1
|
Jia G, Fu L, Wang L, Yao D, Cui Y. Bayesian network analysis of risk classification strategies in the regulation of cellular products. Artif Intell Med 2024; 155:102937. [PMID: 39137589 DOI: 10.1016/j.artmed.2024.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
Cell therapy, a burgeoning therapeutic strategy, necessitates a scientific regulatory framework but faces challenges in risk-based regulation due to the lack of a global consensus on risk classification. This study applies Bayesian network analysis to compare and evaluate the risk classification strategies for cellular products proposed by the Food and Drug Administration (FDA), Ministry of Health, Labour and Welfare (MHLW), and World Health Organization (WHO), using real-world data to validate the models. The appropriateness of key risk factors is assessed within the three regulatory frameworks, along with their implications for clinical safety. The results indicate several directions for refining risk classification approaches. Additionally, a substudy focuses on a specific type of cell and gene therapy (CGT), chimeric antigen receptor (CAR) T cell therapy. It underscores the importance of considering CAR targets, tumor types, and costimulatory domains when assessing the safety risks of CAR T cell products. Overall, there is currently a lack of a regulatory framework based on real-world data for cellular products and a lack of risk-based classification review methods. This study aims to improve the regulatory system for cellular products, emphasizing risk-based classification. Furthermore, the study advocates for leveraging machine learning in regulatory science to enhance the assessment of cellular product safety, illustrating the role of Bayesian networks in aiding regulatory decision-making for the risk classification of cellular products.
Collapse
Affiliation(s)
- Guoshu Jia
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing 211198, China
| | - Lixia Fu
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Likun Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Dongning Yao
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
2
|
Howard SC, Avagyan A, Workeneh B, Pui CH. Tumour lysis syndrome. Nat Rev Dis Primers 2024; 10:58. [PMID: 39174582 DOI: 10.1038/s41572-024-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/24/2024]
Abstract
Tumour lysis syndrome (TLS) represents a critical oncological emergency characterized by extensive tumour cell breakdown, leading to the swift release of intracellular contents into the systemic circulation, outpacing homeostatic mechanisms. This process results in hyperuricaemia (a by-product of intracellular DNA release), hyperkalaemia, hyperphosphataemia, hypocalcaemia and the accumulation of xanthine. These electrolyte and metabolic imbalances pose a significant risk of acute kidney injury, cardiac arrhythmias, seizures, multiorgan failure and, rarely, death. While TLS can occur spontaneously, it usually arises shortly after the initiation of effective treatment, particularly in patients with a large cancer cell mass (defined as ≥500 g or ≥300 g/m2 of body surface area in children). To prevent TLS, close monitoring and hydration to improve renal perfusion and urine output and to minimize uric acid or calcium phosphate precipitation in renal tubules are essential. Intervention is based on the risk of a patient of having TLS and can include rasburicase and allopurinol. Xanthine, typically enzymatically converted to uric acid, can accumulate when xanthine oxidases, such as allopurinol, are administered during TLS management. Whether measurement of xanthine is clinically useful to optimize the use of allopurinol or rasburicase remains to be determined.
Collapse
Affiliation(s)
- Scott C Howard
- Resonance, Memphis, TN, USA.
- Yeolyan Center for Hematology and Oncology, Yerevan, Armenia.
- Sant Joan de Déu Hospital Barcelona, Barcelona, Spain.
| | - Anna Avagyan
- Yeolyan Center for Hematology and Oncology, Yerevan, Armenia
| | - Biruh Workeneh
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Global Paediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Moore DC, Digiantonio N, Oxencis CJ, Taucher KD. Pharmacist perspectives on emerging T cell-engaging bispecific therapies in cancer therapeutics. Am J Health Syst Pharm 2024; 81:574-582. [PMID: 38394329 DOI: 10.1093/ajhp/zxae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 02/25/2024] Open
Abstract
PURPOSE To summarize the pharmacology, efficacy, safety, dosing, administration, and pharmacist perspectives related to operationalization of new and emerging bispecific therapies indicated for the treatment of various cancers. SUMMARY In recent years, there have been significant advancements in the expansion of immunotherapeutics in the treatment of various malignancies. Bispecific T cell-engaging therapies represent an emerging therapeutic drug class for the treatment of cancer. These therapies are unique antibody constructs that bind simultaneously to 2 targets, a tumor-specific antigen and CD3 on T cells, to elicit an immune response. Recently, several bispecific therapies have been approved, including epcoritamab, glofitamab, mosunetuzumab, tebentafusp, and teclistamab. Epcoritamab and glofitamab have been approved for diffuse large B cell lymphoma, while mosunetuzumab, tebentafusp, and teclistamab have been approved for follicular lymphoma, uveal melanoma, and multiple myeloma, respectively. As a result of their mechanism of action, the approved bispecific therapies have the potential to cause cytokine release syndrome, and, along with this, they all have unique and specific monitoring parameters and operational considerations that require clinician awareness when administering these therapies. Such operational challenges include within-patient dose escalations at therapy initiation, hospitalization for monitoring, and various pharmacological strategies for prophylaxis of cytokine release syndrome. CONCLUSION Bispecific therapies have continued to evolve the therapeutic landscape of cancer, primarily in hematological malignancies. Health-system pharmacists have the opportunity to play a key role in the operationalization and management of this new and emerging drug class.
Collapse
Affiliation(s)
- Donald C Moore
- Atrium Health Levine Cancer Institute, Charlotte, NC, USA
| | | | - Carolyn J Oxencis
- Froedtert and the Medical College of Wisconsin School of Pharmacy, Milwaukee, WI, USA
| | - Kate D Taucher
- Oncology & Infusion Pharmacy Services, Department of Pharmacy, UCHealth, Aurora, CO, USA
| |
Collapse
|
4
|
Han Z, Ma X, Ma G. Improving cell reinfusion to enhance the efficacy of chimeric antigen receptor T-cell therapy and alleviate complications. Heliyon 2024; 10:e28098. [PMID: 38560185 PMCID: PMC10981037 DOI: 10.1016/j.heliyon.2024.e28098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Adoptive cell therapy (ACT) is a rapidly expanding area within the realm of transfusion medicine, focusing on the delivery of lymphocytes to trigger responses against tumors, viruses, or inflammation. This area has quickly evolved from its initial promise in immuno-oncology during preclinical trials to commercial approval of chimeric antigen receptor (CAR) T-cell therapies for leukemia and lymphoma (Jun and et al., 2018) [1]. CAR T-cell therapy has demonstrated success in treating hematological malignancies, particularly relapsed/refractory B-cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma (Qi and et al., 2022) [2]. However, its success in treating solid tumors faces challenges due to the short-lived presence of CAR-T cells in the body and diminished T cell functionality (Majzner and Mackall, 2019) [3]. CAR T-cell therapy functions by activating immune effector cells, yet significant side effects and short response durations remain considerable obstacles to its advancement. A prior study demonstrated that the therapeutic regimen can induce systemic inflammatory reactions, such as cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), tumor lysis syndrome (TLS), off-target effects, and other severe complications. This study aims to explore current research frontiers in this area.
Collapse
Affiliation(s)
- Zhihao Han
- Department of Nursing, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| | - Xiaoqin Ma
- Department of Nursing, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| | - Guiyue Ma
- Department of Nursing, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
5
|
Albarrán V, San Román M, Pozas J, Chamorro J, Rosero DI, Guerrero P, Calvo JC, González C, García de Quevedo C, Pérez de Aguado P, Moreno J, Cortés A, Soria A. Adoptive T cell therapy for solid tumors: current landscape and future challenges. Front Immunol 2024; 15:1352805. [PMID: 38550594 PMCID: PMC10972864 DOI: 10.3389/fimmu.2024.1352805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Adoptive cell therapy (ACT) comprises different strategies to enhance the activity of T lymphocytes and other effector cells that orchestrate the antitumor immune response, including chimeric antigen receptor (CAR) T-cell therapy, T-cell receptor (TCR) gene-modified T cells, and therapy with tumor-infiltrating lymphocytes (TILs). The outstanding results of CAR-T cells in some hematologic malignancies have launched the investigation of ACT in patients with refractory solid malignancies. However, certain characteristics of solid tumors, such as their antigenic heterogeneity and immunosuppressive microenvironment, hamper the efficacy of antigen-targeted treatments. Other ACT modalities, such as TIL therapy, have emerged as promising new strategies. TIL therapy has shown safety and promising activity in certain immunogenic cancers, mainly advanced melanoma, with an exciting rationale for its combination with immune checkpoint inhibitors. However, the implementation of TIL therapy in clinical practice is hindered by several biological, logistic, and economic challenges. In this review, we aim to summarize the current knowledge, available clinical results, and potential areas of future research regarding the use of T cell therapy in patients with solid tumors.
Collapse
Affiliation(s)
- Víctor Albarrán
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - María San Román
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Javier Pozas
- Department of Medical Oncology, The Royal Marsden Hospital, London, United Kingdom
| | - Jesús Chamorro
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Diana Isabel Rosero
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Patricia Guerrero
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Juan Carlos Calvo
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Carlos González
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | | | | | - Jaime Moreno
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Alfonso Cortés
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Ainara Soria
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| |
Collapse
|
6
|
Oluwole OO, Dholaria B, Knight TE, Jain T, Locke FL, Ramsdell L, Nikiforow S, Hashmi H, Mooney K, Bhaskar ST, Morris K, Gatwood K, Baer B, Anderson LD, Hamadani M. Chimeric Antigen Receptor T-Cell Therapy in the Outpatient Setting: An Expert Panel Opinion from the American Society for Transplantation and Cellular Therapy. Transplant Cell Ther 2024; 30:131-142. [PMID: 37951502 DOI: 10.1016/j.jtct.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The first series of chimeric antigen receptor T (CAR-T) cell therapy products were approved in 2017 to 2019 and have shown remarkable efficacy in both clinical trials and the real-world setting, but at the cost of prolonged patient hospitalization. As the toxicity management protocols were refined, the concept of cellular therapy administered in the outpatient setting gained steam, and single institutions began to perform certain aspects of CAR-T monitoring in the outpatient setting for select patients. However, there are many considerations for a successful outpatient program. In anticipation of increasing use of CAR-T-cell therapy in the outpatient setting as a mechanism to overcome frequent hospital bed shortages and high cost of inpatient care, the American Society for Transplantation and Cellular Therapy convened a group of experts in hematology, oncology, and cellular therapy to provide a comprehensive review of the existing publications on outpatient CAR-T cell therapy, discuss selected ongoing clinical trials of outpatient CAR-T, and describe strategies to optimize safety without compromising efficacy for patients treated and monitored in the outpatient setting.
Collapse
Affiliation(s)
- Olalekan O Oluwole
- Division of Hematology Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Bhagirathbhai Dholaria
- Division of Hematology Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tristan E Knight
- Cancer and Blood Disorders Center, Seattle Children's Hospital - Seattle, Washington; Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine - Seattle, Washington
| | - Tania Jain
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Linda Ramsdell
- Division of Hematologic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sarah Nikiforow
- Division of Hematologic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Hamza Hashmi
- Medical University of South Carolina, Charleston, South Carolina
| | - Kathy Mooney
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shakthi T Bhaskar
- Division of Hematology Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Katrina Morris
- Division of Hematology Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Katie Gatwood
- Division of Hematology Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacy, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brittney Baer
- Division of Hematology Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Larry D Anderson
- Myeloma, Waldenstrom's, and Amyloidosis Program, Hematologic Malignancies and Cellular Therapies Program, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Mehdi Hamadani
- BMT & Cellular Therapy Program, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
7
|
Zhang T, Tian W, Wei S, Lu X, An J, He S, Zhao J, Gao Z, Li L, Lian K, Zhou Q, Zhang H, Wang L, Su L, Kang H, Niu T, Zhao A, Pan J, Cai Q, Xu Z, Chen W, Jing H, Li P, Zhao W, Cao Y, Mi J, Chen T, Chen Y, Zou P, Lukacs-Kornek V, Kurts C, Li J, Liu X, Mei Q, Zhang Y, Wei J. Multidisciplinary recommendations for the management of CAR-T recipients in the post-COVID-19 pandemic era. Exp Hematol Oncol 2023; 12:66. [PMID: 37501090 PMCID: PMC10375673 DOI: 10.1186/s40164-023-00426-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) posed an unprecedented challenge on public health systems. Despite the measures put in place to contain it, COVID-19 is likely to continue experiencing sporadic outbreaks for some time, and individuals will remain susceptible to recurrent infections. Chimeric antigen receptor (CAR)-T recipients are characterized by durable B-cell aplasia, hypogammaglobulinemia and loss of T-cell diversity, which lead to an increased proportion of severe/critical cases and a high mortality rate after COVID-19 infection. Thus, treatment decisions have become much more complex and require greater caution when considering CAR T-cell immunotherapy. Hence, we reviewed the current understanding of COVID-19 and reported clinical experience in the management of COVID-19 and CAR-T therapy. After a panel discussion, we proposed a rational procedure pertaining to CAR-T recipients with the aim of maximizing the benefit of CAR-T therapy in the post COVID-19 pandemic era.
Collapse
Affiliation(s)
- Tingting Zhang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Weiwei Tian
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Respiratory and Critical Care Medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Xinyi Lu
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Jing An
- School of Public Health, Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Shaolong He
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Jie Zhao
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Zhilin Gao
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Li Li
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Ke Lian
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Qiang Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Cardiovascular Medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Liang Wang
- Department of Hematology, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
| | - Liping Su
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Huicong Kang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Neurology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Pan
- State Key Laboratory of Experimental Hematology, Boren Biotherapy Translational Laboratory, Boren Clinical Translational Center, Beijing GoBroad Boren Hospital, Beijing, 100070, China
| | - Qingqing Cai
- Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Zhenshu Xu
- Hematology Department, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fuzhou, 350001, Fujian, China
| | - Wenming Chen
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hongmei Jing
- Department of Hematology, Peking University Third Hospital, Beijing, 100191, China
| | - Peng Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510535, Guangdong, China
| | - Wanhong Zhao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Jianqing Mi
- Shanghai Institute of Hematology, Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tao Chen
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuan Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Geriatrics, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Ping Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, 53111, Bonn, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, 53111, Bonn, Germany
| | - Jian Li
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, 53111, Bonn, Germany
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Department of Respiratory and Critical Care Medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
| | - Qi Mei
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China.
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Jia Wei
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China.
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
8
|
Dagar G, Gupta A, Masoodi T, Nisar S, Merhi M, Hashem S, Chauhan R, Dagar M, Mirza S, Bagga P, Kumar R, Akil ASAS, Macha MA, Haris M, Uddin S, Singh M, Bhat AA. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med 2023; 21:449. [PMID: 37420216 PMCID: PMC10327392 DOI: 10.1186/s12967-023-04292-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Traditional cancer treatments use nonspecific drugs and monoclonal antibodies to target tumor cells. Chimeric antigen receptor (CAR)-T cell therapy, however, leverages the immune system's T-cells to recognize and attack tumor cells. T-cells are isolated from patients and modified to target tumor-associated antigens. CAR-T therapy has achieved FDA approval for treating blood cancers like B-cell acute lymphoblastic leukemia, large B-cell lymphoma, and multiple myeloma by targeting CD-19 and B-cell maturation antigens. Bi-specific chimeric antigen receptors may contribute to mitigating tumor antigen escape, but their efficacy could be limited in cases where certain tumor cells do not express the targeted antigens. Despite success in blood cancers, CAR-T technology faces challenges in solid tumors, including lack of reliable tumor-associated antigens, hypoxic cores, immunosuppressive tumor environments, enhanced reactive oxygen species, and decreased T-cell infiltration. To overcome these challenges, current research aims to identify reliable tumor-associated antigens and develop cost-effective, tumor microenvironment-specific CAR-T cells. This review covers the evolution of CAR-T therapy against various tumors, including hematological and solid tumors, highlights challenges faced by CAR-T cell therapy, and suggests strategies to overcome these obstacles, such as utilizing single-cell RNA sequencing and artificial intelligence to optimize clinical-grade CAR-T cells.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, 3050, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Ravi Chauhan
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Manisha Dagar
- Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Sameer Mirza
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu and Kashmir, India
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| |
Collapse
|
9
|
Choi JY, Kim TJ. The Current Status and Future Perspectives of Chimeric Antigen Receptor-Engineered T Cell Therapy for the Management of Patients with Endometrial Cancer. Curr Issues Mol Biol 2023; 45:3359-3374. [PMID: 37185744 PMCID: PMC10136476 DOI: 10.3390/cimb45040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Endometrial cancer (EC) is a gynecological neoplasm that is increasing in occurrence and mortality rates. Although endometrial cancer in the early stages shows a relatively favorable prognosis, there is an increase in cancer-related mortality rates in the advanced or recurrent endometrial carcinoma population and patients in the metastatic setting. This discrepancy has presented an opportunity for research and development of target therapies in this population. After obtaining promising results with hematologic cancers, chimeric antigen receptor (CAR)-T cell immunotherapy is gaining acceptance as a treatment for solid neoplasms. This treatment platform allows T cells to express tumor-specific CARs on the cell surface, which are administered to the patient to treat neoplastic cells. Given that CAR-T cell therapy has shown potential and clinical benefit compared to other T cell treatment platforms, additional research is required to overcome physiological limitations such as CAR-T cell depletion, immunosuppressive tumor microenvironment, and the lack of specific target molecules. Different approaches and development are ongoing to overcome these complications. This review examines CAR-T cell therapy's current use for endometrial carcinomas. We also discuss the significant adverse effects and limitations of this immunotherapeutic approach. Finally, we consolidate signal-seeking early-phase clinical trials and advancements that have shown promising results, leading to the approval of new immunotherapeutic agents for the disease.
Collapse
Affiliation(s)
- Ji-Young Choi
- Department of Gynecology and Infertility Medicine, CHA University Ilsan Medical Center, Goyang 1205, Republic of Korea
| | - Tae-Jin Kim
- Department of Urology, CHA University Ilsan Medical Center, CHA University School of Medicine, Goyang 1205, Republic of Korea
| |
Collapse
|
10
|
Skalt D, Moertl B, von Bergwelt-Baildon M, Schmidt C, Schoel W, Bücklein V, Weiglein T, Dreyling M, Berger K. Budget Impact Analysis of CAR T-cell Therapy for Adult Patients With Relapsed or Refractory Diffuse Large B-cell Lymphoma in Germany. Hemasphere 2022; 6:e736. [PMID: 35813101 PMCID: PMC9257301 DOI: 10.1097/hs9.0000000000000736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
The aim was to assess the incremental costs of chimeric antigen receptor (CAR) T-cell therapy (axicabtagene ciloleucel, tisagenlecleucel) compared with standard of care in adult patients with relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL) from the German third-party payer perspective. A budget impact model was established over a 6-year period. Estimation of the third-line population: partitioned survival model based on outcome data from peer-reviewed literature, a top-down approach based on population forecasts, and age-standardized incidences. Cost data were derived from the controlling department of a tertiary hospital and a German cost-of-illness study. In the scenario analysis, the budget impact of treating second-line DLBCL patients was calculated. One-way deterministic sensitivity analyses were conducted to test the robustness of the model. For the period 2021-2026, 788-867 (minimum population, min) and 1,068-1,177 (maximum population, max) adult third-line r/r DLBCL patients were estimated. The budget impact ranged from €39,419,562; €53,426,514 (min; max) in year 0 to €122,104,097; €165,763,001 (min; max) in year 5. The scenario analysis resulted in a budget impact of €65,987,823; €89,558,611 (min; max) and €204,485,031; €277,567,601 (min; max) for years 0 and 5, respectively. This budget impact analysis showed a significant but reasonable financial burden associated with CAR T-cell therapy for a limited number of patients requiring individualized care. Further, this study presents challenges and future needs in data acquisition associated with cost analysis in personalized medicine. For comprehensive economic discussions, complementary cost-effectiveness analyses are required to determine the value of innovative therapies for r/r DLBCL.
Collapse
Affiliation(s)
- Daniela Skalt
- Institute for Medical Information Processing, Biometry, and Epidemiology—IBE, Ludwig-Maximilian University, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Bernhard Moertl
- Department of Medicine III, University Hospital, LMU Munich, Germany
| | | | - Christian Schmidt
- Department of Medicine III, University Hospital, LMU Munich, Germany
| | - Wolfgang Schoel
- Department of Medicine III, University Hospital, LMU Munich, Germany
| | - Veit Bücklein
- Department of Medicine III, University Hospital, LMU Munich, Germany
| | - Tobias Weiglein
- Department of Medicine III, University Hospital, LMU Munich, Germany
| | - Martin Dreyling
- Department of Medicine III, University Hospital, LMU Munich, Germany
| | - Karin Berger
- Institute for Medical Information Processing, Biometry, and Epidemiology—IBE, Ludwig-Maximilian University, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Germany
| |
Collapse
|
11
|
Chan LY, Dass SA, Tye GJ, Imran SAM, Wan Kamarul Zaman WS, Nordin F. CAR-T Cells/-NK Cells in Cancer Immunotherapy and the Potential of MSC to Enhance Its Efficacy: A Review. Biomedicines 2022; 10:biomedicines10040804. [PMID: 35453554 PMCID: PMC9024487 DOI: 10.3390/biomedicines10040804] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The chimeric antigen receptor (CAR) plays a dynamic role in targeting tumour-associated antigens in cancer cells. This novel therapeutic discovery combines fragments of monoclonal antibodies with the signalling and co-stimulatory domains that have been modified to its current fourth generation. CAR has been widely implemented in T-cells and natural killer (NK) cells immunotherapy. The significant advancement in CAR technology is evident based on numerous ongoing clinical trials on CAR-T/-NK cells and successful CAR-related products such as Kymriah (Novartis) and Yescarta (Kite Pharma, Gilead). Another important cell-based therapy is the engineering of mesenchymal stem cells (MSC). Researchers have been exploring MSCs and their innate homing abilities to tumour sites and secretion cytokines that bridge both CAR and MSC technologies as a therapeutic agent. This combination allows for both therapies to overcome each one’s flaw as an immunotherapy intervention. Herein, we have provided a concise review on the background of CAR and its applications in different cancers, as well as MSCs’ unique ability as delivery vectors for cancer therapy and the possibility of enhancing the CAR-immune cells’ activity. Hence, we have highlighted throughout this review the synergistic effects of both interventions.
Collapse
Affiliation(s)
- Ler Yie Chan
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (L.Y.C.); (S.A.M.I.)
- INTEC Education College, Jalan Senangin Satu 17/2A, Seksyen 17, Shah Alam 40200, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Malaysia; (S.A.D.); (G.J.T.)
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Malaysia; (S.A.D.); (G.J.T.)
| | - Siti A. M. Imran
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (L.Y.C.); (S.A.M.I.)
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (L.Y.C.); (S.A.M.I.)
- Correspondence: ; Tel.: +60-3-91457670
| |
Collapse
|
12
|
Moore DC, Oxencis CJ, Shank BR. New and emerging pharmacotherapies for management of multiple myeloma. Am J Health Syst Pharm 2022; 79:1137-1145. [PMID: 35333922 DOI: 10.1093/ajhp/zxac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DISCLAIMER In an effort to expedite the publication of articles related to the COVID-19 pandemic, AJHP is posting these manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. PURPOSE The pharmacology, efficacy, safety, and dosing/administration of new and emerging therapies for the treatment of multiple myeloma are summarized. SUMMARY There have been significant advancements in the treatment of multiple myeloma in recent years, with an expansion of available drug therapies. Newer therapies for multiple myeloma include the anti-CD38 monoclonal antibodies daratumumab and isatuximab, the exportin 1 inhibitor selinexor, the anti-B-cell maturation antigen (BCMA) antibody-drug conjugate belantamab mafodotin, and the chimeric antigen receptor (CAR) T-cell therapy idecabtagene vicleucel. These agents have unique toxicity profiles, specific monitoring parameters, and operational considerations that clinicians treating multiple myeloma should be aware of. There is likely to be continued rapid expansion of new agents for patients with multiple myeloma, as there are many novel investigational agents in the drug development pipeline, such as bispecific antibodies and additional CAR T-cell therapies. CONCLUSION Several therapeutic agents have been recently approved by the Food and Drug Administration for the treatment of multiple myeloma. There are many novel agents in the pipeline, including bispecific antibodies and CAR T-cell therapies that have the potential to continue to change the treatment landscape of multiple myeloma.
Collapse
Affiliation(s)
- Donald C Moore
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Concord, NC, USA
| | | | - Brandon R Shank
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Mu W, Long X, Cai H, Chen C, Hu G, Lou Y, Xing S, Wang D, Wang J, Xiao M, Wang K, Sun Z, Li C, Zhou J, Chen L. A Model Perspective Explanation of the Long-Term Sustainability of a Fully Human BCMA-Targeting CAR (CT103A) T-Cell Immunotherapy. Front Pharmacol 2022; 13:803693. [PMID: 35185564 PMCID: PMC8847740 DOI: 10.3389/fphar.2022.803693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Different from canonical drugs, CAR T-cells are “living drugs”, which derived from patient’s own blood. Studies of the pharmacokinetics of CAR T-cells could improve our understanding of their efficacy, safety, optimal dosage, and other characterizes. We previously reported a phase I study of a novel fully human BCMA-targeting CAR (CT103A) in 18 patients with relapsed/refractory multiple myeloma. CT103A exhibited extraordinary persistence with low anti-drug antibody positivity. To figure out the pharmacokinetic characterizes and investigate the potential reason of CT103A’s long-term persistence, we established a population pharmacokinetic (PopPK) model of CT103A based on 18 patients cohort by applying nonlinear mixed-effects modeling and analyzed the CAR T-cell clonal evolution. The results suggested that extramedullary spreading was found to impair Cmax and was therefore added as a covariate to the modified model. The model revealed tocilizumab and corticosteroids showed no impact on the CT103A expansion rate. No dominant clone existed in patients with persistently high peripheral CT103A by CAR integration sites analysis. Finally, patients with lower contraction rate constants and higher Cmax as well as memory CT103A fraction could achieve better clinical responses. Taken together, this study developed a PopPK model of a fully human anti-BCMA CAR T-cell therapy, and summarized its model characteristics. We suggested that the long-term persistence of CT103A was attributed to the memory CAR T-cell fraction but not the clonal evolution. This study will improve people’s understanding of pharmacokinetics and PopPK of CAR T-cell immunotherapy.
Collapse
Affiliation(s)
- Wei Mu
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Xiaolu Long
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Haodong Cai
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Caixia Chen
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Guang Hu
- Nanjing IASO Biotherapeutics Ltd., Nanjing, China
| | - Yaoyao Lou
- Department of Hematology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Shugang Xing
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Di Wang
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Jue Wang
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Kun Wang
- Shanghai Qiangshi Information Technology Co., Ltd., Shanghai, China
| | - Zhongyi Sun
- Shanghai Qiangshi Information Technology Co., Ltd., Shanghai, China
| | - Chunrui Li
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Liting Chen
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| |
Collapse
|
14
|
Kim TJ, Lee YH, Koo KC. Current and future perspectives on CAR-T cell therapy for renal cell carcinoma: A comprehensive review. Investig Clin Urol 2022; 63:486-498. [PMID: 36067994 PMCID: PMC9448669 DOI: 10.4111/icu.20220103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/22/2022] [Accepted: 07/06/2022] [Indexed: 01/02/2023] Open
Abstract
In the clinical setting of renal cell carcinoma (RCC), immune reactions such as tumor-specific T cell responses can be spontaneous events or can be elicited by checkpoint inhibitors, cytokines, and other immunotherapy modalities. The results from immunotherapy have led to significant advances in treatment methods and patient outcomes. The approval of nivolumab primarily as a second-line monotherapy and the latest approval of novel combination therapies as first-line treatment have established the significance of immunotherapy in the treatment of RCC. In this perspective, chimeric antigen receptor (CAR)-T cell therapy represents a major advance in the developing field of immunotherapy. This treatment modality facilitates T cells to express specific CARs on the cell surface which are reinfused to the patient to treat the analogous tumor cells. After showing treatment potential in hematological malignancies, this new therapeutic approach has become a strong candidate as a therapeutic modality for solid neoplasms. Although CAR-T cell therapy has shown promise and clinical benefit compared to previous T-cell modulated immunotherapies, further studies are warranted to overcome unfavorable physiological settings and hindrances such as the lack of specific molecular targets, depletion of CAR-T cells, a hostile tumor microenvironment, and on/off-tumor toxicities. Several approaches are being considered and research is ongoing to overcome these problems. In this comprehensive review, we provide the rationale and preliminary results of CAR-T cell therapy in RCC and discuss emerging novel strategies and future directions.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Urology, CHA University College of Medicine, CHA Bundang Medical Center, Seongnam, Korea
| | - Young Hwa Lee
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyo Chul Koo
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Seber A, de CastroJunior CG, Kerbauy LN, Hirayama AV, Bonfim C, Fernandes JF, Souza M, Schafell R, Nabhan S, Loggetto SR, Simões BP, Rocha V, de Lima M, Guerino-Cunha RL, Bittencourt H. Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular Consensus on genetically modified cells. II: CAR-T cell therapy for patients with CD19+ acute lymphoblastic leukemia. Hematol Transfus Cell Ther 2021; 43 Suppl 2:S13-S21. [PMID: 34794791 PMCID: PMC8606700 DOI: 10.1016/j.htct.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy is a novel therapeutic modality for acute lymphoblastic leukemia (ALL) with robust outcomes in patients with refractory or relapsed disease. At the same time, CAR-T cell therapy is associated with unique and potentially fatal toxicities, such as cytokine release syndrome (CRS) and neurological toxicities (ICANS). This manuscript aims to provide a consensus of specialists in the fields of Hematology Oncology and Cellular Therapy to make recommendations on the current scenario of the use of CAR-T cells in patients with ALL.
Collapse
Affiliation(s)
- Adriana Seber
- Hospital Samaritano Higienópolis, São Paulo, SP, Brazil; Hospital Infantil Sabará, São Paulo, SP, Brazil
| | | | | | | | - Carmem Bonfim
- Hospital Pequeno Príncipe, Curitiba, PR, Brazil; Hospital de Clínicas, Universidade Federal do Paraná (HC UFPR), Curitiba, PR, Brazil
| | - Juliana Folloni Fernandes
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil; Instituto do Tratamento do Câncer Infantil, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC FMUSP), São Paulo, SP, Brazil
| | - Mair Souza
- Hospital Amaral Carvalho, Jaú, SP, Brazil
| | - Rony Schafell
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (HUCFF UFRJ), Rio de Janeiro, RJ, Brazil
| | - Samir Nabhan
- Hospital de Clínicas - Universidade Federal do Paraná, (HC UFPR), Curitiba, PR, Brazil
| | - Sandra Regina Loggetto
- Hospital Infantil Sabará, São Paulo, SP, Brazil; Grupo Gestor de Serviços de Hematologia (GSH), São Paulo, SP, Brazil
| | | | - Vanderson Rocha
- Hospital das Clínicas, Universidade de São Paulo, (HC USP), São Paulo, SP, Brazil; Hospital Vila Nova Star, São Paulo, SP, Brazil
| | | | - Renato L Guerino-Cunha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil.
| | - Henrique Bittencourt
- Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Qc, Canada; Université de Montreal, Montreal, Qc, Canada
| |
Collapse
|
16
|
Novel Adaptive T-Cell Oncological Treatments Lead to New Challenges for Medical Emergency Teams: A 2-Year Experience From a Tertiary-Care Hospital in Switzerland. Crit Care Explor 2021; 3:e0552. [PMID: 34651139 PMCID: PMC8509991 DOI: 10.1097/cce.0000000000000552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Liu Y, Liang B, Liu Y, Wei G, Wu W, Yang L, Yang L, Huang H, Xie J, Hu Y. Cytokine Release Syndrome Is an Independent Risk Factor Associated With Platelet Transfusion Refractoriness After CAR-T Therapy for Relapsed/Refractory Acute Lymphoblastic Leukemia. Front Pharmacol 2021; 12:702152. [PMID: 34366854 PMCID: PMC8343018 DOI: 10.3389/fphar.2021.702152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Chimeric antigen receptor T cell (CAR-T) therapy is successful in improving treatment outcomes for relapsed/refractory acute lymphoblastic leukemia (R/R ALL). However, toxicities associated with CAR-T therapy are being increasingly identified. Pancytopenia is one of the most common complications after CAR-T therapy, and platelet transfusions are an essential part of its supportive care. Study Design and Methods: This study aimed to assess the effectiveness of platelet transfusions for R/R ALL patients at our single center and identify associated risk factors. Overall, 44 R/R ALL patients were enrolled in this study, of whom 26 received CAR-T therapy and 18 received salvage chemotherapy. Result: Patients in the CAR-T group had a higher incidence of platelet transfusion refractoriness (PTR) (15/26, 57.7%) than those in the chemotherapy group (3/18, 16.7%) (p = 0.007). For patients receiving CAR-T therapy, multivariate analysis showed that the grade of cytokine release syndrome (CRS) was the only independent risk factor associated with PTR (p = 0.007). Moreover, higher peak serum IL-6 and IFN-γ levels suggested a higher risk of PTR (p = 0.024 and 0.009, respectively). Patients with PTR received more platelet infusion doses than those without PTR (p = 0.0426). Patients with PTR had more grade 3-4 bleeding events than those without PTR (21.4 vs. 0%, p = 0.230), and the cumulative incidence of grade 3-4 bleeding event was different (p = 0.023). Conclusion: We found for the first time that PTR is associated with the CRS grade. Improved knowledge on the mechanisms of PTR after CAR-T therapy is needed to design a rational therapeutic strategy that aims to improve the efficiency of transfusions.
Collapse
Affiliation(s)
- Yadan Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Bin Liang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Department of Hematology, Wenzhou Medical University, Wenzhou, China
| | - Yan Liu
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Luxin Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Li Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Sancho-Araiz A, Mangas-Sanjuan V, Trocóniz IF. The Role of Mathematical Models in Immuno-Oncology: Challenges and Future Perspectives. Pharmaceutics 2021; 13:pharmaceutics13071016. [PMID: 34371708 PMCID: PMC8309057 DOI: 10.3390/pharmaceutics13071016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Immuno-oncology (IO) focuses on the ability of the immune system to detect and eliminate cancer cells. Since the approval of the first immune checkpoint inhibitor, immunotherapies have become a major player in oncology treatment and, in 2021, represented the highest number of approved drugs in the field. In spite of this, there is still a fraction of patients that do not respond to these therapies and develop resistance mechanisms. In this sense, mathematical models offer an opportunity to identify predictive biomarkers, optimal dosing schedules and rational combinations to maximize clinical response. This work aims to outline the main therapeutic targets in IO and to provide a description of the different mathematical approaches (top-down, middle-out, and bottom-up) integrating the cancer immunity cycle with immunotherapeutic agents in clinical scenarios. Among the different strategies, middle-out models, which combine both theoretical and evidence-based description of tumor growth and immunological cell-type dynamics, represent an optimal framework to evaluate new IO strategies.
Collapse
Affiliation(s)
- Aymara Sancho-Araiz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain; (A.S.-A.); (I.F.T.)
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
| | - Victor Mangas-Sanjuan
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain
- Interuniversity Research Institute for Molecular Recognition and Technological Development, 46100 Valencia, Spain
- Correspondence: ; Tel.: +34-96354-3351
| | - Iñaki F. Trocóniz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain; (A.S.-A.); (I.F.T.)
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
| |
Collapse
|
19
|
Miazek-Zapala N, Slusarczyk A, Kusowska A, Zapala P, Kubacz M, Winiarska M, Bobrowicz M. The "Magic Bullet" Is Here? Cell-Based Immunotherapies for Hematological Malignancies in the Twilight of the Chemotherapy Era. Cells 2021; 10:1511. [PMID: 34203935 PMCID: PMC8232692 DOI: 10.3390/cells10061511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the introduction of a plethora of different anti-neoplastic approaches including standard chemotherapy, molecularly targeted small-molecule inhibitors, monoclonal antibodies, and finally hematopoietic stem cell transplantation (HSCT), there is still a need for novel therapeutic options with the potential to cure hematological malignancies. Although nowadays HSCT already offers a curative effect, its implementation is largely limited by the age and frailty of the patient. Moreover, its efficacy in combating the malignancy with graft-versus-tumor effect frequently coexists with undesirable graft-versus-host disease (GvHD). Therefore, it seems that cell-based adoptive immunotherapies may constitute optimal strategies to be successfully incorporated into the standard therapeutic protocols. Thus, modern cell-based immunotherapy may finally represent the long-awaited "magic bullet" against cancer. However, enhancing the safety and efficacy of this treatment regimen still presents many challenges. In this review, we summarize the up-to-date state of the art concerning the use of CAR-T cells and NK-cell-based immunotherapies in hemato-oncology, identify possible obstacles, and delineate further perspectives.
Collapse
Affiliation(s)
- Nina Miazek-Zapala
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
- Institute of Physiology and Pathophysiology of Hearing, World Hearing Center, 05-830 Nadarzyn, Poland
| | - Aleksander Slusarczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, 02-005 Warsaw, Poland;
| | - Aleksandra Kusowska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
| | - Piotr Zapala
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, 02-005 Warsaw, Poland;
| | - Matylda Kubacz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
| | - Malgorzata Bobrowicz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
| |
Collapse
|
20
|
Raes L, De Smedt SC, Raemdonck K, Braeckmans K. Non-viral transfection technologies for next-generation therapeutic T cell engineering. Biotechnol Adv 2021; 49:107760. [PMID: 33932532 DOI: 10.1016/j.biotechadv.2021.107760] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022]
Abstract
Genetically engineered T cells have sparked interest in advanced cancer treatment, reaching a milestone in 2017 with two FDA-approvals for CD19-directed chimeric antigen receptor (CAR) T cell therapeutics. It is becoming clear that the next generation of CAR T cell therapies will demand more complex engineering strategies and combinations thereof, including the use of revolutionary gene editing approaches. To date, manufacturing of CAR T cells mostly relies on γ-retroviral or lentiviral vectors, but their use is associated with several drawbacks, including safety issues, high manufacturing cost and vector capacity constraints. Non-viral approaches, including membrane permeabilization and carrier-based techniques, have therefore gained a lot of interest to replace viral transductions in the manufacturing of T cell therapeutics. This review provides an in-depth discussion on the avid search for alternatives to viral vectors, discusses key considerations for T cell engineering technologies, and provides an overview of the emerging spectrum of non-viral transfection technologies for T cells. Strengths and weaknesses of each technology will be discussed in relation to T cell engineering. Altogether, this work emphasizes the potential of non-viral transfection approaches to advance the next-generation of genetically engineered T cells.
Collapse
Affiliation(s)
- Laurens Raes
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
21
|
Brown BD, Tambaro FP, Kohorst M, Chi L, Mahadeo KM, Tewari P, Petropoulos D, Slopis JM, Sadighi Z, Khazal S. Immune Effector Cell Associated Neurotoxicity (ICANS) in Pediatric and Young Adult Patients Following Chimeric Antigen Receptor (CAR) T-Cell Therapy: Can We Optimize Early Diagnosis? Front Oncol 2021; 11:634445. [PMID: 33763368 PMCID: PMC7982581 DOI: 10.3389/fonc.2021.634445] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/01/2021] [Indexed: 01/03/2023] Open
Abstract
The Cornell Assessment for Pediatric Delirium (CAPD) was first proposed by the Pediatric Acute Lung Injury and Sepsis Investigators Network-Stem Cell Transplantation and Cancer Immunotherapy Subgroup and MD Anderson CARTOX joint working committees, for detection of immune effector cell associated neurotoxicity (ICANS) in pediatric patients receiving chimeric antigen receptor (CAR) T-cell therapy. It was subsequently adopted by the American Society for Transplantation and Cellular Therapy. The utility of CAPD as a screening tool for early diagnosis of ICANS has not been fully characterized. We conducted a retrospective study of pediatric and young adult patients (n=15) receiving standard-of-care CAR T-cell products. Cytokine release syndrome (CRS) and ICANS occurred in 87% and 40% of patients, respectively. ICANS was associated with significantly higher peaks of serum ferritin. A change in CAPD from a prior baseline was noted in 60% of patients with ICANS, 24–72 h prior to diagnosis of ICANS. The median change from baseline to maximum CAPD score of patients who developed ICANS versus those who did not was 13 versus 3, respectively (p=0.0004). Changes in CAPD score from baseline may be the earliest indicator of ICANS among pediatric and young adult patients which may warrant closer monitoring, with more frequent CAPD assessments.
Collapse
Affiliation(s)
- Brandon Douglas Brown
- Department of Pediatrics, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Children's Cancer Hospital, Houston, TX, United States
| | - Francesco Paolo Tambaro
- Department of Pediatrics, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Children's Cancer Hospital, Houston, TX, United States.,Bone Marrow Transplant Unit, Pediatric Oncology Department, AORN Santobono Pausilipon, Naples, Italy
| | - Mira Kohorst
- Department of Pediatrics, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Children's Cancer Hospital, Houston, TX, United States.,Division of Pediatric Hematology/Oncology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Linda Chi
- Division of Diagnostic Imaging, Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kris Michael Mahadeo
- Department of Pediatrics, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Children's Cancer Hospital, Houston, TX, United States.,CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priti Tewari
- Department of Pediatrics, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Children's Cancer Hospital, Houston, TX, United States.,CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Demetrios Petropoulos
- Department of Pediatrics, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Children's Cancer Hospital, Houston, TX, United States.,CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John M Slopis
- Department of Pediatrics, Neuro-Oncology/Neurology, Children's Cancer Hospital, The University of Texas at MD Anderson Cancer Center, Houston, TX, United States
| | - Zsila Sadighi
- Department of Pediatrics, Neuro-Oncology/Neurology, Children's Cancer Hospital, The University of Texas at MD Anderson Cancer Center, Houston, TX, United States
| | - Sajad Khazal
- Department of Pediatrics, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Children's Cancer Hospital, Houston, TX, United States.,CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
22
|
Rohit Reddy S, Llukmani A, Hashim A, Haddad DR, Patel DS, Ahmad F, Abu Sneineh M, Gordon DK. The Role of Chimeric Antigen Receptor-T Cell Therapy in the Treatment of Hematological Malignancies: Advantages, Trials, and Tribulations, and the Road Ahead. Cureus 2021; 13:e13552. [PMID: 33815972 PMCID: PMC8007123 DOI: 10.7759/cureus.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/25/2021] [Indexed: 12/04/2022] Open
Abstract
Immunotherapy is the upcoming trend in cancer treatment. Traditional cancer treatment methods include surgical resection, radiotherapy, chemotherapy, small molecule targeted drugs, monoclonal antibodies, and hematopoietic stem cell transplantation (HSCT). Surgical resection is useful for early-stage patients but not for metastatic cancer cells; radiotherapy and chemotherapy are more common but produce substantial damage to normal tissues and have poor selectivity. Targeted drugs, including monoclonal antibodies, have better comprehensive efficacy but can also encourage gene mutation of tumor cells and drug tolerance. HSCT is effective, but choosing a donor is often difficult, and the graft is also prone to rejection. Thus, chimeric antigen receptor (CAR)-T cell therapy, a form of cellular/adoptive immunotherapy, is at the forefront of cancer therapy treatments due to its sustained remission, fewer side effects, and a better quality of life. CAR-T cell therapy involves genetically modifying the T cells and multiplying their numbers to kill cancer cells. This review article gives an insight into how the CAR-T cells have evolved from simple T cells with modest immune function to genetically engineered robust counterparts that brought great hope in the treatment of hematological malignancies. Much research has been undertaken during the past decade to design and deliver CAR-T cells. This has led to successful outcomes in leukemias, lymphomas, and multiple myeloma, paving the way for expanding CAR therapy. Despite tremendous progress, CAR-T cell therapies are faced with many challenges. Areas for improvement include limited T cell persistence, tumor escape, immunosuppressive components in the tumor microenvironment, cancer relapse rate, manufacturing time, and production cost. In this manuscript, we summarize the innovations in the design and delivery of CAR technologies, their applications in hematological malignancies, limitations to its widespread application, latest developments, and the future scope of research to counter the challenges and improve its effectiveness and persistence.
Collapse
Affiliation(s)
- Sai Rohit Reddy
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Adiona Llukmani
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ayat Hashim
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Dana R Haddad
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Dutt S Patel
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Farrukh Ahmad
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Majdi Abu Sneineh
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Domonick K Gordon
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Scarborough General Hospital, Scarborough, TTO
| |
Collapse
|
23
|
Chimeric Antigen Receptor-Engineered T Cell Therapy for the Management of Patients with Metastatic Prostate Cancer: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22020640. [PMID: 33440664 PMCID: PMC7826945 DOI: 10.3390/ijms22020640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) has a vast clinical spectrum from the hormone-sensitive setting to castration-resistant metastatic disease. Thus, chemotherapy regimens and the administration of androgen receptor axis-targeted (ARAT) agents for advanced PCa have shown limited therapeutic efficacy. Scientific advances in the field of molecular medicine and technological developments over the last decade have paved the path for immunotherapy to become an essential clinical modality for the treatment of patients with metastatic PCa. However, several immunotherapeutic agents have shown poor outcomes in patients with advanced disease, possibly due to the low PCa mutational burden. Adoptive cellular approaches utilizing chimeric antigen receptor T cells (CAR-T) targeting cancer-specific antigens would be a solution for circumventing the immune tolerance mechanisms. The immunotherapeutic regimen of CAR-T cell therapy has shown potential in the eradication of hematologic malignancies, and current clinical objectives maintain the equivalent efficacy in the treatment of solid tumors, including PCa. This review will explore the current modalities of CAR-T therapy in the disease spectrum of PCa while describing key limitations of this immunotherapeutic approach and discuss future directions in the application of immunotherapy for the treatment of metastatic PCa and patients with advanced disease.
Collapse
|
24
|
Wang T, Gao L, Wang Y, Zhu W, Xu L, Wang Y, Yue W, Tang G, Chen L, Chen J, Zhang W, Yu X, Feng D, Yang J. Hematopoietic stem cell transplantation and chimeric antigen receptor T cell for relapsed or refractory diffuse large B-cell lymphoma. Immunotherapy 2020; 12:997-1006. [PMID: 32752910 DOI: 10.2217/imt-2020-0075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: Autologous hematopoietic stem cell transplantation (ASCT) is the standard-of-care curative treatment for relapsed or refractory diffuse large B-cell lymphoma (RR-DLBCL), but the relapse rate is usually high. Materials & methods: In this study, we treated 14 RR-DLBCL patients by combining ASCT and anti-CD19 chimeric antigen receptor T-cell therapy. Results: Eleven (78.57%) patients achieved complete or partial remission. Median duration of progression-free survival was 14.82 months (95% CI: 0.00-31.20 months) with 6-month progression-free survival rate of 64.29% (95% CI: 39.18-89.40%). Median overall survival was not achieved, with 1-year overall survival rate of 65.48% (95% CI: 36.00-94.96%). No neurotoxicity was observed. Conclusion: Our study demonstrated safety and feasibility of ASCT and anti-CD19 chimeric antigen receptor T-cell treatment for RR-DLBCL patients.
Collapse
Affiliation(s)
- Tao Wang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Lei Gao
- Department of Hematology, Institute of Hematology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yujie Wang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wenjun Zhu
- Center for Cell Engineering, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Lili Xu
- Department of Hematology, Institute of Hematology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yang Wang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wenqin Yue
- Department of Hematology, Institute of Hematology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Gusheng Tang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Li Chen
- Department of Hematology, Institute of Hematology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jie Chen
- Department of Hematology, Institute of Hematology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Weiping Zhang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xuejun Yu
- HuaDao Biopharma (Shanghai) Limited Corporation, Shanghai 201210, China
| | - Dongge Feng
- HuaDao Biopharma (Shanghai) Limited Corporation, Shanghai 201210, China
| | - Jianmin Yang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
25
|
Barbari C, Fontaine T, Parajuli P, Lamichhane N, Jakubski S, Lamichhane P, Deshmukh RR. Immunotherapies and Combination Strategies for Immuno-Oncology. Int J Mol Sci 2020; 21:E5009. [PMID: 32679922 PMCID: PMC7404041 DOI: 10.3390/ijms21145009] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
The advent of novel immunotherapies in the treatment of cancers has dramatically changed the landscape of the oncology field. Recent developments in checkpoint inhibition therapies, tumor-infiltrating lymphocyte therapies, chimeric antigen receptor T cell therapies, and cancer vaccines have shown immense promise for significant advancements in cancer treatments. Immunotherapies act on distinct steps of immune response to augment the body's natural ability to recognize, target, and destroy cancerous cells. Combination treatments with immunotherapies and other modalities intend to activate immune response, decrease immunosuppression, and target signaling and resistance pathways to offer a more durable, long-lasting treatment compared to traditional therapies and immunotherapies as monotherapies for cancers. This review aims to briefly describe the rationale, mechanisms of action, and clinical efficacy of common immunotherapies and highlight promising combination strategies currently approved or under clinical development. Additionally, we will discuss the benefits and limitations of these immunotherapy approaches as monotherapies as well as in combination with other treatments.
Collapse
Affiliation(s)
- Cody Barbari
- OMS Students, School of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine (LECOM), 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (C.B.); (T.F.)
| | - Tyler Fontaine
- OMS Students, School of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine (LECOM), 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (C.B.); (T.F.)
| | - Priyanka Parajuli
- Department of Internal Medicine, Southern Illinois University, Springfield, IL 62702, USA;
| | - Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA;
| | - Silvia Jakubski
- Department of Biostatistics, University of Florida, Gainesville, FL 32611, USA;
| | - Purushottam Lamichhane
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine (LECOM), 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Rahul R. Deshmukh
- School of Pharmacy, Lake Erie College of Osteopathic Medicine (LECOM), 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| |
Collapse
|
26
|
Current Challenges in Providing Good Leukapheresis Products for Manufacturing of CAR-T Cells for Patients with Relapsed/Refractory NHL or ALL. Cells 2020; 9:cells9051225. [PMID: 32429189 PMCID: PMC7290830 DOI: 10.3390/cells9051225] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Background: T lymphocyte collection through leukapheresis is an essential step for chimeric antigen receptor T (CAR-T) cell therapy. Timing of apheresis is challenging in heavily pretreated patients who suffer from rapid progressive disease and receive T cell impairing medication. Methods: A total of 75 unstimulated leukaphereses were analyzed including 45 aphereses in patients and 30 in healthy donors. Thereof, 41 adult patients with Non-Hodgkin’s lymphoma (85%) or acute lymphoblastic leukemia (15%) underwent leukapheresis for CAR-T cell production. Results: Sufficient lymphocytes were harvested from all patients even from those with low peripheral lymphocyte counts of 0.18/nL. Only four patients required a second leukapheresis session. Leukapheresis products contained a median of 98 × 108 (9 - 341 × 108) total nucleated cells (TNC) with 38 × 108 (4 - 232 × 108) CD3+ T cells. Leukapheresis products from healthy donors as well as from patients in complete remission were characterized by high TNC and CD3+ T lymphocyte counts. CAR-T cell products could be manufactured for all but one patient. Conclusions: Sufficient yield of lymphocytes for CAR-T cell production is feasible also for patients with low peripheral blood counts. Up to 12–15 L blood volume should be processed in patients with absolute lymphocyte counts ≤ 1.0/nL.
Collapse
|
27
|
Yakoub-Agha I, Chabannon C, Bader P, Basak GW, Bonig H, Ciceri F, Corbacioglu S, Duarte RF, Einsele H, Hudecek M, Kersten MJ, Köhl U, Kuball J, Mielke S, Mohty M, Murray J, Nagler A, Robinson S, Saccardi R, Sanchez-Guijo F, Snowden JA, Srour M, Styczynski J, Urbano-Ispizua A, Hayden PJ, Kröger N. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica 2020; 105:297-316. [PMID: 31753925 PMCID: PMC7012497 DOI: 10.3324/haematol.2019.229781] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells are a novel class of anti-cancer therapy in which autologous or allogeneic T cells are engineered to express a CAR targeting a membrane antigen. In Europe, tisagenlecleucel (Kymriah™) is approved for the treatment of refractory/relapsed acute lymphoblastic leukemia in children and young adults as well as relapsed/refractory diffuse large B-cell lymphoma, while axicabtagene ciloleucel (Yescarta™) is approved for the treatment of relapsed/refractory high-grade B-cell lymphoma and primary mediastinal B-cell lymphoma. Both agents are genetically engineered autologous T cells targeting CD19. These practical recommendations, prepared under the auspices of the European Society of Blood and Marrow Transplantation, relate to patient care and supply chain management under the following headings: patient eligibility, screening laboratory tests and imaging and work-up prior to leukapheresis, how to perform leukapheresis, bridging therapy, lymphodepleting conditioning, product receipt and thawing, infusion of CAR T cells, short-term complications including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, antibiotic prophylaxis, medium-term complications including cytopenias and B-cell aplasia, nursing and psychological support for patients, long-term follow-up, post-authorization safety surveillance, and regulatory issues. These recommendations are not prescriptive and are intended as guidance in the use of this novel therapeutic class.
Collapse
Affiliation(s)
| | - Christian Chabannon
- Institut Paoli-Calmettes & Module Biothérapies, INSERM CBT-1409, Centre d'Investigations Cliniques de Marseille, Marseille, France
| | - Peter Bader
- Clinic for Children and Adolescents, University Children's Hospital, Frankfurt, Germany
| | - Grzegorz W Basak
- Department of Hematology, Oncology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology of Goethe University and German Red Cross Blood Service, Frankfurt, Germany
| | - Fabio Ciceri
- Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Selim Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Regensburg, Germany
| | - Rafael F Duarte
- Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Hermann Einsele
- Medizinische Klinikund Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinikund Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Marie José Kersten
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam and LYMMCARE, Amsterdam, the Netherlands
| | - Ulrike Köhl
- Fraunhofer Institute for Cellular Therapeutics and Immunology (IZI) and Institute of Clinical Immunology, University of Leipzig, Leipzig as well as Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Jürgen Kuball
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stephan Mielke
- Department of Laboratory Medicine/Department of Cell Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Mohamad Mohty
- Hôpital Saint-Antoine, AP-HP, Sorbonne Université, INSERM UMRS 938, Paris, France
| | | | - Arnon Nagler
- The Chaim Sheba Medical Center, Tel-Hashomer, Affiliated with the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | - Fermin Sanchez-Guijo
- IBSAL-Hospital Universitario de Salamanca, CIC, Universidad de Salamanca, Salamanca, Spain
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Micha Srour
- Service des Maladies du Sang, CHU de Lille, Lille, France
| | - Jan Styczynski
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, Poland
| | | | - Patrick J Hayden
- Department. of Hematology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg, Hamburg, Germany
| |
Collapse
|
28
|
Complications and Toxicities Associated with Cancer Therapies in the Intensive Care Unit. ONCOLOGIC CRITICAL CARE 2020. [PMCID: PMC7121489 DOI: 10.1007/978-3-319-74588-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Advances in the management of hematologic malignancies and solid tumors have given rise to diverse modalities to treat cancer other than cytotoxic chemotherapy, including targeted therapies, immunotherapies, and cellular therapies. Currently, there are over 175 FDA-approved antineoplastic agents in the United States, many with a diverse and profound toxicity profile. Complications of antineoplastic therapy may result in the need for intensive care unit (ICU) admission to provide acute symptom management. Accordingly, ICU providers caring for cancer patients should have a working knowledge of the toxicities and complications associated with antineoplastic therapy.
Collapse
|
29
|
New generation drugs for treatment of multiple myeloma. Drug Discov Today 2019; 25:367-379. [PMID: 31765717 DOI: 10.1016/j.drudis.2019.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022]
Abstract
Multiple myeloma (MM), a plasma cell malignancy, is characterised by lesions in multiple bones involving transformed, matured post-follicular B cells. The course of the disease involves an initial development of monoclonal gammopathy of undetermined significance (MGUS), followed by smouldering MM, before the full MM disease emerges. Despite novel therapies, MM remains incurable, managed by combination therapies, including proteasome inhibitors (PIs), immunomodulators (IMiDs) and anti-human CD38 (daratumumab). MM patients have an increased risk of thromboembolic events due to combination treatments with IMiDs, PIs and anti-human CD38 antibody, and steroids. This review will examine the efficacy and pro-thrombotic effects of MM therapies.
Collapse
|
30
|
Zhao Y, Liu Z, Wang X, Wu H, Zhang J, Yang J, Zhang F, Liu L, Long J, Lu P, Chen Z. Treatment with Humanized Selective CD19CAR-T Cells Shows Efficacy in Highly Treated B-ALL Patients Who Have Relapsed after Receiving Murine-Based CD19CAR-T Therapies. Clin Cancer Res 2019; 25:5595-5607. [PMID: 31300451 DOI: 10.1158/1078-0432.ccr-19-0916] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE CD19 chimeric antigen receptor (CAR)-T therapy has shown impactful results in treatment of B-cell malignancies. However, immune recognition of the murine scFv may render subsequent infusion(s) ineffective. Also, nonselective expansion of both CAR-transduced and nontransduced T cells during the production stage affects the yield and purity of final products. Here, we aim to develop a humanized selective (hs) CD19 CAR to solve the above problems.Experimental Design: A CD19 hsCAR was designed, which incorporated a short selective domain between the humanized heavy chain and light chain. The CAR was examined for its property, and then trialed in 5 highly treated B-ALL patients. RESULTS hsCAR possessed around 6-fold higher affinity to CD19 versus murine CAR (mCAR). Incubation with selective domain-specific mAbs (SmAb) selectively expanded CAR-transduced T cells, and led to a higher proportion of central memory T cells in the final products. SmAb-stimulated CD19 hsCAR-T cells exhibited superior antitumor cytotoxic functions in vitro and in vivo. Autologous (n = 2) and allogeneic donor (n = 3, with hematopoietic stem cell transplantation) hsCAR-T cells were infused into 5 patients who had relapsed after receiving mCAR-T treatments. Two patients received mCAR-T treatments twice previously but the second treatments were ineffective. In contrast, subsequent hsCAR-T treatments proved effective in all 5 patients and achieved complete molecular remission in four, including one with extramedullary disease with central nervous system involvement. CONCLUSIONS hsCD19 CAR-T treatment shows efficacy in highly treated B-ALL patients who have relapsed after receiving CD19 mCAR-T therapies.
Collapse
Affiliation(s)
- Yu Zhao
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Zhongfeng Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Xuan Wang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Huantong Wu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Jianping Zhang
- Lu Daopei Hospital, Langfang, Hebei, China.,Lu Daopei Institute of Hematology, Beijing, China
| | - Junfang Yang
- Lu Daopei Hospital, Langfang, Hebei, China.,Lu Daopei Institute of Hematology, Beijing, China
| | - Fayou Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Lining Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China.
| | - Peihua Lu
- Lu Daopei Hospital, Langfang, Hebei, China. .,Lu Daopei Institute of Hematology, Beijing, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China. .,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
31
|
Abstract
Introduction: Immunotherapy has revolutionized the treatment of cancer. Antibodies, antibody drug conjugates, and bispecific antibodies have improved outcomes in various cancers especially lymphomas. Chimeric antigen receptor T cell (CAR-T) is a step forward in the immunotherapy paradigm for the treatment of Lymphomas. Recently, two CAR-T products, Tisagenlecleucel and Axicabtagene ciloleucel, were approved by the US FDA. While it is exciting to have such novel treatment available, the challenges of production, administration, related toxicity, and cost remain. Specific toxicities related to CAR-T like Cytokine Release Syndrome (CRS) and Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS) could be fatal and need close monitoring and prompt treatment to avoid mortality and improve efficacy of the treatment. Areas covered: In this article, the authors discuss receptor constructs, administration, toxicities, efficacy and reimbursement of CAR-T treatment. Expert opinion: Since approval of CAR-T treatment, cost of therapy and reimbursement have been a big challenge in implementation of CAR-T. This has triggered cost-effective analysis and nationwide discussions about the reimbursement process of such treatment. In spite of these challenges, CAR-T treatment is a huge step forward with a very bright future. Novel CAR-T targeting a variety of antigens in different cancers seems promising in near future.
Collapse
Affiliation(s)
- Jennifer Kelly Anderson
- a Hematology and Oncology fellow, Department of Hematology and Oncology , University of Alabama , Birmingham , AL , USA
| | - Amitkumar Mehta
- b Department of Hematology and Oncology , University of Alabama , Birmingham , AL , USA
| |
Collapse
|
32
|
Mizukoshi E, Kaneko S. Immune cell therapy for hepatocellular carcinoma. J Hematol Oncol 2019; 12:52. [PMID: 31142330 PMCID: PMC6542133 DOI: 10.1186/s13045-019-0742-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Given the success of immune checkpoint inhibitors and chimeric antigen receptor (CAR) T cells in clinical settings, the host immune system plays an important role in the recognition and targeting of tumor cells in cancer immunotherapy. As a result, there have been numerous advancements in immune cell therapy using human immune cells. However, recent evidence suggests that one type of immunotherapy alone is not effective for the treatment of cancer, particularly solid tumors. Thus, effective immunotherapy combinations, such as the combination of checkpoint inhibitors and immune cell therapy, are needed. This review focuses on hepatocellular carcinoma among other solid tumors and discusses the current status and future of immune cell therapy in cancer immunotherapy.
Collapse
Affiliation(s)
- Eishiro Mizukoshi
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa City, Ishikawa, 920-8641, Japan.
| | - Shuichi Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa City, Ishikawa, 920-8641, Japan
| |
Collapse
|
33
|
Bougioukli S, Saitta B, Sugiyama O, Tang AH, Elphingstone J, Evseenko D, Lieberman JR. Lentiviral Gene Therapy for Bone Repair Using Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Hum Gene Ther 2019; 30:906-917. [PMID: 30773946 DOI: 10.1089/hum.2018.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Umbilical cord blood (UCB) has been increasingly explored as an alternative source of stem cells for use in regenerative medicine due to several advantages over other stem-cell sources, including the need for less stringent human leukocyte antigen matching. Combined with an osteoinductive signal, UCB-derived mesenchymal stem cells (MSCs) could revolutionize the treatment of challenging bone defects. This study aimed to develop an ex vivo regional gene-therapy strategy using BMP-2-transduced allogeneic UCB-MSCs to promote bone repair. To this end, human UCB-MSCs were transduced with a lentiviral vector carrying the cDNA for BMP-2 (LV-BMP-2). In vitro assays to determine the UCB-MSC osteogenic potential and BMP-2 production were followed by in vivo implantation of LV-BMP-2-transduced UCB-MSCs in a mouse hind-limb muscle pouch. Non-transduced and LV-GFP-transduced UCB-MSCs were used as controls. Transduction with LV-BMP-2 was associated with abundant BMP-2 production and induction of osteogenic differentiation in vitro. Implantation of BMP-2-transduced UCB-MSCs led to robust heterotopic bone formation 4 weeks postoperatively, as seen on radiographs and histology. These results, along with the fact that UCB-MSCs can be easily collected with no donor-site morbidity and low immunogenicity, suggest that UCB might be a preferable allogeneic source of MSCs to develop an ex vivo gene-therapy approach to treat difficult bone-repair scenarios.
Collapse
Affiliation(s)
- Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Biagio Saitta
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amy H Tang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joseph Elphingstone
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
34
|
García Roche A, Díaz Lagares C, Élez E, Ferrer Roca R. Cytokine release syndrome. Reviewing a new entity in the intensive care unit. Med Intensiva 2019; 43:480-488. [PMID: 30922608 DOI: 10.1016/j.medin.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/13/2019] [Accepted: 01/19/2019] [Indexed: 01/28/2023]
Abstract
Immunotherapy seeks to harness the power of the immune system to eradicate malignant tissues. Despite impressive therapeutic success, however, it can be accompanied by severe adverse effects such as cytokine release syndrome (CRS). These therapies cause the release of a great amount of cytokines, with IL-6 playing a central role, that can potentially lead to multiple organ dysfunction. The diagnosis is based on the presence of compatible clinical symptoms, elevated biomarkers and recent treatment with a biological agent. Mild cases can be managed through symptomatic treatment and fluids, while more severe episodes may need supportive therapy and specific care with the anti-IL-6 receptor monoclonal antibody tocilizumab. Although corticosteroids are also effective, they suppress T-cell activity, and so should only be considered as second line therapy or in cases of severe neurological involvement, since tocilizumab does not cross the blood-brain barrier. Cytokine release syndrome generally has a good prognosis, often being reversible and with a good response to specific treatment. Despite possible concerns about the admission of such patients (mainly with advanced oncological disease), we consider that the Intensive Care Unit should remain an option, since these individuals present a potentially reversible drug-related adverse event and are being treated with a new drug that could change the prognosis of the disorder. Intensive care medicine will become a key component in the management of the complications of modern cancer therapies, dealing with patients presenting an overactive immune system producing organ dysfunction while also trying to maintain treatment efficacy. This is the new paradigm.
Collapse
Affiliation(s)
- Alejandra García Roche
- Intensive Care Department. SODIR Research Group. Vall d́Hebron University Hospital, Barcelona, España
| | - Cándido Díaz Lagares
- Intensive Care Department. SODIR Research Group. Vall d́Hebron University Hospital, Barcelona, España.
| | - Elena Élez
- Medical Oncology Department. VHIO. Vall d́Hebron University Hospital, Barcelona, España
| | - Ricard Ferrer Roca
- Intensive Care Department. SODIR Research Group. Vall d́Hebron University Hospital, Barcelona, España
| |
Collapse
|
35
|
Mahadeo KM, Khazal SJ, Abdel-Azim H, Fitzgerald JC, Taraseviciute A, Bollard CM, Tewari P, Duncan C, Traube C, McCall D, Steiner ME, Cheifetz IM, Lehmann LE, Mejia R, Slopis JM, Bajwa R, Kebriaei P, Martin PL, Moffet J, McArthur J, Petropoulos D, O'Hanlon Curry J, Featherston S, Foglesong J, Shoberu B, Gulbis A, Mireles ME, Hafemeister L, Nguyen C, Kapoor N, Rezvani K, Neelapu SS, Shpall EJ. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat Rev Clin Oncol 2019; 16:45-63. [PMID: 30082906 PMCID: PMC7096894 DOI: 10.1038/s41571-018-0075-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In 2017, an autologous chimeric antigen receptor (CAR) T cell therapy indicated for children and young adults with relapsed and/or refractory CD19+ acute lymphoblastic leukaemia became the first gene therapy to be approved in the USA. This innovative form of cellular immunotherapy has been associated with remarkable response rates but is also associated with unique and often severe toxicities, which can lead to rapid cardiorespiratory and/or neurological deterioration. Multidisciplinary medical vigilance and the requisite health-care infrastructure are imperative to ensuring optimal patient outcomes, especially as these therapies transition from research protocols to standard care. Herein, authors representing the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network Hematopoietic Stem Cell Transplantation (HSCT) Subgroup and the MD Anderson Cancer Center CAR T Cell Therapy-Associated Toxicity (CARTOX) Program have collaborated to provide comprehensive consensus guidelines on the care of children receiving CAR T cell therapy.
Collapse
Affiliation(s)
- Kris M Mahadeo
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sajad J Khazal
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hisham Abdel-Azim
- Department of Pediatrics, Blood and Marrow Transplantation Program, Keck School of Medicine, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Julie C Fitzgerald
- Department of Anesthesiology and Critical Care, Division of Critical Care, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Agne Taraseviciute
- Department of Pediatrics, Division of Hematology-Oncology, University of Washington, Seattle Children's Hospital, Seattle, WA, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research and Department of Pediatrics, Children's National and The George Washington University, Washington DC, USA
| | - Priti Tewari
- Department of Pediatrics, Stem Cell Transplantation, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Christine Duncan
- Pediatric Hematology-Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Chani Traube
- Department of Pediatric Critical Care, Weil Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA
| | - David McCall
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marie E Steiner
- Department of Pediatrics, Division of Critical Care, University of Minnesota, Masonic Children's Hospital, University of Minnesota, Minneapolis, MN, USA
| | - Ira M Cheifetz
- Department of Pediatrics, Division of Critical Care, Duke Children's Hospital, Duke University, Durham, NC, USA
| | - Leslie E Lehmann
- Pediatric Hematology-Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Rodrigo Mejia
- Department of Pediatrics, Critical Care, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John M Slopis
- Department of Pediatrics, Neurology, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajinder Bajwa
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Nationwide Children's Hospital, the Ohio State University, Columbus, OH, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul L Martin
- Department of Pediatrics, Division of Blood and Marrow Transplant, Duke Children's Hospital, Duke University, Durham, NC, USA
| | - Jerelyn Moffet
- Department of Pediatrics, Division of Blood and Marrow Transplant, Duke Children's Hospital, Duke University, Durham, NC, USA
| | - Jennifer McArthur
- Department of Pediatrics, Division of Critical Care, St. Jude's Children's Research Hospital, Memphis, TN, USA
| | - Demetrios Petropoulos
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joan O'Hanlon Curry
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah Featherston
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessica Foglesong
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Basirat Shoberu
- Department of Pharmacy, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alison Gulbis
- Department of Pharmacy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria E Mireles
- Department of Pharmacy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisa Hafemeister
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cathy Nguyen
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neena Kapoor
- Department of Pediatrics, Blood and Marrow Transplantation Program, Keck School of Medicine, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
36
|
Elahi R, Khosh E, Tahmasebi S, Esmaeilzadeh A. Immune Cell Hacking: Challenges and Clinical Approaches to Create Smarter Generations of Chimeric Antigen Receptor T Cells. Front Immunol 2018; 9:1717. [PMID: 30108584 PMCID: PMC6080612 DOI: 10.3389/fimmu.2018.01717] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022] Open
Abstract
T cells equipped with chimeric antigen receptors (CAR T cells) have recently provided promising advances as a novel immunotherapeutic approach for cancer treatment. CAR T cell therapy has shown stunning results especially in B-cell malignancies; however, it has shown less success against solid tumors, which is more supposed to be related to the specific characteristics of the tumor microenvironment. In this review, we discuss the structure of the CAR, current clinical advantages from finished and ongoing trials, adverse effects, challenges and controversies, new engineering methods of CAR, and clinical considerations that are associated with CAR T cell therapy both in hematological malignancies and solid tumors. Also, we provide a comprehensive description of recently introduced modifications for designing smarter models of CAR T cells. Specific hurdles and problems that limit the optimal function of CAR T cells, especially on solid tumors, and possible solutions according to new modifications and generations of CAR T cells have been introduced here. We also provide information of the future directions on how to enhance engineering the next smarter generations of CAR T cells in order to decrease the adverse effects and increase the potency and efficacy of CAR T cells against cancer.
Collapse
Affiliation(s)
- Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elnaz Khosh
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Department of Immunology, Health Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
37
|
Zhao Z, Chen Y, Francisco NM, Zhang Y, Wu M. The application of CAR-T cell therapy in hematological malignancies: advantages and challenges. Acta Pharm Sin B 2018; 8:539-551. [PMID: 30109179 PMCID: PMC6090008 DOI: 10.1016/j.apsb.2018.03.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/26/2018] [Accepted: 02/18/2018] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T cell) therapy is a novel adoptive immunotherapy where T lymphocytes are engineered with synthetic receptors known as chimeric antigen receptors (CAR). The CAR-T cell is an effector T cell that recognizes and eliminates specific cancer cells, independent of major histocompatibility complex molecules. The whole procedure of CAR-T cell production is not well understood. The CAR-T cell has been used predominantly in the treatment of hematological malignancies, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, lymphoma, and multiple myeloma. Solid tumors including melanoma, breast cancer and sarcoma offer great promise in CAR-T cell research and development. CD19 CAR-T cell is most commonly used, and other targets, including CD20, CD30, CD38 and CD138 are being studied. Although this novel therapy is promising, there are several disadvantages. In this review we discuss the applications of CAR-T cells in different hematological malignancies, and pave a way for future improvement on the effectiveness and persistence of these adoptive cell therapies.
Collapse
Affiliation(s)
- Zijun Zhao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | | | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
38
|
Schumock GT, Stubbings J, Wiest MD, Li EC, Suda KJ, Matusiak LM, Hunkler RJ, Vermeulen LC. National trends in prescription drug expenditures and projections for 2018. Am J Health Syst Pharm 2018; 75:1023-1038. [PMID: 29748254 DOI: 10.2146/ajhp180138] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Historical trends and factors likely to influence future pharmaceutical expenditures are discussed, and projections are made for drug spending in 2018 in nonfederal hospitals, clinics, and overall (all sectors). METHODS Drug expenditure data through calendar year 2017 were obtained from the IQVIA (formerly QuintilesIMS) National Sales Perspectives database and analyzed. New drug approvals, patent expirations, and other factors that may influence drug spending in hospitals and clinics in 2018 were also reviewed. Expenditure projections for 2018 for nonfederal hospitals, clinics, and overall (all sectors) were made based on a combination of quantitative analyses and expert opinion. RESULTS Total U.S. prescription sales in the 2017 calendar year were $455.9 billion, a 1.7% increase compared with 2016. The top drug based on expenditures was adalimumab ($17.1 billion), followed by insulin glargine and etanercept. Prescription expenditures in nonfederal hospitals totaled $34.2 billion, a 0.7% decrease in 2017 compared with 2016. Expenditures in clinics increased 10.9%, to a total of $70.8 billion. The decrease in spending in nonfederal hospitals was driven by lower utilization. The top 25 drugs by expenditures in nonfederal hospitals and clinics were dominated by specialty drugs. CONCLUSION We project a 3.0-5.0% increase in total drug expenditures across all settings, a 11.0-13.0% increase in clinics, and a 0.0-2.0% increase in hospital drug spending in 2018. Health-system pharmacy leaders should carefully examine their own local drug utilization patterns to determine their own organization's anticipated spending in 2018.
Collapse
Affiliation(s)
- Glen T Schumock
- Department of Pharmacy Systems, Outcomes and Policy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL.
| | - JoAnn Stubbings
- Department of Pharmacy Systems, Outcomes and Policy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL
| | - Michelle D Wiest
- UC Health, Cincinnati, OH, and James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH
| | - Edward C Li
- Department of Pharmacy Practice, College of Pharmacy, University of New England, Portland, ME
| | - Katie J Suda
- Department of Veterans Affairs, Center of Innovation for Complex Chronic Healthcare, Edward Hines Jr. VA Hospital, Hines, IL, and Department of Pharmacy Systems, Outcomes and Policy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL
| | | | | | - Lee C Vermeulen
- University of Kentucky College of Medicine, Lexington, KY, and UK HealthCare, Lexington, KY
| |
Collapse
|
39
|
Ma X, Bi E, Huang C, Lu Y, Xue G, Guo X, Wang A, Yang M, Qian J, Dong C, Yi Q. Cholesterol negatively regulates IL-9-producing CD8 + T cell differentiation and antitumor activity. J Exp Med 2018; 215:1555-1569. [PMID: 29743292 PMCID: PMC5987919 DOI: 10.1084/jem.20171576] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/19/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
CD8+ T cells can be polarized into IL-9-secreting (Tc9) cells. We previously showed that adoptive therapy using tumor-specific Tc9 cells generated stronger antitumor responses in mouse melanoma than classical Tc1 cells. To understand why Tc9 cells exert stronger antitumor responses, we used gene profiling to compare Tc9 and Tc1 cells. Tc9 cells expressed different levels of cholesterol synthesis and efflux genes and possessed significantly lower cholesterol content than Tc1 cells. Unique to Tc9, but not other CD8+ or CD4+ T cell subsets, manipulating cholesterol content in polarizing Tc9 cells significantly affected IL-9 expression and Tc9 differentiation and antitumor response in vivo. Mechanistic studies showed that IL-9 was indispensable for Tc9 cell persistence and antitumor effects, and cholesterol or its derivatives inhibited IL-9 expression by activating liver X receptors (LXRs), leading to LXR Sumoylation and reduced p65 binding to Il9 promoter. Our study identifies cholesterol as a critical regulator of Tc9 cell differentiation and function.
Collapse
Affiliation(s)
- Xingzhe Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Enguang Bi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Chunjian Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yong Lu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Gang Xue
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xing Guo
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Aibo Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Maojie Yang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Jianfei Qian
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Qing Yi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
40
|
Abstract
The practice of autoimmune neurology focuses on the diagnosis and treatment of a wide spectrum of neurological conditions driven by abnormal immune responses directed against neural tissues. These include autoimmune, paraneoplastic, postinfectious, and iatrogenic conditions. Symptoms of autoimmune neurologic disorders can be diverse and often difficult to recognize in their early stages, complicating the diagnosis. This review discusses the classification and management of common autoimmune neurological conditions, placing an emphasis on the rapid identification of autoimmune etiology and mechanism of immune dysfunction to allow for the timely institution of appropriate treatment.
Collapse
|
41
|
Zheng P, Li J, Kros JM. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research-practice gaps, challenges, and insights. Med Res Rev 2018; 38:325-376. [PMID: 28862319 PMCID: PMC5763363 DOI: 10.1002/med.21463] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022]
Abstract
To date, five cancer treatment modalities have been defined. The three traditional modalities of cancer treatment are surgery, radiotherapy, and conventional chemotherapy, and the two modern modalities include molecularly targeted therapy (the fourth modality) and immunotherapy (the fifth modality). The cardiotoxicity associated with conventional chemotherapy and radiotherapy is well known. Similar adverse cardiac events are resurging with the fourth modality. Aside from the conventional and newer targeted agents, even the most newly developed, immune-based therapeutic modalities of anticancer treatment (the fifth modality), e.g., immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cell therapy, have unfortunately led to potentially lethal cardiotoxicity in patients. Cardiac complications represent unresolved and potentially life-threatening conditions in cancer survivors, while effective clinical management remains quite challenging. As a consequence, morbidity and mortality related to cardiac complications now threaten to offset some favorable benefits of modern cancer treatments in cancer-related survival, regardless of the oncologic prognosis. This review focuses on identifying critical research-practice gaps, addressing real-world challenges and pinpointing real-time insights in general terms under the context of clinical cardiotoxicity induced by the fourth and fifth modalities of cancer treatment. The information ranges from basic science to clinical management in the field of cardio-oncology and crosses the interface between oncology and onco-pharmacology. The complexity of the ongoing clinical problem is addressed at different levels. A better understanding of these research-practice gaps may advance research initiatives on the development of mechanism-based diagnoses and treatments for the effective clinical management of cardiotoxicity.
Collapse
Affiliation(s)
- Ping‐Pin Zheng
- Cardio‐Oncology Research GroupErasmus Medical CenterRotterdamthe Netherlands
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| | - Jin Li
- Department of OncologyShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Johan M Kros
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| |
Collapse
|
42
|
Jain MD, Davila ML. Concise Review: Emerging Principles from the Clinical Application of Chimeric Antigen Receptor T Cell Therapies for B Cell Malignancies. Stem Cells 2017; 36:36-44. [PMID: 29024301 DOI: 10.1002/stem.2715] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/27/2017] [Accepted: 09/21/2017] [Indexed: 11/07/2022]
Abstract
Gene-engineered T cell therapies are soon to be United States Food and Drug Administration (FDA) approved for at least two types of B cell malignancies in pediatric and adult patients, in the form of CD19 targeted chimeric antigen receptor T (CAR T) cell therapy. This represents a triumph of a true bench to bedside clinical translation of a therapy that was conceived of in the early 1990s. Clinical results have demonstrated efficacious responses in patients with the CD19 positive diseases B cell acute lymphoblastic leukemia and diffuse large B cell lymphoma. However, significant challenges have emerged, including worrisome immune-related toxicities, therapy resistance, and understanding how to administer CD19 CAR T cells in clinical practice. Although much remains to be learned, pioneering clinical trials have led to foundational insights about the clinical translation of this novel therapy. Here, we review the "lessons learned" from the pre-clinical and human experience with CAR T cell therapy. Stem Cells 2018;36:36-44.
Collapse
Affiliation(s)
- Michael D Jain
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Oncologic Sciences, University of South Florida, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Marco L Davila
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Oncologic Sciences, University of South Florida, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
43
|
de Winde CM, Elfrink S, van Spriel AB. Novel Insights into Membrane Targeting of B Cell Lymphoma. Trends Cancer 2017; 3:442-453. [DOI: 10.1016/j.trecan.2017.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 11/28/2022]
|