1
|
Grabeck J, Mayer J, Miltz A, Casoria M, Quagliata M, Meinberger D, Klatt AR, Wielert I, Maier B, Papini AM, Neundorf I. Triazole-Bridged Peptides with Enhanced Antimicrobial Activity and Potency against Pathogenic Bacteria. ACS Infect Dis 2024; 10:2717-2727. [PMID: 38885643 DOI: 10.1021/acsinfecdis.4c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
There are still no linear antimicrobial peptides (AMPs) available as a treatment option against bacterial infections. This is caused by several drawbacks that come with AMPs such as limited proteolytic stability and low selectivity against human cells. In this work, we screened a small library of rationally designed new peptides based on the cell-penetrating peptide sC18* toward their antimicrobial activity. We identified several effective novel AMPs and chose one out of this group to further increase its potency. Therefore, we introduced a triazole bridge at different positions to provide a preformed helical structure, assuming that this modification would improve (i) proteolytic stability and (ii) membrane activity. Indeed, placing the triazole bridge within the hydrophilic part of the linear analogue highly increased membrane activity as well as stability against enzymatic digestion. The new peptides, 8A and 8B, demonstrated high activity against several bacterial species tested including pathogenic N. gonorrhoeae and methicillin-resistant S. aureus. Since they exhibited significantly good tolerability against human fibroblast and blood cells, these novel peptides offer true alternatives for future clinical applications and are worth studying in more detail.
Collapse
Affiliation(s)
- Joshua Grabeck
- University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute of Biochemistry, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Jacob Mayer
- University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute of Biochemistry, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Axel Miltz
- University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute of Biochemistry, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Michele Casoria
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Denise Meinberger
- University of Cologne, Faculty of Medicine, Institute for Clinical Chemistry, Kerpener Str. 62, 50937 Cologne, Germany
| | - Andreas R Klatt
- University of Cologne, Faculty of Medicine, Institute for Clinical Chemistry, Kerpener Str. 62, 50937 Cologne, Germany
| | - Isabelle Wielert
- University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Physics, Institute for Biological Physics, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Berenike Maier
- University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Physics, Institute for Biological Physics, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Ines Neundorf
- University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute of Biochemistry, Zuelpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
2
|
Lisowska A, Świątek P, Dębicki F, Lewińska A, Marciniak A, Pacini L, Papini AM, Brasuń J. The Role of the Unbinding Cycle on the Coordination Abilities of the Bi-Cyclopeptides toward Cu(II) Ions. Molecules 2024; 29:2197. [PMID: 38792059 PMCID: PMC11124368 DOI: 10.3390/molecules29102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Bicyclic peptides have attracted the interest of pharmaceutical companies because of their remarkable properties, putting them on a new path in medicine. Their conformational rigidity improves proteolytic stability and leads to rapid penetration into tissues via any possible route of administration. Moreover, elimination of renal metabolism is of great importance, for example, for people with a history of liver diseases. In addition, each ring can function independently, making bicyclic peptides extremely versatile molecules for further optimization. In this paper, we compared the potentiometric and spectroscopic properties studied by UV-vis, MCD, and EPR of four synthetic analogues of the bi-cyclic peptide c(PKKHP-c(CFWKTC)-PKKH) (BCL). In particular, we correlated the structural and spectral properties of complexes with coordinating abilities toward Cu(II) ions of MCL1 (Ac-PKKHPc(CFWKTC)PKKH-NH2) that contains the unbinding cycle and N- and C-terminal linear parts with two histidine residues, one per part; two monocyclic ligands containing one histidine residue, both in the N-terminal position, i.e., MCL2 (Ac-PKKHPc(CFWKTC)PKKS-NH2) and in the C-terminal position, i.e., MCL3 (Ac-PKKSPc(CFWKTC)PKKH-NH2), respectively; and the linear structure LNL (Ac-PKKHPSFWKTSPKKH-NH2). Potentiometric results have shown that the bicyclic structure promotes the involvement of the side chain imidazole donors in Cu(II) binding. On the other hand, the results obtained for the mono-cyclic analogues lead to the conclusion that the coordination of the histidine moiety as an anchoring group is promoted by its location in the peptide sequence further from the nonbinding cycle, strongly influencing the involvement of the amide donors in Cu(II) coordination.
Collapse
Affiliation(s)
- Alicja Lisowska
- Biomolecule Student Science Club, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Paulina Świątek
- Graduate of Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Filip Dębicki
- Faculty of Medicine, Medical University of Lodz, 90-647 Lodz, Poland;
| | | | - Aleksandra Marciniak
- Department of the Basic Chemical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Lorenzo Pacini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy;
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy;
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Justyna Brasuń
- Department of the Basic Chemical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
3
|
Quagliata M, Stincarelli MA, Papini AM, Giannecchini S, Rovero P. Antiviral Activity against SARS-CoV-2 of Conformationally Constrained Helical Peptides Derived from Angiotensin-Converting Enzyme 2. ACS OMEGA 2023; 8:22665-22672. [PMID: 37387789 PMCID: PMC10275481 DOI: 10.1021/acsomega.3c01436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 07/01/2023]
Abstract
Despite the availability of vaccines, COVID-19 continues to be aggressive, especially in immunocompromised individuals. Therefore, the development of a specific therapeutic agent with antiviral activity against SARS-CoV-2 is necessary. The infection pathway starts when the receptor binding domain of the viral spike protein interacts with the angiotensin converting enzyme 2 (ACE2), which acts as a host receptor for the RBD expressed on the host cell surface. In this scenario, ACE2 analogs binding to the RBD and preventing the cell entry can be promising antiviral agents. Most of the ACE2 residues involved in the interaction belong to the α1 helix, more specifically to the minimal fragment ACE2(24-42). In order to increase the stability of the secondary structure and thus antiviral activity, we designed different triazole-stapled analogs, changing the position and the number of bridges. The peptide called P3, which has the triazole-containing bridge in the positions 36-40, showed promising antiviral activity at micromolar concentrations assessed by plaque reduction assay. On the other hand, the double-stapled peptide P4 lost the activity, showing that excessive rigidity disfavors the interaction with the RBD.
Collapse
Affiliation(s)
- Michael Quagliata
- Interdepartmental
Research Unit of Peptide and Protein Chemistry and Biology, Department
of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | | | - Anna Maria Papini
- Interdepartmental
Research Unit of Peptide and Protein Chemistry and Biology, Department
of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Simone Giannecchini
- Department
of Experimental and Clinical Medicine, University
of Florence, 50134 Florence, Italy
| | - Paolo Rovero
- Interdepartmental
Research Unit of Peptide and Protein Chemistry and Biology, Department
of NeuroFarBa, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Calugi L, Sautariello G, Lenci E, Mattei ML, Coppa C, Cini N, Contini A, Trabocchi A. Identification of a short ACE2-derived stapled peptide targeting the SARS-CoV-2 spike protein. Eur J Med Chem 2023; 249:115118. [PMID: 36682293 PMCID: PMC9842534 DOI: 10.1016/j.ejmech.2023.115118] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
The design and synthesis of a series of peptide derivatives based on a short ACE2 α-helix 1 epitope and subsequent [i - i+4] stapling of the secondary structure resulted in the identification of a 9-mer peptide capable to compete with recombinant ACE2 towards Spike RBD in the micromolar range. Specifically, SARS-CoV-2 Spike inhibitor screening based on colorimetric ELISA assay and structural studies by circular dichroism showed the ring-closing metathesis cyclization being capable to stabilize the helical structure of the 9-mer 34HEAEDLFYQ42 epitope better than the triazole stapling via click chemistry. MD simulations showed the stapled peptide being able not only to bind the Spike RBD, sterically interfering with ACE2, but also showing higher affinity to the target as compared to parent epitope.
Collapse
Affiliation(s)
- Lorenzo Calugi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Florence, Italy
| | - Giulia Sautariello
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Florence, Italy
| | - Elena Lenci
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Florence, Italy
| | - Mauro Leucio Mattei
- General Laboratory, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Crescenzo Coppa
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133, Milan, Italy
| | - Nicoletta Cini
- General Laboratory, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133, Milan, Italy
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
5
|
D'Ercole A, Nistri S, Pacini L, Carotenuto A, Santoro F, Papini AM, Bathgate RAD, Bani D, Rovero P. Synthetic short-chain peptide analogues of H1 relaxin lack affinity for the RXFP1 receptor and relaxin-like bioactivity. Clues to a better understanding of relaxin agonist design. Front Pharmacol 2022; 13:942178. [PMID: 36034864 PMCID: PMC9402926 DOI: 10.3389/fphar.2022.942178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The peptide hormone relaxin (RLX), also available as clinical-grade recombinant protein (serelaxin), holds great promise as a cardiovascular and anti-fibrotic agent but is limited by the pharmacokinetic issues common to all peptide drugs. In this study, by a computational modelling chemistry approach, we have synthesized and tested a set of low molecular weight peptides based on the putative receptor-binding domain of the B chain of human H1 RLX isoform, with the objective to obtain RLX analogues with improved pharmacokinetic features. Some of them were stabilized to induce the appropriate 3-D conformation by intra-chain tri-azolic staples, which should theoretically enhance their resistance to digestive enzymes making them suited for oral administration. Despite these favourable premises, none of these H1 peptides, either linear or stapled, revealed a sufficient affinity to the specific RLX receptor RXFP1. Moreover, none of them was endowed with any RLX-like biological effects in RXFP1-expressing THP-1 human monocytic cells and mouse NIH-3T3-derived myofibroblasts in in vitro culture, in terms of significantly relevant cAMP elevation and ERK1/2 phosphorylation, which represent two major signal transduction events downstream RXFP1 activation. This was at variance with authentic serelaxin, which induced a clear-cut, significant activation of both these classical RLX signaling pathways. Albeit negative, the results of this study offer additional information about the structural requirements that new peptide therapeutics shall possess to effectively behave as RXFP1 agonists and RLX analogues.
Collapse
Affiliation(s)
- Annunziata D'Ercole
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, University of Florence, Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Silvia Nistri
- Research Unit of Histology & Embryology, Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Pacini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, University of Florence, Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | | | - Federica Santoro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, University of Florence, Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Ross A. D. Bathgate
- Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Pharmacology, Unviversity of Melbourne, Melbourne, VIC, Australia
| | - Daniele Bani
- Research Unit of Histology & Embryology, Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
- *Correspondence: Daniele Bani, ; Paolo Rovero,
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, University of Florence, Florence, Italy
- Department of NeuroFarBa, University of Florence, Florence, Italy
- *Correspondence: Daniele Bani, ; Paolo Rovero,
| |
Collapse
|
6
|
Peptides and Peptidomimetics as Inhibitors of Enzymes Involved in Fibrillar Collagen Degradation. MATERIALS 2021; 14:ma14123217. [PMID: 34200889 PMCID: PMC8230458 DOI: 10.3390/ma14123217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
Collagen fibres degradation is a complex process involving a variety of enzymes. Fibrillar collagens, namely type I, II, and III, are the most widely spread collagens in human body, e.g., they are responsible for tissue fibrillar structure and skin elasticity. Nevertheless, the hyperactivity of fibrotic process and collagen accumulation results with joints, bone, heart, lungs, kidneys or liver fibroses. Per contra, dysfunctional collagen turnover and its increased degradation leads to wound healing disruption, skin photoaging, and loss of firmness and elasticity. In this review we described the main enzymes participating in collagen degradation pathway, paying particular attention to enzymes degrading fibrillar collagen. Therefore, collagenases (MMP-1, -8, and -13), elastases, and cathepsins, together with their peptide and peptidomimetic inhibitors, are reviewed. This information, related to the design and synthesis of new inhibitors based on peptide structure, can be relevant for future research in the fields of chemistry, biology, medicine, and cosmeceuticals.
Collapse
|
7
|
Staśkiewicz A, Ledwoń P, Rovero P, Papini AM, Latajka R. Triazole-Modified Peptidomimetics: An Opportunity for Drug Discovery and Development. Front Chem 2021; 9:674705. [PMID: 34095086 PMCID: PMC8172596 DOI: 10.3389/fchem.2021.674705] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Peptidomimetics play a fundamental role in drug design due to their preferential properties regarding natural peptides. In particular, compounds possessing nitrogen-containing heterocycles have been intensively studied in recent years. The triazolyl moiety incorporation decreases the molecule susceptibility to enzymatic degradation, reduction, hydrolysis, and oxidation. In fact, peptides containing triazole rings are a typical example of peptidomimetics. They have all the advantages over classic peptides. Both efficient synthetic methods and biological activity make these systems an interesting and promising object of research. Peptide triazole derivatives display a diversity of biological properties and can be obtained via numerous synthetic strategies. In this review, we have highlighted the importance of the triazole-modified peptidomimetics in the field of drug design. We present an overview on new achievements in triazolyl-containing peptidomimetics synthesis and their biological activity as inhibitors of enzymes or against cancer, viruses, bacteria, or fungi. The relevance of above-mentioned compounds was confirmed by their comparison with unmodified peptides.
Collapse
Affiliation(s)
- Agnieszka Staśkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Firenze, Italy
| | - Patrycja Ledwoń
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Firenze, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Firenze, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Firenze, Italy
| | - Rafal Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|