDNA at a mean of 10 + 1 (7 + 6 to 14 + 1) weeks' gestation in all cases. Ultrasound assessment was accurate in 20 of the 23 cases where this was attempted at 12 + 0 (10 + 4 to 14 + 1) weeks' gestation, but could not be determined in the remaining 3 cases. Thirteen of 28 (46%) women chose not to have invasive testing on the basis of these findings. CONCLUSIONS Both the techniques appear to offer an accurate means of assessing fetal gender, giving parents the option of avoiding invasive testing in the 50% of cases where the fetus would not be affected. The molecular technique is performed at an earlier gestation, but female fetal status is predicted by a negative test result. Ultrasound cannot be applied until 11 weeks' gestation but diagnostic signs are sought in both sexes. Combining these approaches offers a highly sensitive method of non-invasive determination of gender in high-risk pregnancies. Health professionals, clinical geneticists and genetics associates, in particular, who refer women at high risk should be aware of these non-invasive options for prenatal sex determination.
Collapse
Affiliation(s)
- Jon A Hyett
- Academic Department of Obstetrics and Gynaecology, University College London, Chenies Mews, London, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Bauer M, Hutterer G, Eder M, Majer S, Leshane E, Johnson KL, Peter I, Bianchi DW, Pertl B. A prospective analysis of cell-free fetal DNA concentration in maternal plasma as an indicator for adverse pregnancy outcome. Prenat Diagn 2006; 26:831-6. [PMID: 16832830 DOI: 10.1002/pd.1513] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES To evaluate whether cell-free fetal (cff) DNA in maternal plasma during the second trimester is a marker for developing pregnancy-associated complications. Two PCR techniques for the detection and quantitation of fetal DNA were compared. METHODS Plasma samples were prospectively collected from 84 pregnant women carrying male fetuses before amniocentesis (14-29 weeks). We later recorded 26 pregnancies with complicated outcomes, including five cases of fetal chromosomal abnormalities. For statistical analysis, two overlapping subgroups A and B were made. Each group was separately compared for total and fetal DNA with a corresponding group considered normal using Wilcoxon rank sum test. Male fetal DNA concentration in maternal plasma was quantified using real-time quantitative polymerase chain reaction (PCR) of SRY sequences. The samples were also analyzed by quantitative fluorescent PCR (QF-PCR) using highly polymorphic short tandem repeat DNA sequences (STRs), and the percentage of relative fetal allele concentration in maternal alleles was calculated and compared to the fetal/total DNA ratio obtained by real-time PCR. RESULTS Quantities of total and fetal circulating DNA were significantly correlated (r(2) = 0.44, P < 0.0001) with a median total DNA concentration of 522 GE/mL (range 51-3047) and a median fetal DNA concentration of 8 GE/mL (range 0-879). Neither level was correlated with gestational age in pregnancies with normal (r(2) = -0.05; P = 0.66, and r(2) = 0.02; P = 0.88, respectively) and abnormal (r(2) = 0.45; P = 0.17, and r(2) = 0.11; P = 0.76, respectively) outcomes. Although both total and fetal DNA levels were always higher in women carrying pregnancies with chromosomal aberrations or having other pregnancy complications (P-values range from 0.028 to 0.267), these differences reached statistical significance only for total DNA levels between the group A and corresponding normal pregnancies (P = 0.028). The correlation between the fetal/total DNA ratio obtained by real-time PCR and the percentage of relative fetal allele concentration in maternal alleles obtained by QF-PCR was not found to be statistically significant (r(2) = 0.04; P = 0.76). CONCLUSION Our results confirm the clinical value of fetal DNA measurement in maternal plasma during the second trimester as a supplement for the diagnosis of aneuploidies. Its use as a screening instrument for complications that develop later in pregnancy seems to be limited but needs further investigation. Although the QF-PCR assay has the advantage of being applicable to both female and male fetuses, this approach cannot be used for quantitation of cff DNA in maternal plasma samples.
Collapse
Affiliation(s)
- Margit Bauer
- Department of Obstetrics and Gynaecology, Medical University Graz, Auenbruggerplatz 14, A-8036 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Avent ND, Chitty LS. Non-invasive diagnosis of fetal sex; utilisation of free fetal DNA in maternal plasma and ultrasound. Prenat Diagn 2006; 26:598-603. [PMID: 16856214 DOI: 10.1002/pd.1493] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Non-invasive prenatal diagnosis is now a clinical reality, using both early ultrasound and molecular DNA methods. Technical advances in the sensitivity of the polymerase chain reaction (PCR), coupled with the finding that significant levels of fetal DNA (ffDNA) are found in maternal plasma and serum, has enabled the ready detection of paternally inherited genes or polymorphisms. Routine maternal plasma-based genotyping is now available for the determination of fetal sex and RHD blood group status (Van der Schoot et al., 2003). This review touches briefly on the ultrasound diagnoses and then focuses on the application of free ffDNA for fetal sex determination, indicating the Y-chromosome targets exploited in this strategy and the merits of their utilisation.
Collapse
Affiliation(s)
- Neil D Avent
- Centre for Research in Biomedicine, Faculty of Applied Sciences, University of the West of England, Bristol
| | | |
Collapse
|
12
|
Wataganara T, Metzenbauer M, Peter I, Johnson KL, Bianchi DW. Placental volume, as measured by 3-dimensional sonography and levels of maternal plasma cell-free fetal DNA. Am J Obstet Gynecol 2005; 193:496-500. [PMID: 16098876 DOI: 10.1016/j.ajog.2004.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 11/09/2004] [Accepted: 12/06/2004] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Measurement of cell-free fetal (cff) DNA in maternal plasma may have clinical application in prenatal screening for fetal Down syndrome and preeclampsia. Little is known regarding the tissue of origin of these fetal-derived sequences. We tested the hypothesis that if the placenta is the major contributor of cff DNA, then an increased placental volume should be associated with higher maternal plasma cff DNA levels. STUDY DESIGN We enrolled 143 pregnant women who underwent first-trimester placental volume measurement using 3-dimensional ultrasonography. Cff DNA in maternal plasma on the day of the scan was quantified by real-time polymerase chain reaction (PCR) amplification of a Y-chromosome sequence. The association between measured placental volume and maternal plasma cff DNA levels was analyzed along with relevant clinical variables. RESULTS The median (25th, 75th percentiles) maternal plasma cff DNA level was 16.9 genome equivalents (GE)/mL (10.8, 28.7). Raw values were adjusted for gestational age and maternal body mass index. The median (25th, 75th percentiles) placental volume was 53.2 mL (43.0, 64.7), and median placental quotient (ratio of placental volume to fetal crown-rump length) was 1 mm2 (0.8, 1.1). Based on multivariate linear regression analyses, neither of the above placental measurements showed a significant association with maternal plasma cff DNA levels (P = .43 and .43, respectively). A modest association was found between plasma cff DNA levels and gravidity (P = .03). CONCLUSION Our data did not show a significant association between either the placental volume or placental quotient, and maternal plasma cff DNA levels. We speculate that it is the extent of placental apoptosis that primarily affects the amount of cff DNA released into the maternal circulation.
Collapse
Affiliation(s)
- Tuangsit Wataganara
- Division of Genetics, Department of Pediatrics, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
13
|
Birch L, English CA, O'Donoghue K, Barigye O, Fisk NM, Keer JT. Accurate and robust quantification of circulating fetal and total DNA in maternal plasma from 5 to 41 weeks of gestation. Clin Chem 2004; 51:312-20. [PMID: 15608152 DOI: 10.1373/clinchem.2004.042713] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Detection of fetal DNA in maternal plasma is achievable at 5 weeks of gestation, but few large-scale studies have reported circulating fetal and maternal DNA across all trimesters. METHODS Blood samples were collected from 201 women between 5 and 41 weeks of pregnancy. Quantitative PCR was used to assess total and fetal DNA concentrations, and allelic discrimination analysis was investigated as a route to detecting specifically fetal DNA. RESULTS Male fetuses were detectable from 5 weeks amenorrhea with increasing fetal DNA concentrations across gestation. The sensitivity of fetal male gender determination in pregnancies with live birth confirmation was 99%, with 100% specificity. Total DNA concentrations did not correlate with gestational age, but appeared slightly higher in the first and third trimesters than in mid-pregnancy. Analysis of short tandem repeats demonstrated that significant improvements in the detection limit are required for specific detection of fetal DNA. CONCLUSIONS The high sensitivity of PCR-based detection, together with quantification provided by real-time DNA analysis, has clear potential for clinical application in noninvasive prenatal diagnosis. However, accurate quantification using best-fit data analysis, standardization of methods, and performance control indicators are necessary for robust routine noninvasive diagnostics.
Collapse
Affiliation(s)
- Lyndsey Birch
- BioAnalytical Innovation Team, LGC Ltd., Teddington, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Bischoff FZ, Lewis DE, Simpson JL. Cell-free fetal DNA in maternal blood: kinetics, source and structure. Hum Reprod Update 2004; 11:59-67. [PMID: 15569699 DOI: 10.1093/humupd/dmh053] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The kinetics and structure of cell-free fetal DNA in maternal plasma is currently under investigation. Plasma fetal DNA seems quite stable albeit cleared rapidly following birth, suggesting continuous fetal DNA release into the maternal circulation during pregnancy. However, to understand better the kinetics of circulating DNA, studies to determine the biological (structural) form in which fetal and maternal DNA exist and the mechanisms underlying variation in plasma are warranted to ensure quantitative diagnostic reliability. It is likely that circulating fetal DNA is released from fetal and/or placental cells undergoing apoptosis. Thus, the majority of fetal DNA is proposed to circulate in membrane-bound vesicles (apoptotic bodies). This review summarizes the latest reports in this field.
Collapse
Affiliation(s)
- Farideh Z Bischoff
- Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
15
|
Bianchi DW. Circulating Fetal DNA: Its Origin and Diagnostic Potential—A Review. Placenta 2004; 25 Suppl A:S93-S101. [PMID: 15033315 DOI: 10.1016/j.placenta.2004.01.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 01/02/2004] [Accepted: 01/02/2004] [Indexed: 11/22/2022]
Abstract
OBJECTIVE In contrast to the traditional teaching that the placenta forms an impermeable barrier, multiple studies show that both intact fetal cells and cell-free nucleic acids circulate freely in maternal blood. Complications of pregnancy, such as pre-eclampsia, or fetal cytogenetic abnormalities, such as trisomy 21, increase transfusion of both intact fetal cells and cell-free fetal nucleic acids into the maternal circulation. The objective of our research is to show that abnormal feto-maternal trafficking of nucleic acids is associated with fetal and placental pathology, and that these observations may lead to novel non-invasive diagnostic and screening tests. METHODS Real-time quantitative PCR amplification of DYS1 is used to measure the levels of male fetal DNA in case-control sets of serum or plasma taken from pregnant women. In our laboratory, we use DYS1, a Y-chromosome specific gene, as a uniquely fetal DNA marker for the development of gestation-specific normal values and theoretical models. RESULTS Women carrying fetuses with trisomies 21 or 13 (but not 18) have increased levels of fetal DNA in their fresh or archived serum and/or plasma samples. Women destined to develop pre-eclampsia have a characteristic bi-phasic elevation of cell-free fetal DNA that precedes clinical symptoms. Data obtained from a variety of clinical scenarios suggest that the placenta is the predominant source of the circulating fetal nucleic acids, although apoptotic haematopoietic cells may contribute to the pool as well. CONCLUSIONS Fetal cell-free DNA is elevated in a number of conditions associated with placental pathology. Widespread clinical implementation of fetal DNA as a screening tool awaits discovery of a reliable gender-independent marker, which may be DNA polymorphisms, epigenetic markers, or mRNA. Fetal cell-free nucleic acids have potential for non-invasive monitoring of placental pathology.
Collapse
Affiliation(s)
- D W Bianchi
- Division of Genetics, Departments of Pediatrics, Obstetrics and Gynecology, Tufts-New England Medical Center and Tufts University School of Medicine, Box 394, 750 Washington Street, Boston, MA 02111, USA.
| |
Collapse
|
16
|
Abstract
The launch of the genomics and postgenomics era has greatly expanded our understanding of the genetic basis of many diseases. In conjunction with the sociocultural trend to delay childbirth and to maintain smaller family units, extra demand may be placed on the existing prenatal diagnostic services. The inherent risk of fetal loss associated with current prenatal diagnostic procedures, such as amniocentesis and chorionic villus sampling, has spurred research into non-invasive prenatal diagnosis. Much research has been conducted on the exploitation of fetal genetic material present in the maternal circulation. The initial focus was on the isolation of intact fetal cells and subsequently, the existence of extracellular fetal DNA in maternal plasma was realized. Exciting developments have been achieved in recent years. A large-scale trial to evaluate the clinical utility of fetal cell isolation from maternal blood for fetal aneuploidy diagnosis was launched and data were recently published. Much has taken place in the research of fetal DNA analysis in maternal plasma and in one example, namely prenatal RhD determination, this type of analysis has been used in the clinical setting. This paper reviews the technological developments in non-invasive prenatal diagnosis.
Collapse
Affiliation(s)
- Rossa W K Chiu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Room 38023, 1/F Clinical Sciences Building, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong, SAR
| | | |
Collapse
|