1
|
Mamun MAA, Li J, Cui A, Chowdhury R, Hossain ML. Climate-adaptive strategies for enhancing agricultural resilience in southeastern coastal Bangladesh: Insights from farmers and stakeholders. PLoS One 2024; 19:e0305609. [PMID: 38905289 PMCID: PMC11192385 DOI: 10.1371/journal.pone.0305609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/03/2024] [Indexed: 06/23/2024] Open
Abstract
Climate change impacts crop production worldwide, and coastal regions are particularly vulnerable to its adverse effects. Given the projected rise in temperature and shifting precipitation patterns, it is crucial to examine the current challenges faced by farmers in coastal Bangladesh. Using Focus Group Discussions (FGDs) and Key Informant Interviews (KIIs), we assessed the perceptions and experiences of farmers and stakeholders regarding the existing agricultural practices, the challenges they face in crop cultivation, and the adoption of climate-adaptive practices in 2 sub-districts in the southeastern coastal region of Bangladesh. Moreover, using the Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Terrestrial Water Storage Index (STI), we assessed the frequency and intensity of different climatic conditions in these two sub-districts. Results show that 100% of the respondents reported an increase in dry climatic conditions, the occurrence of untimely precipitation, and a decline in irrigation water during the cropping season. All the respondents in the FGDs expressed a loss of crop production because of these climate-induced disturbances. Despite these challenges, farmers have been implementing several climate-adaptive practices. Among the 9 mentioned climate-adaptive practices, 50% of FGD respondents utilize organic fertilizers, 42% cultivate heat- and drought-resilient crop varieties, use improved irrigation and harvest rainwater, and 25% cultivate integrated crops. The results of quantitative analysis of 3- and 6-month SPEI and STI values show that this region experienced frequent and intense dry climatic conditions during the growing-season, which supports the farmers' and stakeholders' concern about the increasing occurrence of droughts during crop growing periods. The results suggest that despite adopting climate-resilient practices under increasing growing-season droughts, farmers require support from the government and NGOs in capacity-building training and input support (e.g., stress-resilient seeds). This study holds practical implications for government, NGOs, and policymakers for ensuring sustainable agricultural productivity in the coastal region of Bangladesh.
Collapse
Affiliation(s)
- Md. Abdullah Al Mamun
- Department of Geography, Hong Kong Baptist University, Hong Kong, China
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Jianfeng Li
- Department of Geography, Hong Kong Baptist University, Hong Kong, China
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Aihong Cui
- Department of Geography, Hong Kong Baptist University, Hong Kong, China
| | - Raihana Chowdhury
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Lokman Hossain
- Department of Geography, Hong Kong Baptist University, Hong Kong, China
- Department of Environment Protection Technology, German University Bangladesh, Gazipur, Bangladesh
| |
Collapse
|
2
|
Hossain ML, Li J, Lai Y, Beierkuhnlein C. Long-term evidence of differential resistance and resilience of grassland ecosystems to extreme climate events. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:734. [PMID: 37231126 DOI: 10.1007/s10661-023-11269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Grassland ecosystems are affected by the increasing frequency and intensity of extreme climate events (e.g., droughts). Understanding how grassland ecosystems maintain their functioning, resistance, and resilience under climatic perturbations is a topic of current concern. Resistance is the capacity of an ecosystem to withstand change against extreme climate, while resilience is the ability of an ecosystem to return to its original state after a perturbation. Using the growing season Normalized Difference Vegetation Index (NDVIgs, an index of vegetation growth) and the Standardized Precipitation Evapotranspiration Index (a drought index), we evaluated the response, resistance, and resilience of vegetation to climatic conditions for alpine grassland, grass-dominated steppe, hay meadow, arid steppe, and semi-arid steppe in northern China for the period 1982-2012. The results show that NDVIgs varied significantly across these grasslands, with the highest (lowest) NDVIgs values in alpine grassland (semi-arid steppe). We found increasing trends of greenness in alpine grassland, grass-dominated steppe, and hay meadow, while there were no detectable changes of NDVIgs in arid and semi-arid steppes. NDVIgs decreased with increasing dryness from extreme wet to extreme dry. Alpine and steppe grasslands exhibited higher resistance to and lower resilience after extreme wet, while lower resistance to and higher resilience after extreme dry conditions. No significant differences in resistance and resilience of hay meadow under climatic conditions suggest the stability of this grassland under climatic perturbations. This study concludes that highly resistant grasslands under conditions of water surplus are low resilient, but low resistant ecosystems under conditions of water shortage are highly resilient.
Collapse
Affiliation(s)
- Md Lokman Hossain
- Department of Geography, Hong Kong Baptist University, Hong Kong, China
- Department of Biogeography, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- Department of Environment Protection Technology, German University Bangladesh, Gazipur, Bangladesh
| | - Jianfeng Li
- Department of Geography, Hong Kong Baptist University, Hong Kong, China.
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| | - Yangchen Lai
- Department of Geography, Hong Kong Baptist University, Hong Kong, China
| | - Carl Beierkuhnlein
- Department of Biogeography, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- BayCEER, Bayreuth Center for Ecology and Environmental Research, Universitätsstr. 30, 95447, Bayreuth, Germany
- GIB, Geographical Institute Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| |
Collapse
|
3
|
He Z, Chen L, Yang Y, Zhao F, Zhou C, Zhang D. Geostatistical Analysis of the Spatial Variation of Chrysolina aeruginosa Larvae at Different Stages in Desert Ecosystems. INSECTS 2023; 14:379. [PMID: 37103194 PMCID: PMC10145244 DOI: 10.3390/insects14040379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Chrysolina aeruginosa is a major pest of Artemisia ordosica, and knowledge of the spatial distribution pattern of its larvae in their natural habitat is crucial for the implementation of effective control measures. This study employed geostatistical methods to investigate the damage caused by larvae of different age groups and their spatial distribution pattern. The distribution of C. aeruginosa larvae, which cause damage to A. ordosica, differed significantly according to their age. Younger larvae were predominantly found in the middle and upper parts of the plant, whereas older larvae were mainly distributed in the middle and lower parts, with significant differences in distribution location. A generalized linear model analysis revealed that the height of the plant, and plant morphological characteristics such as height, crown width, and ground diameter were significantly correlated with the number of larvae present. Furthermore, the interaction of age with other variables had an impact on the number of larvae. Kriging interpolation showed that C. aeruginosa larvae were distributed in aggregated patches with strong spatial heterogeneity. The younger larvae were more abundant in the center of the sample site, while the older larvae tended to be distributed toward the edges. These findings provide valuable information for designing effective control programs.
Collapse
Affiliation(s)
| | | | | | | | | | - Dazhi Zhang
- School of Life Science, Ningxia University, Yinchuan 750021, China; (Z.H.)
| |
Collapse
|
4
|
Das AC, Shahriar SA, Chowdhury MA, Hossain ML, Mahmud S, Tusar MK, Ahmed R, Salam MA. Assessment of remote sensing-based indices for drought monitoring in the north-western region of Bangladesh. Heliyon 2023; 9:e13016. [PMID: 36755601 PMCID: PMC9900510 DOI: 10.1016/j.heliyon.2023.e13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Drought is a widespread hazard that can tremendously affect the biodiversity, habitat of wild species, and ecosystem functioning and stability, especially in the dry region. Due to its geographic location, the north-western region of Bangladesh has a comparatively arid climate which is very much susceptible to drought occurrence and is marked as a red zone. Despite the growing evidence of the impact of drought on food security and ecosystem functioning, little effort has been paid to mitigate the drought in this region. The present study aimed to assess the drought condition of the north-western region of Bangladesh using earth observation techniques. For this purpose, Landsat data from 1990 to 2020 was used to determine various vegetation indices such as Normalized Difference Vegetation Index (NDVI), Water Index (NDWI), Moisture Index (NDMI) and Soil Adjusted Vegetation Index (SAVI), along with Land Surface Temperature (LST). Results show that the depletion of forests (2832 km2) and water bodies (6773 km2) resulted from the expansion of settlement (6563 km2) and agricultural land (1802 km2) for the period 1990-2020. Examination of the temporal changes of vegetation indices and LST showed that the values of all indices decreased while the LST increased. The negative correlation between NDVI value and LST indicates that the vegetation in our study was subject to drought-induced shocks. This study reveals the current situation of the vegetation health in the north-western region of Bangladesh in relation to the drought conditions. The findings of this study have practical implications for the policymakers in implementing necessary measures for agriculture, forests, water development, and economic zone planning.
Collapse
Affiliation(s)
- Ashim C. Das
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Shihab A. Shahriar
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Department of Earth and Atmospheric Sciences University of Houston, TX, 77004, USA
| | - Md A. Chowdhury
- Department of Climate and Disaster Management, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Lokman Hossain
- Department of Environment Protection Technology, German University Bangladesh, Gazipur, Bangladesh
- Department of Geography, Hong Kong Baptist University, Hong Kong, China
| | - Shahed Mahmud
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Kamruzzaman Tusar
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Romel Ahmed
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammed Abdus Salam
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| |
Collapse
|
5
|
Xuan W, Rao L. Spatiotemporal dynamics of net primary productivity and its influencing factors in the middle reaches of the Yellow River from 2000 to 2020. FRONTIERS IN PLANT SCIENCE 2023; 14:1043807. [PMID: 36778674 PMCID: PMC9911816 DOI: 10.3389/fpls.2023.1043807] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Introduction Net primary productivity (NPP) is an important indicator used to characterize the productivity of terrestrial ecosystems. The spatial distribution and dynamic change in NPP are closely related to regional climate, vegetation growth and human activities. Studying the spatiotemporal dynamics of NPP and its influencing factors plays a vital role in understanding ecosystem carbon sink capacity. Methods Based on MODIS-NPP data, meteorological data, and land use data from 2000 to 2020, we analyzed the spatiotemporal variation characteristics and influencing factors of NPP in the middle reaches of the Yellow River (MRYR) by using unary linear regression analysis, third-order partial correlation analysis, and Sen+Mann-Kendall trend analysis. Results The results showed that the annual average NPP of the MRYR was 319.24 gCm-2a-1 with a spatially decreasing trend from the southern part to the northern part. From 2000 to 2020, the annual average NPP experienced a fluctuating upward trend at a rate of 2.83 gCm-2a-1, and the area with a significant upward trend accounted for 87.68%. The NPP of different land use types differed greatly, in which forest had the greatest increase in NPP. Temperature had a negative correlation with NPP in most parts of the MRYR. Water vapor pressure promoted the accumulation of NPP in the northwestern MRYR. The areas with a positive correlation between NPP and water vapor pressure accounted for 87.6%, and 20.43% of the MRYR area passed the significance test of P< 0.05. Conclusion The results of the study highlight the impact of climate factors and land-use changes on NPP and provide theoretical guidance for high-quality sustainable development in the MRYR.
Collapse
Affiliation(s)
- Wenxi Xuan
- College of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing, China
| | - Liangyi Rao
- College of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing, China
| |
Collapse
|
6
|
Hossain ML, Li J, Hoffmann S, Beierkuhnlein C. Biodiversity showed positive effects on resistance but mixed effects on resilience to climatic extremes in a long-term grassland experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154322. [PMID: 35257775 DOI: 10.1016/j.scitotenv.2022.154322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Understanding the role of biodiversity in maintaining ecosystem functioning and stability under increasing frequency and magnitude of climatic extremes has fascinated ecologists for decades. Although growing evidence suggests that biodiversity affects ecosystem productivity and buffers ecosystem against climatic extremes, it remains unclear whether the stability of an ecosystem is caused by its resistance against disturbances or resilience towards perturbations or both. In attempting to explore how species richness affects resistance and resilience of above-ground net primary productivity (ANPP) against climatic extremes, we analyzed the grassland ANPP of the long-running (1997-2020) Bayreuth Biodiversity experiment in Germany. We used the Standardized Precipitation Evapotranspiration Index to identify climatic conditions based on 5- and 7-class classifications of climatic conditions. Mixed-effects models and post-hoc test show that ANPP varied significantly among different intensities (e.g. moderate or extreme) and directions (e.g. dry or wet) of climatic conditions, with the highest ANPP in extreme wet and the lowest in extreme dry conditions. Resistance and resilience of ANPP to climatic extremes in different intensities were examined by linear-mixed effects models and we found that species richness increased ecosystem resistance against all dry and wet climatic extremes, but decreased ecosystem resilience towards all dry climatic extremes. Species richness had no effects on ecosystem resilience towards wet climatic extremes. When the five level of species richness treatment (i.e., 1, 2, 4, 8, and 16 species) were considered, the relationships between species richness and resistance and resilience of ANPP under extreme wet and dry conditions remained similar. Our study emphasizes that plant communities with greater species richness need to be maintained to stabilize ecosystem productivity and increase resistance against different climatic extremes.
Collapse
Affiliation(s)
- Md Lokman Hossain
- Department of Geography, Hong Kong Baptist University, Baptist University Road, Kowloon Tong, Hong Kong, China; Department of Biogeography, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany; Department of Environment Protection Technology, German University Bangladesh, 1702 Gazipur, Bangladesh
| | - Jianfeng Li
- Department of Geography, Hong Kong Baptist University, Baptist University Road, Kowloon Tong, Hong Kong, China.
| | - Samuel Hoffmann
- Department of Biogeography, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Carl Beierkuhnlein
- Department of Biogeography, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany; BayCEER, Bayreuth Center for Ecology and Environmental Research, Universitätsstr. 30, 95447 Bayreuth, Germany
| |
Collapse
|
7
|
Ma R, Xia C, Liu Y, Wang Y, Zhang J, Shen X, Lu X, Jiang M. Spatiotemporal Change of Net Primary Productivity and Its Response to Climate Change in Temperate Grasslands of China. FRONTIERS IN PLANT SCIENCE 2022; 13:899800. [PMID: 35685016 PMCID: PMC9171389 DOI: 10.3389/fpls.2022.899800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The temperate grasslands in China play a vital part in regulating regional carbon cycle and climate change. Net primary productivity (NPP) is a crucial index that reflects ecological function of plants and the carbon sequestration capacity of grassland ecosystem. Climate change can affect NPP by changing vegetation growth, but the effects of climate change on the NPP of China's temperate grasslands remain unclear. Based on MODIS data and monthly climate data during 2000-2020, this study explored the spatiotemporal changes in grassland NPP and its response to climate change in temperate grasslands of China. We found that the annual NPP over the entire China's temperate grasslands increased significantly by 4.0 gC/m2/year from 2000 to 2020. The annual NPP showed increasing trends for all the different grassland vegetation types, with the smallest increase for temperate desert steppe (2.2 gC/m2/year) and the largest increase for temperate meadow (5.4 gC/m2/year). The correlation results showed that increased annual precipitation had a positive relationship with the NPP of temperate grasslands. Increased summer and autumn precipitation could increase grassland NPP, particularly for the temperate meadow. With regard to the effects of temperatures, increased temperature, particularly the summer maximum temperature, could decrease annual NPP. However, increased spring minimum temperature could increase the NPP of temperate desert steppe. In addition, this study found, for the first time, an asymmetric relationship between summer nighttime and daytime warming and the NPP of temperate meadow. Specifically, nighttime warming can increase NPP, while daytime warming can reduce NPP in temperate meadow. Our results highlight the importance of including seasonal climate conditions in assessing the vegetation productivity for different grassland types of temperate grasslands and predicting the influences of future climate change on temperate grassland ecosystems.
Collapse
Affiliation(s)
- Rong Ma
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Mapping and Geographical Sciences, Liaoning Technical University, Fuxin, China
| | - Chunlin Xia
- College of Mapping and Geographical Sciences, Liaoning Technical University, Fuxin, China
| | - Yiwen Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanji Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiangjin Shen
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xianguo Lu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Ming Jiang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
8
|
Assessing the Net Primary Productivity Dynamics of the Desert Steppe in Northern China during the Past 20 Years and Its Response to Climate Change. SUSTAINABILITY 2022. [DOI: 10.3390/su14095581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The net primary productivity (NPP) dynamics in arid and semi-arid ecosystems are critical for regional carbon management. Our study applied a light-utilization-efficiency model (CASA: Carnegie–Ames–Stanford Approach) to evaluate the vegetation NPP dynamics of a desert steppe in northern China over the past 20 years, and its response to climate change. Our results show that the annual average NPP of the desert steppe was 132 g C m−2 y−1, of which the grass- and shrub-dominated biome values were 142 and 91 g C m−2 y−1, respectively. The average change rate of NPP was 1.13 g C m−2 y−1, and in the grassland biome 1.31 g C m−2 y−1, a value which was significantly higher than that in shrubland, at 0.84 g C m−2 y−1. The precipitation and temperature at different time scales in the desert steppe showed a slow upward trend, and the degree of aridity tended to weaken. The correlation analysis shows that NPP changes were significantly positively and negatively correlated with precipitation and temperature, respectively. In terms of temperature, 43% of the area was significantly correlated during the growing season, which decreased to 12% on the annual scale. In 31% of the changed areas, the average NPP was 148.1 g C m−2 y−1, which was higher than the remaining significant areas. This suggests that higher NPP levels help to attenuate the negative effects of high temperature during the growing season on plant productivity in the desert steppe. This improves the understanding of the carbon cycle mechanism of arid and semi-arid ecosystems, which is beneficial to improving sustainable grassland development strategies.
Collapse
|