1
|
Li H, Gao K, Guo H, Li R, Li G. Advancements in Gellan Gum-Based Films and Coatings for Active and Intelligent Packaging. Polymers (Basel) 2024; 16:2402. [PMID: 39274035 PMCID: PMC11397091 DOI: 10.3390/polym16172402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Gellan gum (GG) is a natural polysaccharide with a wide range of industrial applications. This review aims to investigate the potential of GG-based films and coatings to act as environmentally friendly substitutes for traditional petrochemical plastics in food packaging. GG-based films and coatings exhibit versatile properties that can be tailored through the incorporation of various substances, such as plant extracts, microorganisms, and nanoparticles. These functional additives enhance properties like the light barrier, antioxidant activity, and antimicrobial capabilities, all of which are essential for extending the shelf-life of perishable food items. The ability to control the release of active compounds, along with the adaptability of GG-based films and coatings to different food products, highlights their effectiveness in preserving quality and inhibiting microbial growth. Furthermore, GG-based composites that incorporate natural pigments can serve as visual indicators for monitoring food freshness. Overall, GG-based composites present a promising avenue for the development of sustainable and innovative food packaging solutions.
Collapse
Affiliation(s)
- Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Guantian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Shah YA, Bhatia S, Al-Harrasi A, Tarahi M, Almasi H, Chawla R, Ali AMM. Insights into recent innovations in barrier resistance of edible films for food packaging applications. Int J Biol Macromol 2024; 271:132354. [PMID: 38750852 DOI: 10.1016/j.ijbiomac.2024.132354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/27/2024]
Abstract
The utilization of biopolymer-based food packaging holds significant promise in aligning with sustainability goals and enhancing food safety by offering a renewable, biodegradable, and safer alternative to traditional synthetic polymers. However, these biopolymer-derived films often exhibit poor barrier and mechanical properties, potentially limiting their commercial viability. Desirable barrier properties, such as moisture and oxygen resistance, are critical for preserving and maintaining the quality of packaged food products. This review comprehensively explores different traditional and advance methodologies employed to access the barrier properties of edible films. Additionally, this review thoroughly examines various approaches aimed at enhancing the barrier properties of edible films, such as the fabrication of multilayer films, the selection of biopolymers for composite films, as well as the integration of plasticizers, crosslinkers, hydrophobic agents, and nanocomposites. Moreover, the influence of process conditions, such as preparation techniques, homogenization, drying conditions, and rheological behavior, on the barrier properties of edible films has been discussed. The review provides valuable insights and knowledge for researchers and industry professionals to advance the use of biopolymer-based packaging materials and contribute to a more sustainable and food-safe future.
Collapse
Affiliation(s)
- Yasir Abbas Shah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman.
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Rekha Chawla
- Guru Angad Dev Veterinary and Animal Sciences University, Punjab, India
| | - Ali Muhammed Moula Ali
- School of Food-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
3
|
Jakhrani MA, Tahira A, Bhatti MA, Shah AA, Shaikh NM, Mari RH, Vigolo B, Emo M, Albaqami MD, Nafady A, Ibupoto ZH. A green approach for the preparation of ZnO@C nanocomposite using agave americana plant extract with enhanced photodegradation. NANOTECHNOLOGY 2022; 33:505202. [PMID: 36103847 DOI: 10.1088/1361-6528/ac91d8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
The present study demonstrates the crucial role of agave americana extract in enhancing the optical properties of zinc oxide (ZnO) through thermal treatment method. Various analytical and surface science techniques have been used to identify the morphology, crystalline structure, chemical composition, and optical properties, including scanning electron microscopy, x-ray diffraction, high resolution transmission electron microscopy (HRTEM), x-ray spectroscopy (EDS) and UV-visible spectroscopy techniques. The physical studies revealed the transformation of ZnO nanorods into nanosheets upon addition of an optimized amount of agave americana extract, which induced large amount of amorphous carbon deposited onto ZnO nanostructures as confirmed by HRTEM analysis. The use of increasing amount of americana extract has significantly reduced the average crystallite size of ZnO nanostructures. The resultant hybrid system of C@ZnO has produced a significant effect on the ultraviolet light-assisted photodegradation of malachite green (MG) dye. The photocatalyst dose was fixed at 10 mg for each study whereas the amount of agave americana extract and MG dye concentration are varied. The functionality of hybrid system was greatly enhanced when the amount of agave americana extract increased while dye concentration kept at lower level. Ultimately, almost 100% degradation efficiency was achieved via the prepared hybrid material, revealing combined contribution from synergy, stabilization of ZnO due to excess of carbon together with the high charge separation rate. The obtained results suggest that the driving role of agave americana extract for surface modification of photocatalyst can be considered for other nanostructured photocatalysts.
Collapse
Affiliation(s)
| | - Aneela Tahira
- Dr. M.A Kazi Institute of Chemistry University of Sindh Jamshoro, 76080, Sindh, Pakistan
| | - Muhammad Ali Bhatti
- Center for Environmental Sciences University of Sindh Jamshoro, 76080, Sindh, Pakistan
| | - Aqeel Ahmed Shah
- Department of Metallurgical Engineering, NED University of Engineering and Technology, Karachi, Sindh, Pakistan
| | | | - Riaz Hussain Mari
- Institute of Physics, University of Sindh Jamshoro, 76080, Sindh, Pakistan
| | | | - Mélanie Emo
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | - Munirah D Albaqami
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zafar Hussain Ibupoto
- Dr. M.A Kazi Institute of Chemistry University of Sindh Jamshoro, 76080, Sindh, Pakistan
| |
Collapse
|
4
|
Furhan, Ramesan MT. High performance optical and electrical properties of zinc oxide reinforced poly(diphenylamine) nanocomposites for optoelectronic applications. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Furhan
- Centre for Polymer Science and Technology, Department of Chemistry University of Calicut Kerala India
| | | |
Collapse
|
5
|
Bassi A, Hasan I, Qanungo K, Koo BH, Khan RA. Visible light assisted mineralization of malachite green dye by green synthesized xanthan gum/agar@ZnO bionanocomposite. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Properties of Cellulose Pulp and Polyurethane Composite Films Fabricated with Curcumin by Using NMMO Ionic Liquid. Gels 2022; 8:gels8040248. [PMID: 35448149 PMCID: PMC9029826 DOI: 10.3390/gels8040248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 02/04/2023] Open
Abstract
Cellulose pulp (CP), polyurethane (PU), and curcumin-based biocompatible composite films were prepared using a simple cost-effective method. Significant structural and microstructural changes were studied using FT-IR spectroscopy, XRD, and SEM. The 5% and 10% gravimetric losses of the CP/PU/curcumin composite were found to be in the range 87.2–182.3 °C and 166.7–249.8 °C, respectively. All the composites exhibited single Tg values in the range 147.4–154.2 °C. The tensile strength of CP was measured to be 93.2 MPa, which dropped to 14.1 MPa for the 1:0.5 CP/PU composite and then steadily increased to 30.5 MPa with further addition of PU. The elongation at the break of the composites decreased from 8.1 to 3.7% with the addition of PU. The addition of PU also improved the water vapor permeability (3.96 × 10−9 to 1.75 × 10−9 g m−1 s−1 Pa−1) and swelling ratio (285 to 202%) of the CP composite films. The CP/PU/curcumin composite exhibited good antioxidant activity and no cytotoxicity when tested on the HaCat cell line. The visual appearance and UV transmittance (86.2–32.9% at 600 nm) of the CP composite films were significantly altered by the incorporation of PU and curcumin. This study demonstrates that CP/PU/curcumin composites can be used for various packaging and biomedical applications.
Collapse
|
7
|
Alfaawaz YF, Alamri R, Almohsen F, Shabab S, Alhamdan MM, Al Ahdal K, Farooq I, Vohra F, Abduljabbar T. Adhesive Bond Integrity of Experimental Zinc Oxide Nanoparticles Incorporated Dentin Adhesive: An SEM, EDX, μTBS, and Rheometric Analysis. SCANNING 2022; 2022:3477886. [PMID: 36016673 PMCID: PMC9385357 DOI: 10.1155/2022/3477886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/13/2022] [Accepted: 06/21/2022] [Indexed: 05/20/2023]
Abstract
OBJECTIVE Our study is aimed at preparing an experimental adhesive (EA) and assessing the influence of adding 5-10 wt.% concentrations of zinc oxide (ZnO) nanoparticles on the adhesive's mechanical properties. METHODS Field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopy were employed to investigate the morphology and elemental distribution of the filler nanoparticles. To examine the adhesive properties, microtensile bond strength (μTBS) testing, an investigation of the rheological properties, degree of conversion (DC), and analysis of the interface between the adhesive and dentin were carried out. RESULTS The SEM micrographs of ZnO nanoparticles demonstrated spherical agglomerates. The EDX plotting confirmed the incidence of Zn and oxygen (O) in the ZnO nanoparticles. The highest μTBS was observed for nonthermocycled (NTC) 5 wt.% ZnO group (32.11 ± 3.60 MPa), followed by the NTC-10 wt.% ZnO group (30.04 ± 3.24 MPa). Most of the failures observed were adhesive in nature. A gradual reduction in the viscosity was observed at higher angular frequencies, and the addition of 5 and 10 wt.% ZnO to the composition of the EA lowered its viscosity. The 5 wt.% ZnO group demonstrated suitable dentin interaction by showing the formation of resin tags, while for the 10 wt.% ZnO group, compromised resin tag formation was detected. DC was significantly higher in the 0% ZnO (EA) group. CONCLUSION The reinforcement of the EA with 5 and 10 wt.% concentrations of ZnO nanoparticles produced an improvement in the adhesive's μTBS. However, a reduced viscosity was observed for both nanoparticle-reinforced adhesives, and a negotiated dentin interaction was seen for 10 wt.% ZnO adhesive group. Further research exploring the influence of more filler concentrations on diverse adhesive properties is recommended.
Collapse
Affiliation(s)
- Yasser F. Alfaawaz
- Department of Restorative Dental Sciences College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Renad Alamri
- Dental Intern, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Fatimah Almohsen
- Dental Intern, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Sana Shabab
- Department of Restorative Dental Sciences College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Mai M. Alhamdan
- Department of Prosthetic dental sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Khold Al Ahdal
- Department of Restorative Dental Sciences College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Imran Farooq
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada M5G 1G6
| | - Fahim Vohra
- Department of Prosthetic dental sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University 11545, Saudi Arabia
| |
Collapse
|