1
|
Arzola-Martínez L, Benavente R, Vega G, Ríos M, Fonseca W, Rasky AJ, Morris S, Lukacs NW, Villalón MJ. Blocking ATP-releasing channels prevents high extracellular ATP levels and airway hyperreactivity in an asthmatic mouse model. Am J Physiol Lung Cell Mol Physiol 2021; 321:L466-L476. [PMID: 34231389 DOI: 10.1152/ajplung.00450.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Allergic asthma is a chronic airway inflammatory response to different triggers like inhaled allergens. Excessive ATP in fluids from patients with asthma is considered an inflammatory signal and an important autocrine/paracrine modulator of airway physiology. Here, we investigated the deleterious effect of increased extracellular ATP (eATP) concentration on the mucociliary clearance (MCC) effectiveness and determined the role of ATP releasing channels during airway inflammation in an ovalbumin (OVA)-sensitized mouse model. Our allergic mouse model exhibited high levels of eATP measured in the tracheal fluid with a luciferin-luciferase assay and reduced MCC velocity determined by microspheres tracking in the trachea ex vivo. Addition of ATP had a dual effect on MCC, where lower ATP concentration (µM) increased microspheres velocity, whereas higher concentration (mM) transiently stopped microspheres movement. Also, an augmented ethidium bromide uptake by the allergic tracheal airway epithelium suggests an increase in ATP release channel functionality during inflammatory conditions. The use of carbenoxolone, a nonspecific inhibitor of connexin and pannexin1 channels reduced the eATP concentration in the allergic mouse tracheal fluid and dye uptake by the airway epithelium, providing evidence that these ATP release channels are facilitating the net flux of ATP to the lumen during airway inflammation. However, only the specific inhibition of pannexin1 with 10Panx peptide significantly reduced eATP in bronchoalveolar lavage and decreased airway hyperresponsiveness in OVA-allergic mouse model. These data provide evidence that blocking eATP may be a pharmacological alternative to be explored in rescue therapy during episodes of airflow restriction in patients with asthma.
Collapse
Affiliation(s)
- Llilian Arzola-Martínez
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Rebeca Benavente
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Génesis Vega
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Ríos
- Department of Molecular Genetics and Microbiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Susan Morris
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Manuel J Villalón
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
De Servi B, Meloni M, Saaid A, Culig J. In vitro Comparison of Safety and Efficacy of Diluted Isotonic Seawater and Electrodialyzed Seawater for Nasal Hygiene. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2020; 13:391-398. [PMID: 33312003 PMCID: PMC7726834 DOI: 10.2147/mder.s285593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/16/2020] [Indexed: 11/23/2022] Open
Abstract
Background Nasal irrigation is often used for managing sinonasal conditions and maintaining nasal hygiene, which is critical to overall nasal health and to provide protection against airborne contaminants and pathogens. However, studies comparing efficacies of different solutions are needed. Purpose This in vitro study evaluated the ionic balance of an isotonic diluted seawater solution (Stérimar Nasal Hygiene, SNH) and its safety and efficacy for regular nasal hygiene in comparison to electrodialyzed seawater (EDS). Materials and Methods Ionic balance of SNH, EDS and pure seawater was measured by mass spectrometry and chromatography to be compared to the ionic balance of human plasma as reported in the literature. Safety was measured through cytotoxicity (lactate dehydrogenase release) and pro-inflammation (interleukin-8 secretion) assays using a 3D-reconstituted human nasal epithelium model. For efficacy, adenosine 5'-triphosphate (ATP) release assays, and histological (alcian blue) and immunohistochemical (aquaporin 3) stainings were performed on tissues under hypotonic challenge where saline solution was used as the negative control. Results Compared to EDS, the ionic balance of SNH was more similar to human plasma and pure seawater. SNH reduced hypotonic stress-associated ATP release and maintained tissue morphology more effectively and lastingly compared to EDS. Both solutions were safe to use on nasal epithelium, as neither of them caused cytotoxicity or induced (pro-) inflammation. Conclusion In comparison to EDS, this study confirms the safety and efficacy of SNH in maintaining good nasal hygiene consistent with its benefits reported in clinical trials.
Collapse
Affiliation(s)
| | - Marisa Meloni
- In Vitro Research Laboratories, VitroScreen SrL, Milan, Italy
| | - Amina Saaid
- Department of R&D and Innovation, Laboratoire Fumouze, Levallois-Perret, France
| | - Josip Culig
- Department of Pharmacology and Clinical Pharmacology, University of Applied Health Sciences, Zagreb, Croatia
| |
Collapse
|
3
|
Singh N, Driessen AK, McGovern AE, Moe AAK, Farrell MJ, Mazzone SB. Peripheral and central mechanisms of cough hypersensitivity. J Thorac Dis 2020; 12:5179-5193. [PMID: 33145095 PMCID: PMC7578480 DOI: 10.21037/jtd-2020-icc-007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic cough is a difficult to treat symptom of many respiratory and some non-respiratory diseases, indicating that varied pathologies can underpin the development of chronic cough. However, clinically and experimentally it has been useful to collate these different pathological processes into the single unifying concept of cough hypersensitivity. Cough hypersensitivity syndrome is reflected by troublesome cough often precipitated by levels of stimuli that ordinarily don't cause cough in healthy people, and this appears to be a hallmark feature in many patients with chronic cough. Accordingly, a strong argument has emerged that changes in the excitability and/or normal regulation of the peripheral and central neural circuits responsible for cough are instrumental in establishing cough hypersensitivity and for causing excessive cough in disease. In this review, we explore the current peripheral and central neural mechanisms that are believed to be involved in altered cough sensitivity and present possible links to the mechanism of action of novel therapies that are currently undergoing clinical trials for chronic cough.
Collapse
Affiliation(s)
- Nabita Singh
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
| | - Alexandria K. Driessen
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Alice E. McGovern
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Aung Aung Kywe Moe
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Michael J. Farrell
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Stuart B. Mazzone
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| |
Collapse
|
4
|
Do BH, Nguyen TN, Baba R, Ohbuchi T, Ohkubo JI, Kitamura T, Wakasugi T, Morimoto H, Suzuki H. Calmodulin and protein kinases A/G mediate ciliary beat response in the human nasal epithelium. Int Forum Allergy Rhinol 2019; 9:1352-1359. [PMID: 31574592 DOI: 10.1002/alr.22442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mucociliary clearance of the airway epithelium is an essential function for mucosal defense. We recently proposed a hypothetical mechanism of ciliary beat regulation, in which the pannexin-1 (Panx1)-P2X7 unit serves as an oscillator generating a periodic increase in intracellular Ca2+ ([Ca2+ ]i ). In the present study, we examined the localization of Panx1 and P2X7 at the ultrastructural level, and investigated the regulatory pathway subsequent to [Ca2+ ]i increase. METHODS The inferior turbinate mucosa was collected from patients with chronic hypertrophic rhinitis during endoscopic sinonasal surgery. The mucosa was examined by transmission immunoelectron microscopy for Panx1 and P2X7. Alternatively, the mucosa was cut into thin strips, and ciliary beat frequency (CBF) was measured under a phase-contrast light microscope with a high-speed digital video camera. RESULTS In immunoelectron microscopy, immunoreactivities for Panx1 and P2X7 were localized along the plasma membrane of the entire length of the cilia. CBF was significantly increased by stimulation with 100 µM acetylcholine (Ach). The Ach-induced CBF increase was significantly inhibited by calmidazolium (calmodulin antagonist), SQ22536 (adenylate cyclase inhibitor), ODQ (guanylate cyclase inhibitor), KT5720 (protein kinase A inhibitor), and KT5823 (protein kinase G inhibitor). Fluorodinitrobenzene (creatine kinase inhibitor) completely inhibited the ciliary beat in a time- and dose-dependent manner. CONCLUSION These results indicate that Panx1 and P2X7 coexist at the cilia of the human nasal epithelial cells and that the ciliary beat is regulated by calmodulin, adenylate/guanylate cyclases and protein kinases A/G, and crucially depends on creatine kinase.
Collapse
Affiliation(s)
- Ba Hung Do
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Otorhinolaryngology, Hanoi Medical University, Hanoi, Vietnam
| | - Thi Nga Nguyen
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryoko Baba
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Toyoaki Ohbuchi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Jun-Ichi Ohkubo
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takuro Kitamura
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tetsuro Wakasugi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroyuki Morimoto
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideaki Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
5
|
Huang S, Constant S, De Servi B, Meloni M, Culig J, Bertini M, Saaid A. In vitro safety and performance evaluation of a seawater solution enriched with copper, hyaluronic acid, and eucalyptus for nasal lavage. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2019; 12:399-410. [PMID: 31576180 PMCID: PMC6766585 DOI: 10.2147/mder.s209644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/20/2019] [Indexed: 01/02/2023] Open
Abstract
Background The common cold is a viral infectious disease with symptoms such as runny nose, sore throat, and mainly, nasal congestion. State-of-the-art therapeutic approaches focus on alleviating the symptoms of this disease by non-invasive and simple-to-use methods. Nasal irrigation is one of the most accepted approaches to ease nasal congestion which, if left untreated, has a negative impact on the quality of life of patients. Purpose In this study, the safety and efficacy of a novel hypertonic seawater solution for nasal lavage enriched with hyaluronic acids, eucalyptus oil, copper, and manganese salts (Stérimar Stop & Protect Cold and Flu; SSPCF) have been investigated in vitro. Methods An in vitro 3D reconstituted human nasal epithelium tissue model, MucilAir™, has been used in this study to investigate the safety of SSPCF on nasal epithelium by measuring transepithelial electrical resistance (TEER), lactate dehydrogenase (LDH), and interleukin-8 (IL-8) secretion. The efficacy of SSPCF was measured by mucociliary clearance (MCC), ATP release, Alcian blue and aquaporin (AQP3) stainings. Results SSPCF treatment respected nasal epithelium tissue integrity and enhanced barrier function without inducing a cytotoxic response. Secreted LDH and IL-8 levels were similar to untreated controls. MCC rate was increased 2.5-fold and ATP release decreased 87% upon SSPCF treatment, indicating improved decongestion activity. SSPCF treatment after hypotonic stress helped recover cellular organization, as shown by Alcian blue and AQP3 staining assays. Conclusion SSPCF appears as a safe and effective nasal irrigation formula that may alleviate the symptoms associated with common cold such as nasal congestion.
Collapse
Affiliation(s)
| | | | - Barbara De Servi
- Department of in Vitro Research, VitroScreen, Milan, 20149, Italy
| | - Marisa Meloni
- Department of in Vitro Research, VitroScreen, Milan, 20149, Italy
| | - Josip Culig
- Department of Pharmacology, University of Applied Health Sciences, Zagreb, 10000, Croatia
| | - Marco Bertini
- R&D Department, Laboratori Baldacci SpA, Pisa, Italy
| | - Amina Saaid
- Department of R&D and Innovation, Laboratoire Fumouze, Levallois-Perret, 92686, France
| |
Collapse
|
6
|
Do HB, Ohbuchi T, Yokoyama M, Kitamura T, Wakasugi T, Ohkubo JI, Suzuki H. Decreased ciliary beat responsiveness to acetylcholine in the nasal polyp epithelium. Clin Otolaryngol 2019; 44:356-365. [PMID: 30762948 DOI: 10.1111/coa.13312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/26/2018] [Accepted: 02/10/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE We investigated the difference in ciliary beat responsiveness to acetylcholine in ex vivo and the difference in the expressions of associated molecules (M1/M3 muscarinic receptors, pannexin-1 and P2X7 purinergic receptor) between the nasal polyp and turbinate mucosa. STUDY DESIGN Laboratorial study. PARTICIPANTS Nasal polyp and inferior turbinate were collected from patients with hypertrophic rhinitis and/or nasal polyp during endoscopic sinonasal surgery. MAIN OUTCOME MEASURES The mucosa was cut into thin strips, and ciliary movement was observed under a phase-contrast light microscope equipped with a high-speed digital video camera. The samples were also examined by scanning electron microscopy, fluorescence immunohistochemistry, and quantitative reverse transcription-polymerase chain reaction. RESULTS Cilia were well preserved in both tissues at the ultrastructural level. The baseline ciliary beat frequency (CBF) was not different between the two tissues. The CBF of the turbinate was significantly increased by stimulation with acetylcholine (P < 0.001), but that of the polyp was not. The ratio of the acetylcholine-stimulated CBF to the baseline CBF was significantly lower in the polyp than in the turbinate (P < 0.001). Immunohistochemical study revealed that immunoreactivities for M3, pannexin-1 and P2X7 were weaker in the polyp than in the turbinate. The mRNA expressions of M1, M3 and P2X7 were significantly lower and that of pannexin-1 tended to be lower in the polyp than in the turbinate. CONCLUSIONS These results indicate that ciliary beat responsiveness to acetylcholine is decreased in the nasal polyp. This may be explained by the decreased expressions of M3, P2X7 and probably pannexin-1 in this tissue.
Collapse
Affiliation(s)
- Hung Ba Do
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Otorhinolaryngology, Hanoi Medical University, Hanoi, Vietnam
| | - Toyoaki Ohbuchi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuru Yokoyama
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takuro Kitamura
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tetsuro Wakasugi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Jun-Ichi Ohkubo
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideaki Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
7
|
Ohbuchi T, Suzuki H. Synchronized roles of pannexin and connexin in nasal mucosal epithelia. Eur Arch Otorhinolaryngol 2018; 275:1657-1661. [PMID: 29574598 PMCID: PMC5951895 DOI: 10.1007/s00405-018-4947-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Nasal mucosal epithelial cells express connexins, the prototypical gap junction proteins, and pannexins, a new family of channel proteins homologous to the invertebrate gap junction proteins. The physiological and pathophysiological roles of these transmembrane proteins in nasal mucosa are largely still unknown. PURPOSE Pannexins participate in ATP release into the extracellular space in various tissues, and ATP plays important roles in mucociliary clearance, especially by regulating ciliary beat activity. Therefore, we focused on the functional relationship between connexins, pannexin-1, ATP release, and mucociliary clearance in nasal epithelia. RESULTS AND CONCLUSIONS Connexins participate in the generation of intercellular calcium waves, in which calcium-mediated signaling responses spread to contiguous cells through the gap junction formed by connexins to transmit calcium signaling throughout the airway epithelium. Pannexins in the nasal mucosa may contribute to not only ciliary beat modulation via ATP release, but also regulation of mucus blanket components via H2O efflux. The synchronized roles of pannexin and connexin may provide a new insight into effective mucociliary clearance systems in nasal mucosa.
Collapse
Affiliation(s)
- Toyoaki Ohbuchi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Hideaki Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
8
|
Do BH, Ohbuchi T, Wakasugi T, Koizumi H, Yokoyama M, Hohchi N, Suzuki H. Acetylcholine-induced Ciliary Beat of the Human Nasal Mucosa Is Regulated by the Pannexin-1 Channel and Purinergic P2X Receptor. Am J Rhinol Allergy 2018; 32:217-227. [PMID: 29676177 DOI: 10.1177/1945892418770292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Airway mucociliary transport is an important function for the clearance of inhaled foreign particulates in the respiratory tract. The present study aimed at investigating the regulatory mechanism of acetylcholine (Ach)-induced ciliary beat of the human nasal mucosa in ex vivo. Methods The inferior turbinate mucosa was collected from patients with chronic hypertrophic rhinitis during endoscopic surgery. The mucosa was cut into thin strips, and ciliary movement was observed under a phase-contrast light microscope with a high-speed digital video camera. The sample was alternatively subjected to scanning electron microscopic observation. Results Cilia on the turbinate epithelium were well preserved at the ultrastructural level. The baseline ciliary beat frequency (CBF) was 6.45 ± 0.32 Hz. CBF was significantly increased by stimulation with 100 µM Ach and 100 µM adenosine triphosphate. The Ach-induced CBF increase was completely inhibited by removing extracellular Ca2+. Significant inhibition of the Ach-induced CBF was also observed by the addition of 1 µM atropine, 40 µM 2-aminoethoxydiphenyl borate (inositol trisphosphate [IP3] receptor antagonist), 10 µM carbenoxolone (pannexin-1 blocker), 1 mM probenecid (pannexin-1 blocker), 100 µM pyridoxalphosphate-6-azophenyl-20,40-disulfonic acid (P2X antagonist), and 300 µM flufenamic acid (connexin blocker). Meanwhile, 30 nM bafilomycin A1 (vesicular transport inhibitor) did not inhibit the Ach-induced CBF increase. CONCLUSIONS These results indicate that the regulatory mechanism of the Ach-induced ciliary beat is dependent on extracellular Ca2+ and involves the muscarinic Ach receptor, IP3 receptor, pannexin-1 channel, purinergic P2X receptor, and connexin channel. We proposed a tentative intracellular signaling pathway of the Ach-induced ciliary beat, in which the pannexin-1-P2X unit may play a central role in ciliary beat regulation.
Collapse
Affiliation(s)
- Ba H Do
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,2 Department of Otorhinolaryngology, Ha Noi Medical University, Ha Noi, Vietnam
| | - Toyoaki Ohbuchi
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tetsuro Wakasugi
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroki Koizumi
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuru Yokoyama
- 3 Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Nobusuke Hohchi
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideaki Suzuki
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
9
|
Guerrero J, Oliveira H, Aid R, Bareille R, Siadous R, Letourneur D, Mao Y, Kohn J, Amédée J. Influence of the three‐dimensional culture of human bone marrow mesenchymal stromal cells within a macroporous polysaccharides scaffold on Pannexin 1 and Pannexin 3. J Tissue Eng Regen Med 2018; 12:e1936-e1949. [DOI: 10.1002/term.2625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/30/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Julien Guerrero
- Inserm, U1026, Tissue BioengineeringUniversity of Bordeaux Bordeaux Cedex France
- Department of BiomedicineUniversity Hospital Basel, University of Basel Basel Switzerland
| | - Hugo Oliveira
- Inserm, U1026, Tissue BioengineeringUniversity of Bordeaux Bordeaux Cedex France
| | - Rachida Aid
- Inserm U1148, LVTS, X. Bichat HospitalUniversity Paris Diderot F‐75018 Paris, Institut Galilée, University Paris 13, 93430 Villetaneuse Paris Cedex 18; University Paris Diderot, CHUX, Bichat Paris France
| | - Reine Bareille
- Inserm, U1026, Tissue BioengineeringUniversity of Bordeaux Bordeaux Cedex France
| | - Robin Siadous
- Inserm, U1026, Tissue BioengineeringUniversity of Bordeaux Bordeaux Cedex France
| | - Didier Letourneur
- Inserm U1148, LVTS, X. Bichat HospitalUniversity Paris Diderot F‐75018 Paris, Institut Galilée, University Paris 13, 93430 Villetaneuse Paris Cedex 18; University Paris Diderot, CHUX, Bichat Paris France
| | - Yong Mao
- The New Jersey Center for Biomaterials, Department of Chemistry and Chemical BiologyRutgers The State University of New Jersey Piscataway NJ USA
| | - Joachim Kohn
- The New Jersey Center for Biomaterials, Department of Chemistry and Chemical BiologyRutgers The State University of New Jersey Piscataway NJ USA
| | - Joëlle Amédée
- Inserm, U1026, Tissue BioengineeringUniversity of Bordeaux Bordeaux Cedex France
| |
Collapse
|
10
|
CALHM1-Mediated ATP Release and Ciliary Beat Frequency Modulation in Nasal Epithelial Cells. Sci Rep 2017; 7:6687. [PMID: 28751666 PMCID: PMC5532211 DOI: 10.1038/s41598-017-07221-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022] Open
Abstract
Mechanical stimulation of airway epithelial cells causes apical release of ATP, which increases ciliary beat frequency (CBF) and speeds up mucociliary clearance. The mechanisms responsible for this ATP release are poorly understood. CALHM1, a transmembrane protein with shared structural features to connexins and pannexins, has been implicated in ATP release from taste buds, but it has not been evaluated for a functional role in the airway. In the present study, Calhm1 knockout, Panx1 knockout, and wild-type mouse nasal septal epithelial cells were grown at an air-liquid interface (ALI) and subjected to light mechanical stimulation from an air puff. Apical ATP release was attenuated in Calhm1 knockout cultures following mechanical stimulation at a pressure of 55 mmHg for 50 milliseconds (p < 0.05). Addition of carbenoxolone, a PANX1 channel blocker, completely abolished ATP release in Calhm1 knockout cultures but not in wild type or Panx1 knockout cultures. An increase in CBF was observed in wild-type ALIs following mechanical stimulation, and this increase was significantly lower (p < 0.01) in Calhm1 knockout cultures. These results demonstrate that CALHM1 plays a newly defined role, complementary to PANX1, in ATP release and downstream CBF modulation following a mechanical stimulus in airway epithelial cells.
Collapse
|
11
|
Ohbuchi T, Do BH, Koizumi H, Takeuchi S, Ueta Y, Suzuki H. Possible contribution of pannexin-1 to capsaicin-induced ATP release in rat nasal columnar epithelial cells. Channels (Austin) 2017; 11:273-280. [PMID: 28631948 PMCID: PMC5555260 DOI: 10.1080/19336950.2017.1293209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Current evidence indicates that transient receptor potential (TRP) channel activity involves a relationship between opening of pannexin-1 and release of ATP into the extracellular space. We examined the effects of agonists of thermosensitive TRP channels (TRPM8, TRPA1, TRPV1, and TRPV2) on ATP release from rat nasal mucosa, and measured ciliary beat frequency (CBF) using digital high-speed video imaging. Single-cell patch clamping from dissociated rat nasal columnar epithelial cells was performed to confirm the relationship between pannexin-1 and TRP. We demonstrated that ATP release and CBF were significantly potentiated by the heat-sensitive TRPV1 agonist capsaicin (10 μM), but not by other TRP agonists. Capsaicin-induced ATP release and CBF increase were significantly inhibited by the pannexin-1 blockers carbenoxolone (10 μM) and probenecid (300 μM). In addition, the voltage step-evoked currents in the presence of capsaicin were inhibited by the pannexin-1 blockers in single-cell patch clamping. Our results suggest the participation of TRPV1 and pannexin-1 in the physiologic functions of rat nasal mucosa.
Collapse
Affiliation(s)
- Toyoaki Ohbuchi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan,CONTACT Toyoaki Ohbuchi Department of Otorhinolaryngology-Head and Neck surgery, School of Medicine, University of Occupational and Environmental Health, 1–1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Ba Hung Do
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroki Koizumi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shoko Takeuchi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideaki Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
12
|
Koizumi H, Ikezaki S, Ohbuchi T, Do BH, Hohchi N, Kawaguchi R, Kitamura T, Suzuki H. Acetylcholine-induced ex vivo ATP release from the human nasal mucosa. Auris Nasus Larynx 2016; 44:422-427. [PMID: 27692399 DOI: 10.1016/j.anl.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The present study aimed at investigating ATP release in response to acetylcholine (Ach) and pharmacologically elucidating the intracellular signal transduction pathway of this reaction in an ex vivo experiment. METHODS The inferior turbinate mucosa was collected from 21 patients with chronic hypertrophic rhinitis who underwent endoscopic turbinectomy. The mucosa was shaped into a filmy round piece, and incubated with chemical(s) in Hank's balanced salt solution for 10min. After incubation, the ATP concentration was measured by a luciferin-luciferase assay. RESULTS The baseline release of ATP without stimulus was 57.2±10.3fM. The ATP release was significantly increased by stimulation with 100μM Ach. The Ach-induced ATP release was completely inhibited by removing extracellular Ca2+. Significant inhibition of the Ach-induced ATP release was also observed by the addition of 1μM atropine, 40μM 2-APB, 10μM CBX, and 100μM PPADS, whereas 30nM bafilomycin A1 did not affect the ATP release. CONCLUSION These results indicate that the Ach-induced ATP release from the human nasal mucosa is dependent on the pannexin-1 channel and purinergic P2X7 receptor, suggesting that these two molecules constitute a local autocrine/paracrine signaling system in the human nasal epithelium.
Collapse
Affiliation(s)
- Hiroki Koizumi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Shoji Ikezaki
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Toyoaki Ohbuchi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Ba Hung Do
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Nobusuke Hohchi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Rintaro Kawaguchi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Takuro Kitamura
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Hideaki Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Japan.
| |
Collapse
|
13
|
Shishikura Y, Koarai A, Aizawa H, Yamaya M, Sugiura H, Watanabe M, Hashimoto Y, Numakura T, Makiguti T, Abe K, Yamada M, Kikuchi T, Hoshikawa Y, Okada Y, Ichinose M. Extracellular ATP is involved in dsRNA-induced MUC5AC production via P2Y2R in human airway epithelium. Respir Res 2016; 17:121. [PMID: 27677339 PMCID: PMC5039824 DOI: 10.1186/s12931-016-0438-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/20/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In response to tissue damage or inflammation, adenosine-5'-triphosphate (ATP) is released into the extracellular compartment and has been demonstrated to augment inflammation via purinergic P2 receptors (P2Rs). Recently, ATP has been shown to be increased in the airways of COPD patients. In the present study, we examined the possible involvement of extracellular ATP in airway mucus hypersecretion during viral-induced COPD exacerbations. METHODS The involvement of extracellular ATP in the release of a major airway mucin, MUC5AC, and its signal pathway was examined after stimulation with polyinosine-polycytidylic acid [poly(I:C)], a synthetic analog of dsRNA to mimic viral infection, and rhinovirus (RV) infection in NCI-H292 cells and differentiated airway epithelial cells from COPD patients. RESULTS Treatment with poly(I:C) significantly increased the amount of extracellular ATP and induced MUC5AC release in NCI-H292 cells. Pre-treatment with a pannexin channel inhibitor, carbenoxolone (CBX), reduced the amount of extracellular ATP and suppressed MUC5AC release from poly(I:C)-treated cells. Pre-treatment with the P2R antagonist suramin significantly reduced the expression and release of MUC5AC. The inhibitory effects of CBX and suramin on the release of ATP and/or MUC5AC were replicated with RV infection. Pre-treatment with suramin also significantly reduced the expression and amount of extracellular EGFR ligands and the phosphorylation of EGFR and ERK in poly(I:C)-treated cells. In addition, pre-treatment with a P2Y2 receptor siRNA significantly suppressed the poly(I:C)-potentiated EGFR ligands and MUC5AC release. After poly(I:C) stimulation, the expression of MUC5AC in the differentiated cells from COPD patients was significantly higher than those from healthy subjects and the values of MUC5AC expression were inversely related with forced expiratory volume in 1 s (FEV1) % predicted. The inhibitory effects of CBX and suramin on poly(I:C)-potentiated MUC5AC expression were confirmed in differentiated airway epithelium from COPD patients. CONCLUSIONS These results demonstrate that dsRNA induces the release of ATP via pannexin channel and that the extracellular ATP is involved in the expression and release of MUC5AC, mainly via P2Y2R, in an autocrine manner. Modulation of this pathway could be a therapeutic target for viral-induced mucus hypersecretion in COPD exacerbations.
Collapse
Affiliation(s)
- Yutaka Shishikura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Hiroyuki Aizawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Mutsuo Yamaya
- Department of Advanced Preventive Medicine for Infectious Disease Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Yuichiro Hashimoto
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Tomonori Makiguti
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Kyoko Abe
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Mituhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8510 Japan
| | - Yasushi Hoshikawa
- Department of Thoracic Surgery, Fujita Health University School of Medicine, Toyoake, 470-1192 Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery Institute of Development, Aging and Cancer Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| |
Collapse
|
14
|
Diezmos EF, Bertrand PP, Liu L. Purinergic Signaling in Gut Inflammation: The Role of Connexins and Pannexins. Front Neurosci 2016; 10:311. [PMID: 27445679 PMCID: PMC4925662 DOI: 10.3389/fnins.2016.00311] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Purinergic receptors play an important role in inflammation, and can be activated by ATP released via pannexin channels and/or connexin hemichannels. The purinergic P2X7 receptor (P2X7R) is of interest since it is involved in apoptosis when activated. Most studies focus on the influence of pannexin-1 (Panx1) and connexin 43 (Cx43) on ATP release and how it affects P2X7R function during inflammation. Inflammatory bowel disease (IBD) is characterized by uncontrolled inflammation within the gastrointestinal system. At present, the pathophysiology of this disease remains largely unknown but it may involve the interplay between P2X7R, Panx1, and Cx43. There are two main types of IBD, ulcerative colitis and Crohn's disease, that are classified by their location and frequency of inflammation. Current research suggests that alterations to normal functioning of innate and adaptive immunity may be a factor in disease progression. The involvement of purinergic receptors, connexins, and pannexins in IBD is a relatively novel notion in the context of gastrointestinal inflammation, and has been explored by various research groups. Thus, the present review focuses on the current research involving connexins, pannexins, and purinergic receptors within the gut and enteric nervous system, and will examine their involvement in inflammation and the pathophysiology of IBD.
Collapse
Affiliation(s)
- Erica F Diezmos
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Paul P Bertrand
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia; School of Medical Sciences, RMIT UniversityBundoora, VIC, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
15
|
Wu D, Li L, Chen L. A new perspective of mechanosensitive pannexin-1 channels in cancer metastasis: clues for the treatment of other stress-induced diseases. Acta Biochim Biophys Sin (Shanghai) 2016; 48:487-9. [PMID: 27025600 DOI: 10.1093/abbs/gmw018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Di Wu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| |
Collapse
|
16
|
Abstract
The different types of cells in the lung, from the conducting airway epithelium to the alveolar epithelium and the pulmonary vasculature, are interconnected by gap junctions. The specific profile of gap junction proteins, the connexins, expressed in these different cell types forms compartments of intercellular communication that can be further shaped by the release of extracellular nucleotides via pannexin1 channels. In this review, we focus on the physiology of connexins and pannexins and describe how this lung communication network modulates lung function and host defenses in conductive and respiratory airways.
Collapse
Affiliation(s)
- Davide Losa
- Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland
- The ithree Institute, University of Technology Sydney, 2007 Ultimo, NSW Australia
| | - Marc Chanson
- Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|