1
|
Firulli BA, George RM, Harkin J, Toolan KP, Gao H, Liu Y, Zhang W, Field LJ, Liu Y, Shou W, Payne RM, Rubart-von der Lohe M, Firulli AB. HAND1 loss-of-function within the embryonic myocardium reveals survivable congenital cardiac defects and adult heart failure. Cardiovasc Res 2020; 116:605-618. [PMID: 31286141 DOI: 10.1093/cvr/cvz182] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/14/2019] [Accepted: 07/05/2019] [Indexed: 11/12/2022] Open
Abstract
AIMS To examine the role of the basic Helix-loop-Helix (bHLH) transcription factor HAND1 in embryonic and adult myocardium. METHODS AND RESULTS Hand1 is expressed within the cardiomyocytes of the left ventricle (LV) and myocardial cuff between embryonic days (E) 9.5-13.5. Hand gene dosage plays an important role in ventricular morphology and the contribution of Hand1 to congenital heart defects requires further interrogation. Conditional ablation of Hand1 was carried out using either Nkx2.5 knockin Cre (Nkx2.5Cre) or α-myosin heavy chain Cre (αMhc-Cre) driver. Interrogation of transcriptome data via ingenuity pathway analysis reveals several gene regulatory pathways disrupted including translation and cardiac hypertrophy-related pathways. Embryo and adult hearts were subjected to histological, functional, and molecular analyses. Myocardial deletion of Hand1 results in morphological defects that include cardiac conduction system defects, survivable interventricular septal defects, and abnormal LV papillary muscles (PMs). Resulting Hand1 conditional mutants are born at Mendelian frequencies; but the morphological alterations acquired during cardiac development result in, the mice developing diastolic heart failure. CONCLUSION Collectively, these data reveal that HAND1 contributes to the morphogenic patterning and maturation of cardiomyocytes during embryogenesis and although survivable, indicates a role for Hand1 within the developing conduction system and PM development.
Collapse
Affiliation(s)
- Beth A Firulli
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Rajani M George
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Jade Harkin
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Kevin P Toolan
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Hongyu Gao
- Department of and Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN 46202-5225, USA
| | - Yunlong Liu
- Department of and Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN 46202-5225, USA
| | - Wenjun Zhang
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Loren J Field
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Ying Liu
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Weinian Shou
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Ronald Mark Payne
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Michael Rubart-von der Lohe
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Anthony B Firulli
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| |
Collapse
|
2
|
Yu H, Ye F, Yuan F, Cai L, Ji H, Keller BB. Neonatal Murine Engineered Cardiac Tissue Toxicology Model: Impact of Metallothionein Overexpression on Cadmium-Induced Injury. Toxicol Sci 2019; 165:499-511. [PMID: 29982767 DOI: 10.1093/toxsci/kfy177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Engineered cardiac tissues (ECTs) serve as robust in vitro models to study human cardiac diseases including cardiac toxicity assays due to rapid structural and functional maturation and the ability to vary ECT composition. Metallothionein (MT) has been shown to be cardioprotective for environmental toxicants including heavy metals. To date, studies on the role of cardiomyocyte (CM)-specific MT expression and function have occurred in dissociated single cell assays or expensive in vivo small animal models. Therefore, we generated 3D ECTs using neonatal mouse ventricular cells from wild-type (WT) and the CM-specific overexpressing MT-transgenic (MT-TG) to determine the effect of MT overexpression on ECT maturation and function. Because Cadmium (Cd) is an environmentally prevalent heavy metal toxicant with direct negative impact on cardiac structure and function, we then determined the effect of MT overexpression to reduce Cd mediated CM toxicity within ECTs. We found: (1) structural and functional maturation was similar in WT and MT-TG ECTs; (2) Cd exposure negatively impacted ECT cell survival, maturation, and function; and (3) MT-ECTs showed reduced Cd toxicity as defined by reduced cleaved caspase 3, reduced Bax/Bcl2 ratio, reduced TdT-mediated dUTP nick-end labeling positive cells, reduced CM loss after Cd treatment, and delayed onset of cardiac dysfunction after Cd treatment. Thus, neonatal murine ECTs can serve as a robust in vitro model for heavy metal toxicity screening and as a platform to evaluate the role cardioprotective mechanisms, such as the MT-TG model, on environmentally relevant toxicants.
Collapse
Affiliation(s)
- Haitao Yu
- The Center of Cardiovascular Disorders, The First Hospital of Jilin University, Changchun 130021, China.,The Pediatric Research Institute, The Department of Pediatrics of the University of Louisville, Louisville, Kentucky 40292
| | - Fei Ye
- The Center of Cardiovascular Disorders, The First Hospital of Jilin University, Changchun 130021, China.,Kosair Charities Pediatric Heart Research Program, Department of Pediatrics, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Fangping Yuan
- Kosair Charities Pediatric Heart Research Program, Department of Pediatrics, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Lu Cai
- The Pediatric Research Institute, The Department of Pediatrics of the University of Louisville, Louisville, Kentucky 40292.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202
| | - Honglei Ji
- The Center of Cardiovascular Disorders, The First Hospital of Jilin University, Changchun 130021, China
| | - Bradley B Keller
- Kosair Charities Pediatric Heart Research Program, Department of Pediatrics, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, Kentucky 40202.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
3
|
Wang Z, Lee SJ, Cheng HJ, Yoo JJ, Atala A. 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater 2018; 70:48-56. [PMID: 29452273 PMCID: PMC6022829 DOI: 10.1016/j.actbio.2018.02.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Bioengineering of a functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. However, its applications remain limited because the cardiac tissue is a highly organized structure with unique physiologic, biomechanical, and electrical properties. In this study, we undertook a proof-of-concept study to develop a contractile cardiac tissue with cellular organization, uniformity, and scalability by using three-dimensional (3D) bioprinting strategy. Primary cardiomyocytes were isolated from infant rat hearts and suspended in a fibrin-based bioink to determine the priting capability for cardiac tissue engineering. This cell-laden hydrogel was sequentially printed with a sacrificial hydrogel and a supporting polymeric frame through a 300-µm nozzle by pressured air. Bioprinted cardiac tissue constructs had a spontaneous synchronous contraction in culture, implying in vitro cardiac tissue development and maturation. Progressive cardiac tissue development was confirmed by immunostaining for α-actinin and connexin 43, indicating that cardiac tissues were formed with uniformly aligned, dense, and electromechanically coupled cardiac cells. These constructs exhibited physiologic responses to known cardiac drugs regarding beating frequency and contraction forces. In addition, Notch signaling blockade significantly accelerated development and maturation of bioprinted cardiac tissues. Our results demonstrated the feasibility of bioprinting functional cardiac tissues that could be used for tissue engineering applications and pharmaceutical purposes. STATEMENT OF SIGNIFICANCE Cardiovascular disease remains a leading cause of death in the United States and a major health-care burden. Myocardial infarction (MI) is a main cause of death in cardiovascular diseases. MI occurs as a consequence of sudden blocking of blood vessels supplying the heart. When occlusions in the coronary arteries occur, an immediate decrease in nutrient and oxygen supply to the cardiac muscle, resulting in permanent cardiac cell death. Eventually, scar tissue formed in the damaged cardiac muscle that cannot conduct electrical or mechanical stimuli thus leading to a reduction in the pumping efficiency of the heart. The therapeutic options available for end-stage heart failure is to undergo heart transplantation or the use of mechanical ventricular assist devices (VADs). However, many patients die while being on a waiting list, due to the organ shortage and limitation of VADs, such as surgical complications, infection, thrombogenesis, and failure of the electrical motor and hemolysis. Ultimately, 3D bioprinting strategy aims to create clinically applicable tissue constructs that can be immediately implanted in the body. To date, the focus on replicating complex and heterogeneous tissue constructs continues to increase as 3D bioprinting technologies advance. In this study, we demonstrated the feasibility of 3D bioprinting strategy to bioengineer the functional cardiac tissue that possesses a highly organized structure with unique physiological and biomechanical properties similar to native cardiac tissue. This bioprinting strategy has great potential to precisely generate functional cardiac tissues for use in pharmaceutical and regenerative medicine applications.
Collapse
Affiliation(s)
- Zhan Wang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Heng-Jie Cheng
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
4
|
Singh RR, Dunn JW, Qadan MM, Hall N, Wang KK, Root DD. Whole length myosin binding protein C stabilizes myosin S2 as measured by gravitational force spectroscopy. Arch Biochem Biophys 2017; 638:41-51. [PMID: 29229286 DOI: 10.1016/j.abb.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/21/2023]
Abstract
The mechanical stability of the myosin subfragment-2 (S2) was tested with simulated force spectroscopy (SFS) and gravitational force spectroscopy (GFS). Experiments examined unzipping S2, since it required less force than stretching parallel to the coiled coil. Both GFS and SFS demonstrated that the force required to destabilize the light meromyosin (LMM) was greater than the force required to destabilize the coiled coil at each of three different locations along S2. GFS data also conveyed that the mechanical stability of the S2 region is independent from its association with the myosin thick filament using cofilaments of myosin tail and a single intact myosin. The C-terminal end of myosin binding protein C (MyBPC) binds to LMM and the N-terminal end can bind either S2 or actin. The force required to destabilize the myosin coiled coil molecule was 3 times greater in the presence of MyBPC than in its absence. Furthermore, the in vitro motility assay with full length slow skeletal MyBPC slowed down the actin filament sliding over myosin thick filaments. This study demonstrates that skeletal MyBPC both enhanced the mechanical stability of the S2 coiled coil and reduced the sliding velocity of actin filaments over polymerized myosin filaments.
Collapse
Affiliation(s)
- Rohit R Singh
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - James W Dunn
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - Motamed M Qadan
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - Nakiuda Hall
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - Kathy K Wang
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - Douglas D Root
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
5
|
Yue X, Acun A, Zorlutuna P. Transcriptome profiling of 3D co-cultured cardiomyocytes and endothelial cells under oxidative stress using a photocrosslinkable hydrogel system. Acta Biomater 2017. [PMID: 28648749 DOI: 10.1016/j.actbio.2017.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Myocardial infarction (MI) is one of the most common among cardiovascular diseases. Endothelial cells (ECs) are considered to have protective effects on cardiomyocytes (CMs) under stress conditions such as MI; however, the paracrine CM-EC crosstalk and the resulting endogenous cellular responses that could contribute to this protective effect are not thoroughly investigated. Here we created biomimetic synthetic tissues containing CMs and human induced pluripotent stem cell (hiPSC)-derived ECs (iECs), which showed improved cell survival compared to single cultures under conditions mimicking the aftermath of MI, and performed high-throughput RNA-sequencing to identify target pathways that could govern CM-iEC crosstalk and the resulting improvement in cell viability. Our results showed that single cultured CMs had different gene expression profiles compared to CMs co-cultured with iECs. More importantly, this gene expression profile was preserved in response to oxidative stress in co-cultured CMs while single cultured CMs showed a significantly different gene expression pattern under stress, suggesting a stabilizing effect of iECs on CMs under oxidative stress conditions. Furthermore, we have validated the in vivo relevance of our engineered model tissues by comparing the changes in the expression levels of several key genes of the encapsulated CMs and iECs with in vivo rat MI model data and clinical data, respectively. We conclude that iECs have protective effects on CMs under oxidative stress through stabilizing mitochondrial complexes, suppressing oxidative phosphorylation pathway and activating pathways such as the drug metabolism-cytochrome P450 pathway, Rap1 signaling pathway, and adrenergic signaling in cardiomyocytes pathway. STATEMENT OF SIGNIFICANCE Heart diseases are the leading cause of death worldwide. Oxidative stress is a common unwanted outcome that especially occurs due to the reperfusion following heart attack or heart surgery. Standard methods of in vivo analysis do not allow dissecting various intermingled parameters, while regular 2D cell culture approaches often fail to provide a biomimetic environment for the physiologically relevant cellular phenotypes. In this research, a systematic genome-wide transcriptome profiling was performed on myocardial cells in a biomimetic 3D hydrogel-based synthetic model tissue, for identifying possible target genes and pathways as protecting regulators against oxidative stress. Identification of such pathways would be very valuable for new strategies during heart disease treatment by reducing the cellular damage due to reperfusion injury.
Collapse
Affiliation(s)
- Xiaoshan Yue
- University of Notre Dame, Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, United States
| | - Aylin Acun
- University of Notre Dame, Bioengineering Graduate Program, United States
| | - Pinar Zorlutuna
- University of Notre Dame, Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, United States; University of Notre Dame, Bioengineering Graduate Program, United States.
| |
Collapse
|
6
|
Rogers AJ, Fast VG, Sethu P. Biomimetic Cardiac Tissue Model Enables the Adaption of Human Induced Pluripotent Stem Cell Cardiomyocytes to Physiological Hemodynamic Loads. Anal Chem 2016; 88:9862-9868. [PMID: 27620367 PMCID: PMC6050012 DOI: 10.1021/acs.analchem.6b03105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) provide a human source of cardiomyocytes for use in cardiovascular research and regenerative medicine. However, attempts to use these cells in vivo have resulted in drastic cell death caused by mechanical, metabolic, and/or exogenous factors. To explore this issue, we designed a Biomimetic Cardiac Tissue Model (BCTM) where various parameters associated with heart function including heart rate, peak-systolic pressure, end-diastolic pressure and volume, end-systolic pressure and volume, and ratio of systole to diastole can all be precisely manipulated to apply hemodynamic loading to culture cells. Using the BCTM, two causes of low survivability in current cardiac stem cell therapies, mechanical and metabolic, were explored. iPSC-CMs were subject to physiologically relevant mechanical loading (50 mmHg systolic, 10% biaxial stretch) in either a low- or high-serum environment and mechanical loads were applied either immediately or gradually. Results confirm that iPSC-CMs subject to mechanical loading in low-serum conditions experienced widespread cell death. The rate of application of stress also played an important role in adaptability to mechanical loading. Under high-serum conditions, iPSC-CMs subject to gradual imposition of stress were comparable to iPSC-CMs maintained in static culture when evaluated in terms of cell viability, sarcomeric structure, action potentials and conduction velocities. In contrast, iPSC-CMs that were immediately exposed to mechanical loading had significantly lower cell viability, destruction of sarcomeres, smaller action potentials, and lower conduction velocities. We report that iPSC-CMs survival under physiologically relevant hemodynamic stress requires gradual imposition of mechanical loads in a nutrient-rich environment.
Collapse
Affiliation(s)
- Aaron J. Rogers
- Division of Cardiovascular Disease, Department of Medicine,
University of Alabama at Birmingham, Birmingham, AL
- Department of Biomedical Engineering, School of
Engineering, University of Alabama at Birmingham, Birmingham, AL
| | - Vladimir G. Fast
- Division of Cardiovascular Disease, Department of Medicine,
University of Alabama at Birmingham, Birmingham, AL
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, Department of Medicine,
University of Alabama at Birmingham, Birmingham, AL
- Department of Biomedical Engineering, School of
Engineering, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
7
|
The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages. Sci Rep 2016; 6:29933. [PMID: 27435115 PMCID: PMC4951692 DOI: 10.1038/srep29933] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/24/2016] [Indexed: 12/27/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are a robust source for cardiac regenerative therapy due to their potential to support autologous and allogeneic transplant paradigms. The in vitro generation of three-dimensional myocardial tissue constructs using biomaterials as an implantable hiPSC-derived myocardium provides a path to realize sustainable myocardial regeneration. We generated engineered cardiac tissues (ECTs) from three cellular compositions of cardiomyocytes (CMs), endothelial cells (ECs), and vascular mural cells (MCs) differentiated from hiPSCs. We then determined the impact of cell composition on ECT structural and functional properties. In vitro force measurement showed that CM+EC+MC ECTs possessed preferential electromechanical properties versus ECTs without vascular cells indicating that incorporation of vascular cells augmented tissue maturation and function. The inclusion of MCs facilitated more mature CM sarcomeric structure, preferential alignment, and activated multiple tissue maturation pathways. The CM+EC+MC ECTs implanted onto infarcted, immune tolerant rat hearts engrafted, displayed both host and graft-derived vasculature, and ameliorated myocardial dysfunction. Thus, a composition of CMs and multiple vascular lineages derived from hiPSCs and incorporated into ECTs promotes functional maturation and demonstrates myocardial replacement and perfusion relevant for clinical translation.
Collapse
|
8
|
Boukens BJ, Coronel R, Christoffels VM. Embryonic development of the right ventricular outflow tract and arrhythmias. Heart Rhythm 2016; 13:616-22. [DOI: 10.1016/j.hrthm.2015.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 12/19/2022]
|
9
|
Stoppel WL, Kaplan DL, Black LD. Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv Drug Deliv Rev 2016; 96:135-55. [PMID: 26232525 DOI: 10.1016/j.addr.2015.07.009] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 12/19/2022]
Abstract
The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro.
Collapse
|